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The HeH+ cation undergoes dissociative recombination with a free electron to produce neutral He and H
fragments. We present calculations using ab initio quantum defects and Fano’s rovibrational frame-
transformation technique, employing cation rovibrational wave functions satisfying outgoing wave boundary
conditions, to obtain the recombination rate in both the low-energy �1–300 meV� and high-energy �ca.
0.6 hartree� regions. We obtain very good agreement with experimental results, demonstrating that this rela-
tively simple method is able to reproduce observed rates for both indirect dissociative recombination, driven by
rovibrationally autoionizing states in the low-energy region, and direct dissociative recombination, driven by
electronically autoionizing Rydberg states attached to higher-energy excited cation channels.
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I. INTRODUCTION

The dissociative recombination �DR� �1–3� reaction
HeH++e−→He+H has received considerable theoretical and
experimental interest. HeH+ ion chemistry is important to the
understanding of the composition of interstellar space. Ob-
servations �4� have failed to show much HeH+ present in the
interstellar medium, and were in contradiction to the early
prediction �5� that this species would be abundant. These
observations indicated that the low-energy DR cross section
of HeH++e− is indeed significant, although there is no va-
lence electronic state of the neutral that provides a mecha-
nism for the high rate at low collision energy.

Thus, much theoretical and experimental interest has been
focused on this process in the intervening years. Experiments
�6–13� show peaks in the DR cross section in both the low-
energy region �ca. 1–300 meV� and the high-energy region
around 20 eV. It is the low-energy peak that is responsible
for the destruction of HeH+ in interstellar space.

The low- and high-energy peaks are caused by two differ-
ent mechanisms, the indirect and direct, respectively. The
indirect mechanism has proved more difficult to treat theo-
retically, and the initial underestimate �5� of the low-energy
DR rate was based upon a consideration of the direct mecha-
nism only.

The presence of the two mechanisms, and the importance
of this process to the understanding of interstellar chemistry,
makes the DR of HeH+ a prime target for theory. Several
treatments �1,13–18� have been presented, and these have
had varying success at reproducing experimental DR rates.
The study of Orel et al. �14� reproduced the magnitude and
size of the high-energy peak, but did not accurately repro-
duce the shoulder on the high-energy side. Takagi �17,18�
has obtained good agreement for the low-energy peak, but
did not reproduce all the peaks and dips in the cross section
perfectly.

As schematic of the process is shown in Fig. 1. Indirect
DR �1� in the low-energy region is driven by transitions to
rovibrationally autoionizing Rydberg states supported by the
lowest cation curve. Such states are described as a Rydberg
electron attached to a rotationally or vibrationally excited,
but electronically ground-state, HeH+ cation core. The DR
process is driven by nonadiabatic coupling to and among
these Rydberg states. The DR cross section exhibits peaks
corresponding to the locations of the autoionizing reso-
nances, which serve as doorways.

The direct DR process �19,20� is driven by a transfer of
energy among the electronic degrees of freedom only: an
incident electron with sufficient energy may excite the
ground-state �1�� HeH+ cation core, such that the incident
electron becomes trapped in a Rydberg state supported by a
dissociative � cation core. This is a vertical transition, la-
beled by an arrow in Fig. 1, and nonadiabatic coupling is
unimportant to the total DR rate. Once the electronic transi-
tion to the metastable Rydberg state has occurred, the mol-
ecule follows the dissociative Rydberg potential energy sur-
face toward breakup. Our studies indicate that most of the
high-energy DR to HeH+ is accounted for by the Rydberg
series converging to the upper singlet curve.

*dhaxton@jila.colorado.edu
†chris.greene@colorado.edu

1 2 3

0

0.5

1

E
(u

ni
ts

of
ha

rt
re

e )

R (units of bohr)

-
E0

-
E1

X 1Σ 3Σ

2 1Σ

Cation
Rydberg

ν = 0 wavefunction

FIG. 1. Schematic of HeH+ DR. The ground rovibrational state
of the cation is plotted as dots; the cation curves, as solid lines; and
Rydberg curves supported by the lowest and highest cation curves,
as dotted lines. Typical incident electron energies for the low-
energy and high-energy DR are labeled E0 and E1, respectively.
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II. THEORY

Several theoretical methodologies have found reasonable
success in treating the dissociative recombination of HeH+,
but there is still room for improvement. Treatments �14–16�
using the formalism of O’Malley �20�, in which the DR rate
is obtained by calculating potential energy curves of the au-
toionizing Rydberg states of HeH, may be contrasted with
treatments �13,17,18� using multichannel quantum defect
theory �MQDT� �21–25�, in which the only potential energy
curves explicitly included are those of the cation, or those in
which both cation and neutral curves are used �1,26�. Scat-
tering calculations using vibrational close coupling were
used in Ref. �27�.

The O’Malley treatment was used by Orel et al. �14� to
calculate the high-energy peak; those authors reproduced the
magnitude and basic shape of the high-energy peak obtained
from the 1993 experiment of Sundstrom et al. �8� by includ-
ing a total of eight doubly excited Rydberg states �six � and
two ��. To calculate the low-energy peak under the
O’Malley framework, Larson et al. �15� required nonadia-
batic coupling matrix elements between the ground and �
core Rydberg states of HeH+; their study underestimated the
magnitude of the experimental result by a factor of 10–100.

Treatments using multichannel quantum defect theory can
be considerably simpler than those using the O’Malley treat-
ment because they do not necessarily require the enumera-
tion of the Rydberg states contributing to the process. Such
treatments include ours and those of Takagi �17,18� and Gu-
berman �1�. The main difference between our method and
those of Takagi and Guberman is that ours includes the DR
process in the closed channel space of the MQDT calcula-
tion, whereas the others include DR channels in the open
channel space.

Guberman’s pioneering 1994 paper �1� employed the hy-
brid technique �26� incorporating both dissociative neutral
and cation curves. In this method one typically has dissocia-
tive valence states and MQDT S matrices corresponding to
the Ryberg series, and one proceeds by coupling these in the
first Born approximation. The coupling can be purely elec-
tronic or can arise from nonadiabatic coupling.

Nonadiabatic coupling was employed in Guberman’s
treatment. He defined MQDT S matrices using the curve of
the D state of neutral HeH. He treated the C state, which lies
below the D state, as an open dissociative channel. The C
and D states avoid each other, and the nonadiabatic coupling
between them is included as the discrete-continuum coupling
as in Ref. �26�.

Guberman’s technique has several advantages, notably
that it incorporates the correct asymptotic form of the wave
function. However, it seems to require the identification of
the dominant final electronic state channel of the DR process
before doing the calculation, and thus may be difficult to
apply to a general problem.

Our method of calculating DR rates using MQDT is simi-
lar to Takagi’s method �17,18� in that it incorporates a vibra-
tional frame transformation �22,23� including both bound
and continuum vibrational wave functions of the HeH+ cat-
ion. Our methods differ in the choice and treatment of the
continuum vibrational states. Takagi employs standing-wave

boundary conditions �box states�, and chooses a subset of
these states to represent the DR channels, interspersed
among others that are chosen to be closed. We employ
outgoing-wave boundary conditions �28�, and consider such
continuum channels open or closed according to the real part
of their complex-valued energies. Thus, in our method, the
DR channels are not explicitly included in the calculated S
matrix, whereas in Takagi’s and Guberman’s treatments, they
are.

Whereas Guberman’s calculation incorporates the correct
asymptotic form of the wave function, but is difficult to
implement for a general system, our method and that of
Takagi incorporate unphysical boundary conditions and are
easier to implement. In Takagi’s treatment, some box con-
tinuum states are chosen to be open and some closed, and
these are interspersed among each other. Therefore, in some
box states the bound-state boundary condition is imposed for
the electron, and for others, they are not. The calculation has
Rydberg states attached to closed box states and this situation
is clearly unphysical. In our calculation, we have wave func-
tions with complex energy, asymptotically increasing at large
bond length, which is also clearly unphysical. However, in
the limit that the discretized continuum states have a negli-
gibly small imaginary component to their energy, our wave
function corresponds to the correct physical scattering wave
function having outgoing wave boundary conditions in the
diatomic coordinate.

At present, our method has not been applied to the prob-
lem of the final-state distribution of the electronic states of
the fragment atoms. Applying the method of Guberman or
Takagi to this problem is more straightforward than it is for
our method.

A. Outgoing-wave basis functions

The original outline of our method �28� as well as subse-
quent calculations of DR rates for physical systems �29–31�
used the technique of Siegert pseudostates �32� to define the
outgoing-wave cation vibrational basis. However, there are a
few difficulties with the formal theory presented in these
papers that we would like to address. The Siegert-state basis
is orthonormal with respect to integration plus a surface
term,

� dR ���R����R� + i
���R0����R0�

k� + k�

= ���, �1�

where k� is the Siegert-pseudostate wave number eigenvalue
for state number �. By analogy, the frame-transformed S
matrix has been written �see, for example, Eq. �6� in Ref.
�28��

S�� =� dR ���R�s�R����R� + i
���R0�s�R0����R0�

k� + k�

. �2�

However, questions may be raised as to whether this ad hoc
expression represents the proper transformation of the S ma-
trix from the R to the � basis. For instance, this equation
does not preserve the eigenphases of the MQDT S matrix,
and is not invertible.

DANIEL J. HAXTON AND CHRIS H. GREENE PHYSICAL REVIEW A 79, 022701 �2009�

022701-2



The orthonormality properties of the Siegert pseudostates
are well known �32�, and it is not hard to derive a more
appropriate expression for the transformed S matrix using
Siegert pseudostates. However, in the present paper we
choose to use a different method to enforce outgoing-wave
boundary conditions in the vibrational basis.

Complex absorbing potentials �CAPs� �33–35� or exterior
complex scaling �ECS� �36–42� are alternative methods of
defining outgoing-wave states. The set of eigenvectors ob-
tained from these methods obey a simpler orthonormality
relationship than do the Siegert pseudostates: they may be
chosen orthonormal with respect to the inner product in
which neither the bra nor ket is complex conjugated, called
the C norm,

� dR ���R����R� = ���. �3�

Unlike the orthonormality relationship of the Siegert states,
the C norm is an inner product and defines the ECS or CAP
states as basis vectors of a vector space. The frame transfor-
mation of the fixed-nuclei S matrix to the ECS or CAP basis
uses this inner product and is straightforward:

S�� =� dR ���R�s�R����R� . �4�

This transformation preserves the eigenphases exactly in the
complete-basis limit. We then apply the rotational frame
transformation of Ref. �23�.

Previous applications of the method outlined in Ref. �28�
have been on indirect DR in which electron-impact dissocia-
tion is not energetically open. Thus, the outgoing-wave vi-
brational states have corresponded to closed channels in
these studies. In contrast, for the present analysis of the high-
energy peak in HeH+ DR, electron-impact dissociation to
H++He is energetically open �that to H+He+ may be� and
we have outgoing-wave vibrational functions as open chan-
nels.

It is worth mentioning that, in either case, the asymptotic
form of the wave function is unphysical, because of the pres-
ence of outgoing-wave basis functions with complex energy
that are exponentially increasing in magnitude. For the
frame-transformed S matrix in the C-normed vibrational ba-
sis, each column of which corresponds to an outgoing-wave
scattering state �+�i�,

��
+ = ���R�hl�

− �k�r� + �
�

S�����R�hl�
+ �k�r� , �5�

the proper statement of unitarity easily is found not to be

�
�

�S���2 = 1, ∀ � , �6�

but

�
�	

S��U�	S
�	
* = 1, ∀ � , �7�

where

U�	 =� dR ���R��	�R�*. �8�

While it is easy to prove that the frame-transformed and
channel-closed S matrix with bound states is unitary in the
complete-basis limit, we have no proof that our constructed S
matrix is guaranteed to be subunitary, though we have found
this to be the case in the applications of this theory to date.

Thus, the outline of the calculation is as follows. We cal-
culate fixed-nuclei S matrices slm,l�m��R� and transform them
to the ECS basis via Eq. �4�. We then apply the rotational
frame transformation of Chang and Fano �23�. We finally
apply the channel-closing formula

S�E� = Soo − Soc�Scc − e−2i��E��−1Sco,

��E� =

���

�2�E� − E�
, �9�

where the subscripts c and o denote the closed and open
channel subblocks of the MQDT S matrix S, � is now a
collective index including angular momentum quantum num-
bers, and we introduce the notation S for the physical S
matrix. The DR cross section is then obtained from the uni-
tary defect of the frame-transformed S matrix,

���E� =



2E	1 − �
�	

S��U�	S�	
* 
 . �10�

We Boltzmann average and convolute with respect to the
parallel and transverse spreads in the incident electron en-
ergy in the experiment, as described in Ref. �31�.

III. CALCULATION OF AB INITIO QUANTUM DEFECTS
AND CATION ROVIBRATIONAL STATES

We calculate quantum defects using the polyatomic U.K.
R-matrix program �43�, which is based on the MOLECULE-

SWEDEN and ALCHEMY suites of quantum chemistry codes
�44�. We include s-, p-, d-, and f-wave basis functions �only
s, p, and d for the high-energy peak� for the scattered elec-
tron in an R-matrix box of radius 14 bohr, calculated with
the program GTOBAS �45�. We use the correlation-consistent
polarized valence triple-zeta �cc-pvtz� basis set. For calcula-
tions on the low-energy region, we include the lone 1� self-
consistent field �SCF� orbital of HeH+ and an additional six
� and two pairs of 
 virtual orbitals for the target space. The
three lowest cation target states, 1 and 2 1� and 3�, are
included in the scattering calculation and defined by full con-
figuration interaction �CI� in the target space. Penetration
terms defined by full CI of three electrons in the target space
are included in the scattering wave function.

For the high-energy DR calculations, the HeH+ target
states are represented by full CI in the orbital space of a
complete active space self-consistent field �CASSCF� calcu-
lation on the ground state, performed with the MOLPRO quan-
tum chemistry package �46�. Following Orel et al. �14�, we
use a total of four � orbitals and one 
 orbital. We include
the first three cation states and use an R-matrix radius of
8 bohrs. Penetration terms with full CI of three electrons are
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again included in the scattering wave function. Quantum de-
fects at zero incident energy in the ground-state cation chan-
nel are plotted in Fig. 2.

To perform the frame-transformation calculation to obtain
the low-energy DR rate, we interpolate the calculated fixed-
nuclei s-matrices over a range of R=0.75–4.5 bohrs, and
calculate outgoing-wave ECS vibrational states using the
finite-element Gauss-Lobatto discrete variable representation
�47�. We used 16-point quadrature and seven elements, scal-
ing the R coordinate at an angle of 1

8
 on the sixth element
�the calculation is almost fully converged at tenth-order
quadrature�. We included 42 vibrational wave functions; the
calculations of Ref. �48� found 12 bound states, and our vi-
brational states include seven with real energies and ten with
imaginary energy component less than 0.0001 hartree in
magnitude. We use the ground-state cation potential energy
surface of Coxon and Hajigeorgiou �49� and use modified
atomic weights with reduced mass

�eff =
mH�1/2�+mHe�1/2�+

mH�1/2�+ + mHe�1/2�+
, �11�

where mHe�1/2�+ is the mass of a helium nucleus plus one and
a half electrons and mH�1/2�+ is the mass of a proton plus a half
electron. The results are slightly sensitive to such fine-tuning
�which approximately accounts for nonadiabatic coupling�
and we find this choice to produce the best agreement with
prior calculations of HeH+ rovibrational spectra. For transi-
tions up to �=3 or j=3 we find good agreement with the
results of Bishop and Cheung �50�, with errors less than
21 cm−1.

IV. RESULTS

Results for the low-energy calculation on HeH+ are plot-
ted in Figs. 3–5. Figure 3 shows the unconvolved cross sec-
tion for DR of the ground rovibrational state of 4HeH. To
compare with experiment, we also convolve our results using
a transverse spread of 10 meV and a parallel spread of
0.1 meV in the incident electron energy, to account for the
experimental parameters of Ref. �13�. The convolution is
performed as in Refs. �30,31�.

�Although the inelastic cross section is zero below the
first excited state threshold, the convolution yields a nonzero
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FIG. 2. Quantum eigendefects calculated at zero incident energy
in the ground-state cation channel.
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expected experimental inelastic cross section below this
threshold, accounting for the fact that some of the electrons
in the experiment will have energies above the first threshold
when the electron beam is tuned below threshold. The con-
volution, described in Ref. �31�, is designed to accurately
reproduce the experimental results. Because the experimen-
tally observed quantity is a rate, not a cross section, the con-
volution is performed on the rate, and gives a convolved rate
that decreases with decreasing energy below the excited-state
threshold. The cross section equals the rate divided by the
incident electron velocity, and in this case, we have the coun-
terintuitive result that the expected experimental inelastic
cross section actually increases with decreasing energy be-
low the excited state threshold, as shown in Fig. 3.�

Inelastic scattering leads to rotational or vibrational exci-
tation of the cation and is allowed starting at an energy of
8.3 meV, where the first rotational threshold �j=1� lies. As
shown in Fig. 3, at that threshold there is a clear step down in
the DR cross section, and the inelastic cross section assumes
a value near the averaged DR rate below threshold. This
finding confirms the basic picture of the indirect mechanism,
and parallels our findings on the DR of LiH+ �30,31�. Below
the j=1 threshold, the only inelastic process open is disso-
ciative recombination; above it, rotational excitation of the
cation is allowed, and this process competes with DR and in
fact dominates it, decreasing the DR cross section.

Thus, for energies below the j=1 threshold of 8.3 meV,
the DR is seen to be driven by capture into Rydberg states
supported by the j=1 rotational state of the cation. These
resonances are visible in Fig. 3 and have a sharp cutoff at the
8.3 meV threshold. Another group of Rydberg states termi-
nates at the second excited rotational threshold, j=2, at
24.9 meV; at this energy, there is a dip visible in the con-
volved DR cross section, but a series of broad resonances

then appears and increases the cross section. The inelastic
cross section has only a barely visible step up at the second
excited rotational threshold, showing that rotational excita-
tion to j=1 is much stronger than that to j=2.

A close-up view of the calculated cross section for DR of
the ground rovibrational state of 4HeH is shown in Fig. 4. In
this figure we also plot the result of calculations in which the
first excited rotational channel �j=1� is left open even below
its threshold. Such a calculation elminates the Rydberg series
converging to the j=1 threshold and reveals the presence of
resonances attached to higher-channel thresholds. In this fig-
ure we plot the unconvolved physical DR cross section; the
physical DR cross section convolved with a Gaussian to
show its average value; and the unphysical, artificially
opened j=1 channel result. Note that, as in Refs. �30,31�,
there is an enhancement of the DR rate at a complex reso-
nance, i.e., a resonance involving a lower principal quantum
number state embedded in the very high Rydberg series con-
verging to an excited cation state threshold. In contrast to
Refs. �30,31�, however, the complex resonance mechanism is
here seen to be supported by rotationally autoionizing reso-
nances, rather than vibrationally autoionizing ones. This sug-
gests that some of the ideas shown in Refs. �30,31�, concern-
ing the indirect mechanism of DR being dominated by
complex resonances, may also be relevant for rotationally
autoionizing states in addition to the originally postulated
situation of vibrationally autoionizing Rydberg states. It is
beyond the scope of this study to examine this point in
greater detail, but this point is worth exploring in future re-
search.

The results presented above analyze the DR of rotation-
ally and vibrationally cold, ground-state 4HeH. To compare
with current experiments, we must account for the nonzero
temperature of the ion source. We Boltzmann-average over
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FIG. 5. �Color online� Low-energy DR rate coefficient compared with the experiment of Tanabe et al. �13� and the theoretical results of
Takagi �13�, Guberman �1�, and Sarpal et al. �27�.
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the population of rovibrational states at 800 K, to account for
the experimental parameters of Ref. �13�, and show the re-
sults for the various isotopologs in Fig. 5. We compare with
the theoretical results of Guberman �1�, Sarpal et al. �27�,
and Takagi �13� and it seems that the present method has
produced the results most closely matching the experimental
data of Tanabe �13�.

For calculating the high-energy DR peak, several degrees
of complication may be included in the calculation, but we
find that a very simple treatment is sufficient to approximate
the experimental results. We include neither the energy de-
pendence nor the R dependence of the fixed-nuclei S matrix,
evaluating it at 0.6 hartree and 1.6a0, roughly at the center of
the experimentally observed peak and ground-state vibra-
tional wave function.

Results for the high-energy DR calculation are shown in
Fig. 6. We compare our MQDT results to the prior theoretical
results of Ref. �14� and the experiments of Refs. �8,12�. We
also calculate a result using the O’Malley framework �20� in
which we first find the resonance positions and widths as a
function of nuclear geometry. We do so by applying the
MQDT channel-closing formula, Eq. �9�, to the calculated
MQDT S matrices to obtain the “physical” S matrix S�E� in
the complex-energy plane. We then locate its poles ER

�i�

− i
�i� /2. We find six resonances, i=1–6, all of which have �
symmetry. Using the approximate formula �20� valid for
small widths,

��E� = �
i


2

E


�i�
„Ri�E�…

�ER
�i��

„Ri�E�…�
��„Ri�E�…�2, �12�

where the widths 
�i�, resonance energies ER
�i�, and ground-

state vibrational wave function � are evaluated at a geom-
etry Ri�E� consistent with a vertical transition such that E0
+E=ER

�i�(Ri�E�), with E0 the initial-state energy, we obtain a
result consistent with our MQDT result. In the lower panel of
Fig. 6 we show the contributions for each of the six � reso-
nances to the total. Orel et al. �14� found two � resonances
having significant contribution to the total cross section, and
their six � resonances give partial cross sections different
from ours shown in Fig. 6.

V. DISCUSSION

We have applied the theory of Ref. �28� to the calculation
of DR rates for HeH++e− in both the low- and high-energy
regions. We have achieved very good agreement with
experiment—at least as good as that of Orel et al. �14� for
the high-energy peak, and better than all prior calculations
for the low-energy region. Thus, it is clear that the present
methodology gives accurate results for both the indirect and
direct mechanisms.

Our treatment of the high-energy peak was perhaps the
simplest possible: we used a quantum defect matrix constant
with respect to both incident electron energy and internuclear
radius. Such a simple treatment is applicable to much larger
systems, as it leads to a sparse system of linear equations in
the channel closing step, which is the rate-limiting step for
polyatomic DR calculations.

However, for larger systems it may be necessary to in-
clude the energy dependence of the quantum defect in order
to reproduce the relevant physics of DR or rovibrational
autoionization. For instance, larger polyatomic systems such
as NO2

+ will in general support a greater number of shape
resonances than smaller diatomic systems, and these will im-
part energy dependence to the quantum defect functions that
is difficult to analytially remove.

Methods suited to a MQDT treatment including the en-
ergy dependence of the fixed-nuclei quantum defect include
those of Refs. �51,52�. These calculations require not the S
matrix but other entities such as the square root of the S
matrix or the quantum defect matrix. Therefore, such a cal-
culation is more difficult owing to the necessity of following
the branches of the quantum defect matrix across both R and
E, for a large �possibly of the order of 1 hartree� energy
range.

Even for the relatively small HeH+ system, the high-
energy DR peak spans a large energy range and involves a
large transfer of energy from the electronic to the nuclear
degrees of freedom. Given these qualities, it is not a priori
obvious that our simple treatment would accurately repro-
duce the physical results. We pursued an energy-dependent
treatment along the lines of �52�, and this was yielding re-
sults similar to those presented in Fig. 6, but was not numeri-
cally stable, and would require improvement to yield pub-
lishable results.
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FIG. 6. Top: High-energy dissociative recombination rate coef-
ficient calculated with the present MQDT treatment, compared with
our results using calculated resonance curves and the O’Malley
treatment �Eq. �12��, the theoretical results of Orel et al. �14�, and
the experimental results of Sundstrom et al. �8� and Stromholm et
al. �12�. Bottom: Contribution of each of the six � resonances to
our total result using the O’Malley treatment.
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