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We derive a multiconfigurational time-dependent Hartree theory for systems with particle conversion. In
such systems particles of one kind can convert to another kind and the total number of particles varies in time.
The theory thus extends the scope of the available and successful multiconfigurational time-dependent Hartree
methods—which were solely formulated for and applied to systems with a fixed number of particles—to a
broader class of physical systems and problems. As a guiding example we treat explicitly a system where
bosonic atoms can combine to form bosonic molecules and vice versa. In the theory for particle conversion, the
time-dependent many-particle wave function is written as a sum of configurations made of a different number
of particles, and assembled from sets of atomic and molecular orbitals. Both the expansion coefficients and the
orbitals forming the configurations are time-dependent quantities that are fully determined according to the
Dirac-Frenkel time-dependent variational principle. By employing the Lagrangian formulation of the Dirac-
Frenkel variational principle we arrive at two sets of coupled equations of motion, one for the atomic and
molecular orbitals and one for the expansion coefficients. The first set is comprised of first-order differential
equations in time and nonlinear integrodifferential equations in position space, whereas the second set consists
of first-order differential equations with coefficients forming a time-dependent Hermitian matrix. Particular
attention is paid to the reduced density matrices of the many-particle wave function that appear in the theory
and enter the equations of motion. There are two kinds of reduced density matrices: particle-conserving
reduced density matrices which directly only couple configurations with the same number of atoms and
molecules, and particle nonconserving reduced density matrices which couple configurations with a different
number of atoms and molecules. Closed-form and compact equations of motion are derived for contact as well
as general two-body interactions, and their properties are analyzed and discussed.
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I. INTRODUCTION

The exploration of quantum dynamics of many-particle
systems is a fundamental and ongoing challenge of many
branches in physics �1–6�. The equation of motion governing
the evolution of quantum particles is, in many cases, the
well-known time-dependent Schrödinger equation. Solving
the time-dependent Schrödinger equation for many-particle
systems can rarely be made analytically or exactly, which
renders efficient approximations a must.

The multiconfigurational time-dependent Hartree method
�MCTDH� �7,8�, which has been developed in the past two
decades, is considered at present the most efficient wave-
packet propagation approach �9� and has successfully and
routinely been used for multidimensional dynamical systems
consisting of distinguishable degrees of freedom, such as
molecular vibrations, see Refs. �10–19�. The main idea be-
hind the MCTDH method is to expand the time-dependent
many-body wave function of distinguishable particles by
time-dependent configurations that are assembled from time-
dependent orbitals �one-body functions� and optimized ac-
cording to the Dirac-Frenkel variational principle �20,21�. In
this way, a much larger effective subspace of the many-

particle Hilbert space can be spanned in practice in compari-
son to multiconfigurational expansions with stationary con-
figurations. By grouping several “elementary” degrees of
freedom together and treating them as “generalized” par-
ticles, the efficiency of the MCTDH algorithm increases
�10,11�. Choosing to use MCTDH itself to propagate multi-
dimensional “generalized” particles has led to the idea of
cascading �13�. Finally, expanding the time-dependent orbit-
als of the “generalized” particles themselves by other time-
dependent orbitals, and so on, putting the resulting time-
dependent expansion under the Dirac-Frenkel variational
principle, leads to the multilayer formulation of the MCTDH
theory �22� which further increases the efficiency of the
MCTDH method for larger, complex systems. The MCTDH
can be applied to systems of identical particles. In this direc-
tion, we would like to mention that the MCTDH approach
has very successfully been employed in unveiling fundamen-
tal physics of few-boson systems �23–28� on the numerically
exact many-body level.

A new branch of MCTDH-based methods has emerged
after it had been realized that, to effectively treat the dynam-
ics of more than a handful identical particles, it is essential to
use their quantum statistics, Fermi-Dirac or Bose-Einstein, to
eliminate the large amount of redundancies of coefficients in
the distinguishable particle multiconfigurational expansion of
the MCTDH wave function. First, taking explicitly the anti-
symmetry of the many-fermion wave function to permuta-
tions of any two particles into account, the fermionic version
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of MCTDH—MCTDHF—was independently developed by
several groups �29–31�. Shortly after, the bosonic version of
MCTDH—MCTDHB—was developed in �32,33�. This ad-
vancement is in particular valuable since very many bosons
can reside in only a small number of orbitals owing to Bose-
Einstein statistics, thereby allowing the successful and quan-
titative attack of the dynamics of a much larger number
of bosons with the MCTDHB theory. For applications of
MCTDHF to the many-body dynamics of at present few-
fermion systems with or without external laser field, see
Refs. �34–40�, and for applications of MCTDHB for the
many-body dynamics of repulsive and attractive bosonic sys-
tems, Refs. �32,41–43�. We mention that Ref. �43� has com-
bined optimal control theory with MCTDHB.

Five decades ago, in his seminal paper, Löwdin defined
the reduced density matrices of many-fermion wave func-
tions �44�. Since then, reduced density matrices and, in par-
ticular, reduced two-body density matrices is a fruitful and
vivid research area including theory and applications in elec-
tronic structure of molecules, quantum phase transitions, and
ground-state nuclear motion �45–51�. In the present context,
reduced one- and two-body density matrices were used to
derive the stationary many-body states within the general
variational theory with complete self-consistency for trapped
bosonic systems—the multiconfigurational Hartree for
bosons �MCHB� �52�. Later on, the MCTDHF and
MCTDHB were formulated in a unified manner, making use
of the reduced one- and two-body density matrices of the
time-dependent many-body wave function �53�. Finally,
treating mixtures of two kinds of identical particles in a uni-
fied manner, and utilizing the reduced one- and two-body
density matrices of the mixture’s wave function, a multicon-
figurational time-dependent Hartree method for Fermi-Fermi
�MCTDH-FF�, Bose-Bose �MCTDH-BB�, and Bose-Fermi
�MCTDH-BF� mixtures has been derived �54�.

The multiconfigurational time-dependent Hartree method
and its versions specified for identical particles and mixtures
are particle-conserving many-body propagation theories.
Namely, they were solely formulated for and applied to sys-
tems with a fixed number of particles. Conceptually, they
aim at describing systems of coupled degrees of freedom or
interacting particles which have first-quantization Hamil-
tonian. This brings us to the theme of the present work,
which is to derive a multiconfigurational time-dependent
Hartree theory for systems with particle conversion. In such
systems particles of one kind can convert to another kind and
the total number of particles varies in time. Hence, they are
generally represented by a phenomenological second-
quantized Hamiltonian which includes a conversion term.
Doing so, we extend the scope of the available and success-
ful multiconfigurational time-dependent Hartree method and
its versions specified for identical particles and mixtures to
new physical systems and problems. We abbreviate the mul-
ticonfigurational time-dependent Hartree theory for systems
with particle conversion by MCTDH-conversion.

As a concrete and guiding example for a many-body sys-
tem with particle conversion and without loss of generality,
we consider explicitly the conversion of bosonic atoms �a� to
bosonic molecules �m� via the “reaction” 2a�m, which has
been a system of tremendous theoretical and experimental
interest in quantum-gas physics �55–85�.

An effective quantum-field-theory-based Hamiltonian for
atomic and molecular Bose-Einstein condensates �BECs�
coupled by conversion was put forward by Drummond et al.
in �55�. In �56�, a proposition that a molecular BEC could be
produced by coherent photoassociation was made and a phe-
nomenological two-mode Hamiltonian to describe this pro-
cess was suggested. A microscopic theory to derive the
many-body Hamiltonian of bosonic atoms and molecules
with conversion and the respective Gross-Pitaevskii theory
with conversion were put forward in �57�, also see �59�. In
�58�, a coupled system of Gross-Pitaevskii equations with
conversion and deactivation-rate �dissipation� terms has been
derived. The validity of the two-mode approach for conver-
sion, at least in the homogeneous system, was questioned in
�62�, where dissociation of molecules to other than the
ground atomic mode signifies that one needs to go beyond
the two-mode approximation. The importance of pair corre-
lations in the dynamics of resonantly-coupled atomic and
molecular BECs, leading to significant deviations from the
respective Gross-Pitaevskii theory, was put forward in �63�.
That even in the perfect two-mode limit the mean-field
theory with conversion can fail, because of strong particle-
particle entanglement near the dynamically unstable molecu-
lar mode, was reported in �65�. A proposition to create a
molecule BEC from an atomic Mott-insulator phase with ex-
actly two bosons per lattice site was made in �68�. A full
microscopic theory to derive the Hamiltonian of atoms and
molecules with the conversion term from the microscopic
particle-conserving Hamiltonian of a homogeneous gas of
identical bosonic atoms with two internal states was given in
�69�, also see �74�. Quantum phase transitions and effects of
rotations in homogeneous systems of atomic and molecular
BECs with conversion have been discovered in �75,77� and
�76�, respectively. Finally, in a �harmonic� trap, confinement
effects on the stimulated dissociation �effective conversion
rate� of a molecular to an atomic BEC were recently found in
�83�, and unique phases �vortex configurations� of rotating
interacting atomic-molecular BECs in �85�.

Molecules were first produced from and identified in an
87Rb BEC by Wynar et al. �60�. Soon after, photoassociation
of ultracold sodium molecules in an atomic BEC was made
�66�. Atomic-molecular coherence in a BEC �made of 85Rb
atoms� was achieved in �67�. A pure molecular quantum gas
produced from an atomic cesium BEC was reported in �71�,
and a quantum-degenerate gas of sodium molecules in �72�.
More recently, with 87Rb atoms in the Mott phase of optical
lattices, state-selective conversion of atoms to molecules
�78�, following the theoretical proposition in �68�, and atom-
molecule Rabi oscillations �84� have been observed.

Finally, systems with particle conversion can involve, of
course, fermions; in the cold-atom world—see the reviews
�82,86� and references therein—and beyond it. In the latter
context, it is gratifying to mention the Friedberg-Lee model
of superconductivity, describing the conversion of two elec-
trons to a single Cooper pair and vice versa by a boson-
fermion Hamiltonian with a phenomenological conversion
term �87,88�. We would also like to mention that other ap-
proaches for describing systems with particle conversion and
composite particles have been pursued, see, e.g., �89,90�.

Let us return now to MCTDH-conversion, and put it in
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the particular context of interacting atomic and molecular
BECs with conversion. For the explicit scenario of the con-
version “reaction” 2a�m dealt with throughout this work,
the theory shall be referred to as MCTDH-�2a�m�.
MCTDH-�2a�m�, as its particle-conserving predecessors
�7,8,12,29–33,53,54�, is intended for systems with a finite
number of interacting particles, typically trapped in an exter-
nal potential. As a first step, we extend or “merge” two the-
oretical approaches much in use in the literature: the Gross-
Pitaevskii theory with conversion and the two-mode
approximation, see, e.g., Refs. �57,59,61,64,81,85� and Refs.
�56,65,80�, respectively. This results in a fully variational
theory where the two modes—the atomic and molecular
orbitals—and each and every expansion coefficient in the
two-mode many-body wave function are fully optimized—
the orbitals in time and space and the expansion coefficients
in time—according to the Dirac-Frenkel variational principle
�20,21�. Our main aim is to go beyond any two-mode de-
scription of the atomic-molecular coupled system and
present a fully variational multiconfigurational time-
dependent many-body theory for bosonic atoms and mol-
ecules coupled by conversion—the MCTDH-�2a�m�
theory.

The structure of the paper is as follows. We open in Sec.
II with the many-body Hamiltonian of the system of atoms
and molecules with conversion. In Sec. III we consider as
mentioned above a specific case of interest, the fully varia-
tional theory where there are one atomic and one molecular
orbitals. This specific theory will be referred to as conversion
mean field. Next, Sec. IV is devoted to the general theory.
Both time-dependent as well as time-independent theories
are presented. Finally, in Sec. V we put forward a summary
and concluding remarks. Complementary derivations and rel-
evant matrix elements are deferred to and collected in Ap-
pendixes A and B, respectively.

II. THE MANY-BODY HAMILTONIAN OF INTERACTING
ATOMS AND MOLECULES WITH CONVERSION

As a concrete example for a many-body system with par-
ticle conversion and without loss of generality, we consider a
system of bosons which will be referred to as atoms �a� and
their conversion to another type of bosons which will be
referred to as molecules �m� via the “reaction” 2a�m. The
many-body Hamiltonian of the coupled atom-molecule sys-
tem is taken from the literature of cold-atom physics
�55,57,69,76� and is written for our needs as a sum of four
terms,

Ĥ�2a�m� = Ĥ�am� + Ŵ�2a�m� = Ĥ�a� + Ĥ�m� + Ŵ�am� + Ŵ�2a�m�.

�1�

The first three terms are particle-conserving terms and to-
gether describe a mixture of two kinds of interacting bosonic
particles; a �atoms� and m �molecules�,

Ĥ�a� = ĥ�a� + Ŵ�a�

=� dr��̂a
†�r�ĥ�a��r��̂a�r�

+
1

2
� dr��̂a

†�r��̂a
†�r��Ŵ�a��r,r���̂a�r���̂a�r�� ,

Ĥ�m� = ĥ�m� + Ŵ�m�

=� dr��̂m
† �r�ĥ�m��r��̂m�r�

+
1

2
� dr��̂m

† �r��̂m
† �r��Ŵ�m��r,r���̂m�r���̂m�r�� ,

Ŵ�am� =� dr� dr��̂a
†�r��̂m

† �r��Ŵ�am��r,r���̂m�r���̂a�r� .

�2�

The last term describes the conversion of atoms to molecules
and vice versa and is given by �55,57,69,76�

Ŵ�2a�m� = Ŵ�2a⇀m� + Ŵ�m⇁2a�

=
1
�2
� dr� dr���̂m

† 	 r + r�

2



�Ŵ�2a⇀m��r,r���̂a�r��̂a�r�� + �̂a
†�r���̂a

†�r�

�Ŵ�m⇁2a��r,r���̂m	 r + r�

2

� ,

Ŵ�m⇁2a��r,r�� = �Ŵ�2a⇀m��r,r���†. �3�

The coordinates entering the field operators in Eq. �3� repre-
sent the annihilation �creation� of two atoms, one at position
r and the second at position r�, and the creation �annihila-
tion� of a molecule at the center-of-mass coordinate
R= r+r�

2 . The atomic and molecular field operators satisfy the

usual commutation relations for bosons, ��̂a�r� ,�̂a
†�r���

= ��̂m�r� ,�̂m
† �r���=��r−r�� and ��̂a�r� ,�̂a�r���

= ��̂m�r� ,�̂m�r���=0. Since the atoms and molecules are
distinguishable �different� particles, their mutual field opera-

tors commute, ��̂a�r� ,�̂m
† �r���= ��̂a�r� ,�̂m�r���=0. Fi-

nally, we note that the interaction terms appearing in the

Hamiltonian �Eqs. �1�–�3�� are symmetric, i.e., Ŵ�a��r ,r��
=Ŵ�a��r� ,r� , . . . ,Ŵ�m⇁2a��r ,r��=Ŵ�m⇁2a��r� ,r�, because the
Hamiltonian is symmetric to the exchange of position of any
two particles of the same kind.

The Hamiltonian �Eqs. �1�–�3�� commutes with the fol-
lowing particle-number operator:
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N̂ = N̂a + 2N̂m =� dr��̂a
†�r��̂a�r� + 2�̂m

† �r��̂m�r�� ,

�4�

reflecting a conservation law in presence of particle conver-
sion. Accordingly, the Hilbert space of the problem is a direct
sum of Hilbert subspaces with a different number of atoms
and molecules, �N atoms;0 molecules� � �N−2 atoms;
1 molecule� � �N−4 atoms;2 molecules� � . . . � �N−2 � N

2 �
atoms; � N

2 � molecules�, where �j� means the greatest integer
not exceeding j.

The purpose of this work is to treat the many-body Hamil-
tonian with atom-molecule conversion �Eqs. �1�–�3�� multi-

configurationally. To this end, we expand the atomic �̂a�r�
and molecular �̂m�r� field operators by two complete sets of
time-dependent orbitals,

�̂a�r� = 
k

b̂k�t��k�r,t�, �̂m�r� = 
k�

ĉk��t��k��r,t� .

�5�

The sets of atomic ��k�r , t�� and molecular ��k��r , t�� orbitals
span the time-dependent Hilbert space in which the system is
to be propagated. The advantages of time-dependent multi-
configurational expansions, see the Introduction, is the em-
ployment of time-dependent orbitals which change in time
according to a time-dependent variational principle. This al-
lows one to use in practical computations a smaller number
of time-dependent orbitals than the number of time-
independent orbitals that would have been required other-
wise. A general multiconfigurational expansion, see Sec. IV,
employs M orbitals for the bosonic atoms and M� orbitals for
the bosonic molecules. In particular, even if only one orbital
is available for the bosonic atoms and another one for the
bosonic molecules, the resulting theory goes beyond the
Gross-Pitaevskii mean-field theory for this system �57�, see
subsequent Sec. III.

Finally, it is convenient to derive the relevant results first
for the popular contact interaction,

Ŵ�a��r,r�� = �a��r − r��, Ŵ�m��r,r�� = �m��r − r�� ,

Ŵ�am��r,r�� = �am��r − r�� ,

Ŵ�2a⇀m��r,r�� = Ŵ�m⇁2a��r,r�� = �con��r − r�� . �6�

Thus, substituting Eqs. �5� and �6� into the generic Hamil-
tonian �Eqs. �1�–�3�� we obtain

Ĥ�2a�m� = 
k,q

��k�ĥ�a���q�b̂k
†b̂q +

�a

2 
k,s,l,q

��k�s��q�l�b̂k
†b̂s

†b̂lb̂q

+ 
k�,q�

��k��ĥ
�m���q��ĉk�

† ĉq�

+
�m

2 
k�,s�,l�,q�

��k��s���q��l��ĉk�
† ĉs�

† ĉl�ĉq�

+ �am 
k,k�,q,q�

��k�k���q�q��b̂k
†b̂qĉk�

† ĉq�

+
�con

�2


k�,k,q

���k���k�q�ĉk�
† b̂kb̂q

+ ��q�k��k��b̂q
†b̂k

†ĉk�� . �7�

Here and hereafter, the dependence of quantities on time is
not shown explicitly whenever unambiguous. Below, we will
work throughout Secs. III and IV A with the contact-
interaction Hamiltonian �7� and handle the case of general
interactions �Eqs. �1�–�3�� thereafter, in Sec. IV B.

III. THE SIMPLEST CASE OF ATOM-MOLECULE
CONVERSION: CONVERSION MEAN FIELD

(FULLY VARIATIONAL TWO-MODE APPROXIMATION)

A. The multiconfigurational ansatz

To introduce the nomenclature in the first stage of this
work and, independently, as an interesting and relevant prob-
lem for itself, we consider the resulting theory when there is
only one orbital available for the �bosonic� atoms and one
orbital available for the �bosonic� molecules. The atomic or-
bital will be denoted by �1�r , t���a�r , t� and the molecular
orbital by �1�r , t���m�r , t�. The corresponding creation op-

erators are denoted by b̂1
†�t�� b̂a

†�t� and ĉ1
†�t�� ĉm

† �t�. The
atomic and molecular creation, annihilation operators obey
the bosonic commutation relations corresponding to the field
operators.

The problem we wish to solve may now be formulated. In
the present section we would like to derive a multiconfigu-
rational theory for atom-molecule conversion which is exact
in the smallest Hilbert subspace possible for bosonic species,
namely, the Hilbert space spanned by the single molecular
orbital �m�r , t� and single atomic orbital �a�r , t�. We term
this specific case of the general theory: conversion mean
field. More technically, this theory is a fully variational ex-
tension of the literature two-mode approximation �56,65�
and, of course, of the Gross-Pitaevskii theory with conver-
sion �57�.

The multiconfigurational wave function takes on the fol-
lowing form:

���t�� = 
p=0

�N/2�

Cp�t��N − 2p,p;t� ,

�N − 2p,p;t� =
1

��N − 2p�!p!
�b̂a

†�t��N−2p�ĉm
† �t��p�vac� , �8�

where �vac� is a common vacuum of no atoms and no mol-
ecules. The index p enumerates the number of bosonic mol-
ecules in the system. The corresponding number of atoms is
N−2p. N is the maximal number of atoms in the system
which is obtained when there are no molecules. Obviously,

���t�� is an eigenfunction of the particle-number operator N̂,
Eq. �4�, with the eigenvalue N. The atomic and molecular
number operators in the relevant Hilbert space boil down to
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N̂a= b̂a
†b̂a and N̂m= ĉm

† ĉm, respectively. The size of this Hilbert
space is � N

2 �+1.

B. The functional action S of the time-dependent Schrödinger
equation and its evaluation

Solving the time-dependent Schrödinger equation with the
Hamiltonian �7� and the multiconfigurational ansatz �8�
means finding the equations governing the time evolution of
the atomic and molecular orbitals, �a�r , t� and �m�r , t�, and
of the expansion coefficients �Cp�t��. The derivation of these
equations of motion for �a�r , t�, �m�r , t�, and �Cp�t�� re-
quires a time-dependent variational principle. We employ the
Lagrangian formulation of the �Dirac-Frenkel� time-
dependent variational principle �91,92�, also see Refs.
�33,53,54�, and write the functional action of the time-
dependent Schrödinger equation which takes on the form

S��Cp�t��,�a�r,t�,�m�r,t��

=� dt����t��Ĥ�2a�m� − i
�

�t
���t��

− �a�t����a�r,t���a�r,t�� − 1�

− �m�t����m�r,t���m�r,t�� − 1�

− 	�t�� 
p=0

�N/2�

�Cp�t��2 − 1�� . �9�

The time-dependent Lagrange multiplies �a�t�, �m�t�, and
	�t� are introduced to ensure normalization of the atomic
�a�r , t� and molecular �m�r , t� orbitals and of the expansion
coefficients �Cp�t�� at all times. �a�t� and �m�t� also serve
another role. They exactly “compensate” for those terms ap-
pearing within the Dirac-Frenkel formulation of the varia-

tional principle ����t��Ĥ�2a�m�− i �
�t ���t�� �20,21�, i.e., when

the variation of ��t� is performed before the expectation

value ���t��Ĥ�2a�m�− i �
�t ���t�� is evaluated; see in this con-

text �33,92�. We shall see below and more elaborately in
Appendix A 1 that these Lagrange multipliers can be elimi-
nated from the resulting equations of motion by making use
of the normalization of the orbitals in combination with uni-
tary transformations.

The expectation value of the Hamiltonian in Eq. �9� can
be expressed in two equivalent forms. The first form depends
explicitly on the orbitals �a�r , t�, �m�r , t� and the second on
the expansion coefficients �Cp�t��. The two forms are needed
to derive the respective equations of motion for the orbitals
and expansion coefficients.

1. Orbital-explicit expression of S

Utilizing the multiconfigurational expansion �8� and the
individual terms of the many-body Hamiltonian �7�, the first

form of the expectation value of Ĥ�a�m�− i �
�t reads

���t��Ĥ�2a�m� − i
�

�t
���t��

= �N̂a���a�ĥ�a� − i
�

�t
��a� +

�a

2
�N̂a�N̂a − 1����a

2��a
2�

+ �N̂m���m�ĥ�m� − i
�

�t
��m�

+
�m

2
�N̂m�N̂m − 1����m

2 ��m
2 �

+ �am�N̂aN̂m���a�m��a�m� +
�con

�2
��ĉm

† b̂ab̂a���m��a
2�

+ �b̂a
†b̂a

†ĉm���a
2��m�� − i 

p=0

�N/2�

C
p
*�Cp

�t
. �10�

In Eq. �10� and hereafter we use the shorthand notation for

expectation values of operators with respect to ��t�: �N̂a�
����t��N̂a���t��, �b̂a

†b̂a
†ĉm�����t��b̂a

†b̂a
†ĉm���t��, etc. We

can indeed see that expression �10� depends explicitly on the
orbitals �a�r , t� and �m�r , t� through integrals over one-body
terms, two-body interaction terms, and the conversion term,

��a�ĥ�a�− i �
�t ��a�, ��a�m ��a�m�, etc.

Making use of the multiconfigurational expansion �8�, we
can express the above expectation values ���t��¯ ���t�� in a
closed form. The expectation values of particle-conserving

operators, such as the number operators N̂a and N̂m, with
respect to ��t� read

�N̂a� = 
p=0

�N/2�

�N − 2p��Cp�t��2, �N̂m� = 
p=0

�N/2�

p�Cp�t��2,

�N̂a�N̂a − 1�� = 
p=0

�N/2�

�N − 2p��N − 2p − 1��Cp�t��2,

�N̂m�N̂m − 1�� = 
p=0

�N/2�

p�p − 1��Cp�t��2,

�N̂aN̂m� = 
p=0

�N/2�

p�N − 2p��Cp�t��2. �11�

We see that the dependence of the expectation values �11� on
the expansion coefficients is only through weighted sums
p=0

�N/2� of the terms �Cp�t��2, i.e., that configurations of a dif-
ferent number p of molecules are not directly coupled. The
expectation values of particle nonconserving operators, origi-
nating from the conversion of particles, are given by

�ĉm
† b̂ab̂a� = 

p=1

�N/2�

�p�N − 2p + 1��N − 2p + 2�C
p
*�t�Cp−1�t� ,

�b̂a
†b̂a

†ĉm� = ��ĉm
† b̂ab̂a��*, �12�

and seen to couple directly configurations with a different
number of p and p−1 molecules.
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2. Expansion-coefficient-explicit expression of S

Utilizing the multiconfigurational expansion �8� and the
many-body Hamiltonian �7� as a whole, we can express the

expectation value of Ĥ�2a�m�− i �
�t in the functional action �9�

as an explicit function of the expansion coefficients �Cp�t��.
One readily finds

���t��Ĥ�2a�m� − i
�

�t
���t��

= 
p=0

�N/2�

C
p
*� 

p�=0

�N/2� �N − 2p,p;t�Ĥ�2a�m�

− i
�

�t
�N − 2p�,p�;t�Cp� − i

�Cp

�t � . �13�

Equation �13� contains yet another type of matrix elements,

which are the representation of Ĥ�2a�m�− i �
�t in the subspace

of configurations ��N−2p , p ; t��. These matrix elements can
be evaluated explicitly. We divide them into two types, re-
calling that the Hamiltonian is expressed as a sum of
particle-conserving and particle-nonconserving parts,

Ĥ�2a�m�= Ĥ�am�+Ŵ�2a�m�. The diagonal or particle-
conserving matrix elements read

�N − 2p,p;t�Ĥ�am� − i
�

�t
�N − 2p,p;t�

= �N − 2p���a�ĥ�a� − i
�

�t
��a�

+
�a

2
�N − 2p��N − 2p − 1���a

2��a
2�

+ p��m�ĥ�m� − i
�

�t
��m� +

�m

2
p�p − 1���m

2 ��m
2 �

+ �amp�N − 2p���a�m��a�m�, p = 0, . . . ,�N/2� .

�14�

The off-diagonal, particle-nonconserving matrix elements,

originating from the conversion term Ŵ�2a�m�=Ŵ�2a⇀m�

+Ŵ�m⇁2a�, take on the following form:

�N − 2p,p;t�Ŵ�2a⇀m��N − 2�p − 1�,p − 1;t�

=
�con

�2
�p�N − 2p + 1��N − 2p + 2���m��a

2� ,

p = 1, . . . ,�N/2� ,

�N − 2�p − 1�,p − 1;t�Ŵ�m⇁2a��N − 2p,p;t�

= ��N − 2p,p;t�Ŵ�2a⇀m��N − 2�p − 1�,p − 1;t��*,

p = 1, . . . ,�N/2� . �15�

All other matrix elements of Ĥ�2a�m�− i �
�t in the subspace of

configurations ��N−2p , p ; t�� vanish. With explicit expres-

sions of the functional action �9� we can now proceed and
derive the equations of motion of ��t�.

C. The equations of motion for �(t)

We perform the variation of the action functional �Eqs.
�9�, �10�, and �13�� with respect to the orbitals and coeffi-
cients. Equating the variation of S��Cp�t�� ,�a�r , t� ,�m�r , t��
with respect to the orbitals �see Eqs. �9� and �10�� to zero,
eliminating the Lagrange multipliers �a�t� and �m�t� from
the resulting equations �see Appendix A 1 for details�, and

dividing the result by �N̂a� and �N̂m�, respectively, we ob-
tained the following equations of motion for the orbitals:

P̂�a�i��̇a� = P̂�a���ĥ�a� + 
a�t���a�2 + 
am�t���m�2���a�

+ �2
con�t��a
*��m�� ,

P̂�m�i��̇m� = P̂�m���ĥ�m� + 
m�t���m�2 + 
ma�t���a�2���m�

+

con� �t�

�2
�a��a�� , �16�

where the shorthand notation �̇a�
��a

�t , �̇m�
��m

�t is used here
and hereafter. The “interaction strengths” are given by


a�t� = �a
�N̂a�N̂a − 1��

�N̂a�
, 
am�t� = �am

�N̂aN̂m�

�N̂a�
,


con�t� = �con

�b̂a
†b̂a

†ĉm�

�N̂a�
,


m�t� = �m
�N̂m�N̂m − 1��

�N̂m�
, 
ma�t� = �am

�N̂aN̂m�

�N̂m�
,


con� �t� = �con

�ĉm
† b̂ab̂a�

�N̂m�
, �17�

and vary in time due to the conversion of atoms to molecules
and vice versa.

The quantities appearing on both the right- and left-hand
sides of equations of motion �16� are projection operators
and given by

P̂�a� = 1 − ��a���a�, P̂�m� = 1 − ��m���m� . �18�

When acting on one-body functions in the atomic and mo-

lecular spaces, P̂�a� and P̂�m� project these functions onto the
subspaces orthogonal to the orbitals �a�r , t� and �m�r , t�, re-

spectively. The projection operators P̂�a�, P̂�m� emerge when
one eliminates the Lagrange multipliers �a�t�, �m�t� from the
equations of motion, see Appendix A 1.

The appearance of the projection operator on both the
left- and right-hand sides of Eq. �16� makes Eq. �16� a cum-
bersome set of two coupled integrodifferential nonlinear
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equations. Can one simplify the matters? The answer is posi-
tive.

To this end, we invoke the invariance properties of the
many-particle wave function ��t�. Specifically, we can mul-
tiply the atomic �a�r , t� and molecular �m�r , t� orbitals by
time-dependent phase factors to give transformed orbitals

�̄a�r , t� and �̄m�r , t�, and from the latter assemble trans-
formed configurations �N−2p , p ; t�→ �N−2p , p ; t�. Then, we
can compensate for transforming the orbitals by the “re-
verse” transformation of the expansion coefficients �Cp�t��
→ �C̄p�t��. Overall, we write this invariance of the many-
body wave function as follows:

���t�� = 
p=0

�N/2�

Cp�t��N − 2p,p;t� = 
p=0

�N/2�

C̄p�t��N − 2p,p;t� .

�19�

Clearly, unitary transformations of the orbitals and the re-
spective transformation of the expansion coefficients neither
change the size of the Hilbert space nor couple configura-
tions with a different number of molecules. To express these
properties we use the same summation index p in both the
middle part and right-hand side of Eq. �19�.

We can now make use of the invariance relation �19� to
simplify Eq. �16�. Specifically, there exists one unitary trans-
formation that eliminates the projection operators acting on
the time-derivatives �left-hand sides� in Eq. �16�, without
introducing any further constraint into the equations of mo-
tion; see Appendix A 1 for more details. The equations of
motion for the atomic and molecular orbitals thus finally read

i��̇a� = P̂�a���ĥ�a� + 
a�t���a�2 + 
am�t���m�2���a�

+ �2
con�t��a
*��m�� ,

i��̇m� = P̂�m���ĥ�m� + 
m�t���m�2 + 
ma�t���a�2���m�

+

con� �t�

�2
�a��a�� . �20�

Equation �20� has the following property. Operating from the
left with ��a� and ��m�, respectively, we obtain the relations

��a��̇a� = 0, ��m��̇m� = 0, �21�

clearly ensuring that initially-normalized orbitals remain nor-
malized for all times. We can see the meaning of the unitary
transformation carrying Eq. �16� to Eq. �20�. This unitary
transformation takes normalized time-dependent orbitals,
��a ��a�=1 and ��m ��m�=1, which therefore satisfy the gen-
eral relations

���a��a�
�t = ��̇a ��a�+ ��a � �̇a�=0 and

���m��m�
�t

= ��̇m ��m�+ ��m � �̇m�=0, and transforms them to time-
dependent orbitals satisfying the specific differential condi-
tion �21�.

Before we move to the corresponding working equations
for the expansion coefficients �Cp�t��, it is instructive to en-
quire whether we could further simplify the equations of mo-

tion �20�, by eliminating the projection operators P̂�a�, P̂�m�

also from the right-hand sides. The answer is in general
negative. If we could eliminate the projection operators re-
maining on the right-hand sides, it means that conditions
�21� are not satisfied any more. What would then guarantee
that the atomic and molecular orbitals remain normalized at
all times? It turns out that the condition for that is
Im��con�cm

† baba���m ��a�a��=0 for all times. In turn, even if
this condition is satisfied at t=0, it is not in general guaran-
teed that it remains so for all times. Thus, the presence of
particle conversion does not allow one to eliminate the pro-

jection operators P̂�a�, P̂�m� also from the right-hand sides of
the equations of motion �20�. Alternatively speaking, in the
absence of particle conversion, it is possible to eliminate the
projection operators completely from Eq. �20�, see in this
context �93�.

To derive the equations of motion of �Cp�t��, we equate
the variation of the action functional �Eqs. �9� and �13�� with
respect to the expansion coefficients to zero and eliminate
the Lagrange multiplier 	�t� �see for details Appendix A 1�.
The following equations of motion are obtained:

H�2a�m��t�C�t� = i
�C�t�

�t
,

Hp,p�
�2a�m��t� = �N − 2p,p;t�Ĥ�2a�m� − i

�

�t
�N − 2p�,p�;t� ,

�22�

where the vector C�t� collects the expansion coefficients
�Cp�t��. Equation �22� is a set of coupled first-order differen-
tial equations with time-dependent coefficients, and pre-
serves the norm of an initially normalized vector of coeffi-
cients C�0�. The time-dependent coefficients Hp,p�

�2a�m��t�,
being the matrix representation of Ĥ�2a�m�− i �

�t in the sub-
space of configurations ��N−2p , p ; t�� and hence depending
on the atomic �a�r , t� and molecular �m�r , t� orbitals, are
prescribed in the previous section, Sec. III B.

Next, we make use of the invariance of the multiconfigu-
rational wave function to unitary transformations �19�. Ex-
plicitly, the unitary transformation responsible for transform-
ing Eq. �16� for the orbitals to Eq. �20�, transforms equations
of motion �22� for the expansion coefficients to the final
form:

H�2a�m��t�C�t� = i
�C�t�

�t
,

Hp,p�
�2a�m��t� = �N − 2p,p;t�Ĥ�2a�m��N − 2p�,p�;t� . �23�

Equivalently, Eq. �23� can be obtained from Eq. �22� by sub-
stituting into the latter the differential condition �21�.

The coupled sets of equations of motion for the atomic
��r , t� and molecular �m�r , t� orbitals and expansion coeffi-
cients �Cp�t��, Eqs. �16� and �22� or, respectively, Eqs. �20�
and �23� constitute the conversion mean field theory �fully
variational two-mode approximation� for the interacting
atomic-molecular system with conversion.
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D. The stationary self-consistent coherent mean field (time-
independent fully variational two-mode approximation)

The theory presented above is a time-dependent many-
body theory. It is certainly interesting to enquire what are the
corresponding stationary many-body states of the atomic-
molecular Hamiltonian �Eqs. �1�–�3��? In other words, what
are the self-consistent solutions that minimize �extremize�
the expectation value ���Ĥ�2a�m���� for a given time-
independent multiconfigurational ansatz ���=p=0

�N/2�Cp�N
−2p , p� assembled from time-independent atomic �a�r� and
molecular orbitals �m�r�? To obtain this stationary self-
consistent coherent mean field �time-independent fully varia-
tional two-mode approximation�, we resort to imaginary time
propagation and set t→−it in the corresponding equations of
motion.

Setting t→−it in �the left-hand side of� either Eq. �16� or
�20�, the left-hand side decays to zero in time and the equa-
tion becomes time independent. Then, by multiplying the

result, respectively, by �N̂a� and �N̂m�, and translating back

the projection operators P̂�a� and P̂�b� to the corresponding
Lagrange multipliers �a and �b �see Appendix A 1�, we ob-
tain the multiconfigurational self-consistent �time-
independent� equations for the atomic and molecular orbit-
als:

��N̂a�ĥ�a� + �a�N̂a�N̂a − 1����a�2 + �am�N̂aN̂m���m�2���a�

+ �2�con�b̂a
†b̂a

†ĉm��
a
*��m� = �a��a� ,

��N̂m�ĥ�m� + �m�N̂m�N̂m − 1����m�2 + �am�N̂aN̂m���a�2���m�

+
�con

�2
�ĉm

† b̂ab̂a��a��a� = �m��m� . �24�

Similarly, restoring the Lagrange multiplier 	�t� into either
Eq. �22� or �23�, see in this respect Appendix A 1, and setting
t→−it therein, we obtain the stationary �self-consistent� ei-
genvalue equation

H�2a�m�C = 	C ,

Hp,p�
�2a�m� = �N − 2p,p�Ĥ�2a�m��N − 2p�,p�� �25�

for the expansion coefficients. We see that the �redundant�
time-dependent Lagrange multiplier 	�t� of the time-
dependent theory has emerged as the eigenenergy 	

= ���Ĥ�2a�m���� of the stationary theory.
The theory “distilled” into Eqs. �24� and �25� is a fully

variational stationary theory for the interacting atomic-
molecular system in presence of conversion, where a single
orbital is allowed for the atoms and a single orbital to the
molecules. It is a system of coupled eigenvaluelike equations
for the orbitals and eigenvalue equation for the coefficients,
thought nonlinear and integrodifferential ones.

IV. THE GENERAL MULTICONFIGURATIONAL THEORY
WITH ATOM-MOLECULE CONVERSION

In this section we develop a general many-body theory for
atom-molecule conversion, by allowing the atoms and mol-

ecules to occupy more orbitals. Section IV A builds the
theory for the popular contact interaction, whereas the case
of generic noncontact interactions is presented in Sec. IV B.

A. Formulation for contact interactions

1. The multiconfigurational ansatz for the wave function

The multiconfigurational expansion mixes atomic-
molecular states with different numbers of particles which
are eigenfunctions of the particle-number operator �Eq. �4��
N̂���t��=N���t��,

���t�� = 
p=0

�N/2�


n�p,m� p

Cn�pm� p�t��n�p,m� p;t� ,

�n�p,m� p;t� �
1

�n1
p
¯ nM

p !m1
p! ¯ mM�

p !
�b̂1

†�t��n1
p
¯

� �b̂M
† �t��nM

p
�ĉ1

†�t��m1
p
¯ �ĉM�

† �t��m
M�
p

�vac� .

�26�

We collect the individual occupations in the vectors n�p

= �n1
p , . . . ,nM

p �, m� p= �m1 , . . . ,mM�
p �. The number of bosonic at-

oms �n�p��n1
p+ ¯ +nM

p =N−2p and molecules �m� p��m1
p

+ ¯ +mM�
p = p of each configuration �n�p ,m� p ; t� satisfies the

particle-conservation law �n�p�+2�m� p�=N. Observe that the
number of molecules p serves as an index to the occupation
numbers n�p and m� p. This simply reflects the fact that, for a
given number of N−2p atoms and p molecules, the possible
occupation numbers which the configurations can assume de-
pend on p itself. The index p together with the occupation
numbers n�p, m� p make a unique representation of each con-
figuration. The atomic and molecular number operators in

the corresponding Hilbert space boil down to N̂a=k=1
M b̂k

†b̂k

and N̂m=k�=1
M� ĉk�

† ĉk�, respectively. The size of the resulting

Hilbert space is given by p=0
�N/2�� N−2p+M−1

M−1 �� p+M�−1
M�−1 �, i.e., by

the sum of products of the sizes of the respective Hilbert
subspaces for N−2p bosonic atoms with M orbitals and p
bosonic molecules with M� orbitals.

2. Reduced density matrices for systems with particle conversion

As part of the variational derivation we will need the ex-

pectation value of Ĥ�2a�m�− i �
�t with respect to ��t�. To this

end, it will be proved valuable to define and employ the
reduced density matrices of ��t�. We remind that Löwdin
has introduced the concept of reduced density matrices for
systems of a fixed number of particles �identical fermions�
�44�. Nevertheless and although ��t� is not comprised of a
fixed number of atoms or a fixed number of molecules, it is
possible to define the reduced density matrices of a mixture
of atoms and molecules with conversion.

Having at hand the normalized many-body wave function
��t�, the reduced one-body density matrices of the atoms
and molecules are defined by
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��a��r1�r2;t� = ��̂a
†�r2��̂a�r1��

= 
k,q=1

M

�kq
�a��t��

k
*�r2,t��q�r1,t� ,

��m��r1�r2;t� = ��̂m
† �r2��̂m�r1��

= 
k�,q�=1

M�

�k�q�
�m� �t��

k�
* �r2,t��q��r1,t� , �27�

where the matrix elements �kq
�a��t�= �b̂k

†b̂q� and �k�q�
�m� �t�

= �ĉk�
† ĉq�� are prescribed in Appendix B. We collect these

matrix elements as ��a��t�= ��kq
�a��t�� and ��m��t�= ��k�q�

�m� �t��.
Similarly, the reduced two-body density matrices of the at-
oms and molecules are defined by

��a��r1,r2�r3,r4;t� = ��̂a
†�r3��̂a

†�r4��̂a�r2��̂a�r1��

= 
k,s,l,q=1

M

�kslq
�a� �t��

k
*�r3,t�

��
s
*�r4,t��l�r2,t��q�r1,t� ,

��m��r1,r2�r3,r4;t� = ��̂m
† �r3��̂m

† �r4��̂m�r2��̂m�r1��

= 
k�,s�,l�,q�=1

M�

�k�s�l�q�
�m� �t��

k�
* �r3,t�

��
s�
* �r4,t��l��r2,t��q��r1,t� ,

��am��r1,r2�r3,r4;t� = ��̂a
†�r3��̂a�r1��̂m

† �r4��̂m�r2��

= 
k,q=1

M


k�,q�=1

M�

�kk�qq�
�am� �t��

k
*�r3,t�

��q�r1,t��
k�
* �r4,t��q��r2,t� , �28�

where the matrix elements �kslq
�a� �t�= �b̂k

†b̂s
†b̂lb̂q�, �k�s�l�q�

�m� �t�
= �ĉk�

† ĉs�
† ĉl�ĉq��, and �kk�qq�

�am� �t�= �b̂k
†b̂qĉk�

† ĉq�� are prescribed in
Appendix B. Because the reduced density matrices �27� and
�28� directly only couple configurations with the same num-
ber of atoms and molecules, we will refer to them as
particle-conserving reduced density matrices. In this context,
��am��r1 ,r2 �r3 ,r4 ; t� is the lowest-order interspecies particle-
conserving reduced density matrix.

From the above discussion it is anticipated that, due to the
conversion term �3� in the Hamiltonian, another kind of re-
duced density matrices appears in the theory. Specifically, we
define the particle nonconserving reduced density matrices
as follows:

��2a⇀m��r1,r2�r3;t� = ��̂m
† �r3��̂a�r2��̂a�r1��

= 
k�=1

M�


k,q=1

M

�k�kq
�2a⇀m��t�

��
k�
* �r3,t��k�r2,t��q�r1,t� ,

��m⇁2a��r3�r2,r1;t� = ��̂a
†�r1��̂a

†�r2��̂m�r3��

= 
k�=1

M�


k,q=1

M

�qkk�
�m⇁2a��t��

q
*�r1,t�

��
k
*�r2,t��k��r3,t� ,

��m⇁2a��r3�r2,r1;t� = ���2a⇀m��r1,r2�r3;t��*,

�qkk�
�m⇁2a��t� = ��k�kq

�2a⇀m��t��*. �29�

The matrix elements �k�kq
�2a⇀m�= �ĉk�

† b̂kb̂q� are given in Appen-
dix B.

3. The functional action S and its evaluation

We start from the functional action of the time-dependent
Schrödinger equation which in the general multiconfigura-
tional case takes on the form

S��Cn�pm� p�t��,��k�r,t��,��k��r,t���

=� dt����t��Ĥ�2a�m� − i
�

�t
���t��

− 
k,j=1

M

�kj
�a��t����k�r,t��� j�r,t�� − �kj�

− 
k�,j�=1

M�

�k�j�
�m� �t����k��r,t��� j��r,t�� − �k�j��

− 	�t�� 
p=0

�N/2�


n�p,m� p

�Cn�pm� p�t��2 − 1�� . �30�

The time-dependent Lagrange multiplies ��kj
�a��t��, ��k�j�

�m� �t��,
and 	�t� are introduced to ensure orthonormalization of the
atomic ��k�r , t�� and molecular ��k��r , t�� orbital sets and
normalization of the expansion coefficients �Cn�pm� p�t��.

To derive the equations of motion for the atomic-
molecular multiconfigurational wave function �26�, the ex-

pectation value of Ĥ�2a�m�− i �
�t with respect to ��t� is

needed, where Ĥ�2a�m� is given in Eq. �7�. The expectation

value of Ĥ�2a�m�− i �
�t is expressed by two equivalent forms,

as done in Sec. III B. The first form, where the dependence
of Eq. �30� on the atomic and molecular orbitals is explicit,
reads
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���t��Ĥ�2a�m� − i
�

�t
���t�� = 

k,q=1

M

�kq
�a���k�h�a� − i

�

�t
��q� +

�a

2 
k,s,l,q=1

M

�kslq
�a� ��k�s��q�l� + 

k�,q�=1

M�

�k�q�
�m� ��k��h�m� − i

�

�t
��q��

+
�m

2 
k�,s�,l�,q�=1

M�

�k�s�l�q�
�m� ��k��s���q��l�� + �am 

k,q=1

M


k�,q�=1

M�

�kk�qq�
�am� ��k�k���q�q��

+
�con

�2


k,q=1

M


k�=1

M�

��k�kq
�2a⇀m���k���k�q� + �qkk�

�m⇁2a���q�k��k��� − i 
p=0

�N/2�


n�p,m� p

C
n�pm� p
* �Cn�pm� p

�t
. �31�

We see in Eq. �31� the appearance of the particle-conserving and particle-nonconserving reduced density matrices introduced
in the previous Sec. IV A 2. Equation �31� is to be used to derive the equations of motion of ��k�r , t�� and ��k��r , t��.

The second form of the expectation value of Ĥ�2a�m�− i �
�t in the functional action �30�,

���t��Ĥ�2a�m� − i
�

�t
���t�� = 

p=0

�N/2�


n�p,m� p

C
n�pm� p
* � 

p�=0

�N/2�


n��p�,m� �p�

�n�p,m� p;t�Ĥ�2a�m� − i
�

�t
�n��p�,m� �p�;t�Cn��p�,m� �p� − i

�Cn�pm� p

�t � ,

�32�

displays its explicit dependence on the expansion coeffi-
cients, and therefore will be employed to derive the equa-
tions of motion of �Cn�pm� p�t��. Finally, it is deductive to com-
pare the structure of Eqs. �10� and �13� in the conversion
mean field �fully variational two-mode� problem to that of
Eqs. �31� and �32� of the general problem.

4. The equations of motion for �(t)

Collecting the above ingredients, we are ready to perform
the variation of the functional action S��Cn�pm� p�t�� ,
��k�r , t�� , ��k��r , t��� and arrive at the equations of motion of
��t�. Equating the variation of the functional action �Eqs.
�30� and �31�� with respect to the orbitals to zero and elimi-
nating the Lagrange multipliers ��kj

�a��t��, ��k�j�
�m� �t�� �see Ap-

pendix A 2�, we obtain the following result, j=1, . . . ,M, j�
=1, . . . ,M�:

P̂�a�i��̇ j� = P̂�a��ĥ�a��� j� + 
k=1

M

���a��t�� jk
−1

�
q=1

M 	��2��2,�2��kq
�a���q�

+ �2�con 
k�=1

M�

�qkk�
�m⇁2a��

q
*��k��
� ,

P̂�m�i��̇ j�� = P̂�m��ĥ�m��� j�� + 
k�=1

M�

���m��t�� j�k�
−1

�	 
q�=1

M�

��2��2,�2��k�q�
�m� ��q��

+
�con

�2


k,q=1

M

�k�kq
�2a⇀m��k��q�
� , �33�

where terms with products of reduced two-body density ma-
trices times orbital pairs are collected together and denoted
for brevity as

��2��2,�2��kq
�a�

� �a 
s,l=1

M

�kslq
�a� ��

s
*�l� + �am 

k�,q�=1

M�

�kk�qq�
�am� ��

k�
* �q�� ,

��2��2,�2��k�q�
�m�

� �m 
s�,l�=1

M�

�k�s�l�q�
�m� ��

s�
* �l�� + �am 

k,q=1

M

�kk�qq�
�am� ��

k
*�q� ,

�34�

and

P̂�a� = 1 − 
u=1

M

��u���u�, P̂�m� = 1 − 
u�=1

M�

��u����u�� , �35�

are projection operators. When acting on one-body functions

in the atomic and molecular spaces, P̂�a� and P̂�m� project
them onto the subspaces orthogonal to those spanned by the
orbitals ��k�r , t�� and ��k��r , t��, respectively. These projec-
tion operators emerge when one eliminates the Lagrange
multipliers ��kj

�a��t�� and ��k�j�
�m� �t�� from the equations of mo-

tion, see Appendix A 2. To remind, we use the shorthand

notation �̇ j �
�� j

�t , �̇ j��
�� j�
�t in the equations of motion for the

orbitals.
The appearance of the projection operators on both the

left- and right-hand sides of Eq. �33� makes the system �33�
a cumbersome system of integrodifferential nonlinear equa-
tions. This situation can be simplified by generalizing the
treatment of Sec. III C, namely, exploiting the invariance
properties of the many-particle wave function ��t�. Specifi-
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cally, we perform independent unitary transformations on the
atomic ��k�r , t��→ ��̄k�r , t�� and molecular ��k��r , t��
→ ��̄k��r , t�� orbitals, which results in transformed configu-
rations �n�p ,m� p ; t�→ �n�p ,m� p ; t�. Then, we can compensate for
the transformations of the orbital sets by the “reverse” trans-
formation of the expansion coefficients �Cn�pm� p�t��
→ �C̄n�pm� p�t��. We represent this invariance by the following
equality:

���t�� = 
p=0

�N/2�


n�p,m� p

Cn�pm� p�t��n�p,m� p;t�

= 
p=0

�N/2�


n�p,m� p

C̄n�pm� p�t��n�p,m� p;t� . �36�

The transformations of the orbital sets and expansion coeffi-
cients do not change the size of the Hilbert space, or couple
systems with different numbers of atoms and/or molecules.
We remark that transformations which intermix atomic and
molecular orbitals are not required for our needs. To repre-
sent these properties, the same occupation numbers n�p, m� p

and summation index p of the number of molecules are used
for both multiconfigurational expansions of ��t� in Eq. �36�.

We can now make use of the invariance �36� to simplify
the equations of motion �33�, without introducing further
constraints into the equations of motion. We utilize a specific
unitary transformation of the many-particle wave function
that eliminates the projection operators acting on the time
derivatives �left-hand sides� in Eq. �33�; see Appendix A 2
for more details. The final result for the equations of motion
for the atomic ��k�r , t�� and molecular ��k��r , t�� orbitals
thus takes on the form, j=1, . . . ,M, j�=1, . . . ,M�:

i��̇ j� = P̂�a��ĥ�a��� j� + 
k=1

M

���a��t�� jk
−1

�
q=1

M 	��2��2,�2��kq
�a���q�

+ �2�con 
k�=1

M�

�qkk�
�m⇁2a��

q
*��k��
� ,

i��̇ j�� = P̂�m��ĥ�m��� j�� + 
k�=1

M�

���m��t�� j�k�
−1

�	 
q�=1

M�

��2��2,�2��k�q�
�m� ��q��

+
�con

�2


k,q=1

M

�k�kq
�2a⇀m��k��q�
� , �37�

with the projection operators P̂�a� and P̂�m� appearing now on
the right-hand sides only.

Now, taking the respective scalar products of Eq. �37�
with ���k�� and ���k���, we obtain the following differential
conditions:

��k��̇q� = 0, k,q = 1, . . . ,M ,

��k���̇q�� = 0, k�,q� = 1, . . . ,M�. �38�

It is instructive to mention that these differential conditions
have been introduced originally by the MCTDH developers
�7,8�, and used thereafter in particle-conserving multicon-
figurational theories for identical particles and mixtures
�29–33,53,54�.

The differential conditions �38� ensure that initially or-
thonormalized orbital sets ��k�r , t��, ��k��r , t�� remain or-
thonormalized at all times. The meaning of the unitary trans-
formation carrying equations of motion �33� to equations of
motion �37� can now be seen. This unitary transformation
takes orthonormal time-dependent orbitals, ��k ��q�=�kq and
��k� ��q��=�k�q� ��kq, �k�q� is the Kronecker � function�,
which therefore satisfy the general relations

���k��q�
�t

= ��̇k ��q�+ ��k � �̇q�=0 and
���k���q��

�t = ��̇k� ��q��+ ��k� � �̇q��=0,
and transforms them to time-dependent orbitals satisfying the
specific differential conditions �38�.

Moving to the equations of motion for the coefficients
�Cn�pm� p�t��, we equate the variation of the functional action
�Eqs. �30� and �32�� with respect to the expansion coeffi-
cients to zero. Eliminating the Lagrange multiplier 	�t� by a
respective phase transformation of the coefficients, we arrive
at the form

H�2a�m��t�C�t� = i
�C�t�

�t
,

H
n�pm� p,n��p�m� �p�
�2a�m� �t� = �n�p,m� p;t�Ĥ�2a�m� − i

�

�t
�n��p�m� �p�;t� .

�39�

Equation �39� has exactly the same form as Eq. �22� in the
specific theory of Sec. III C, and constitutes a set of coupled
first-order differential equations with time-dependent coeffi-
cients that preserve the norm of an initially normalized vec-

tor of coefficients C�0�. The matrix elements of Ĥ�2a�m�

− i �
�t with respect to two general configurations,

H
n�pm� p,n��p�m� �p�
�2a�m� �t�, are prescribed in Appendix B.

Now, to arrive at the final form of the equations of motion
for the coefficients, we make use of the invariance of ��t� to
unitary transformations �36�. Specifically, the unitary trans-
formation carrying Eq. �33� for the orbitals to Eq. �37�, casts
Eq. �39� for the expansion coefficients into the final result,

H�2a�m��t�C�t� = i
�C�t�

�t
,

H
n�pm� p,n��p�m� �p�
�2a�m� �t� = �n�p,m� p;t�Ĥ�2a�m��n��p�m� �p�;t� . �40�

Equation �40� has exactly the same form as Eq. �23� in the
specific case of Sec. III C. Of course, there are much more
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expansion coefficients in the general case. Finally and
equivalently, we note that the result �40� can be obtained
from Eq. �39� when the differential condition �38� is substi-
tuted into the latter.

Let us pause for a moment and summarize. We have
started from the functional action �30� and arrived at the
equations of motion for ��t�. Equation �33� for the orbitals
��k�r , t��, ��k��r , t�� and Eq. �39� for the expansion coeffi-
cients �Cn�pm� p�t��, or, respectively, Eqs. �37� and �40� consti-
tute the multiconfigurational time-dependent Hartree theory
for systems with particle conversion; here specifically the
theory for bosonic atoms and bosonic molecules with con-
version.

5. The stationary self-consistent general multiconfigurational
theory with conversion

The theory presented above is a time-dependent many-
body theory and, as done in the previous Sec. III, it is rel-
evant to put forward the corresponding stationary general
theory. Consider the multiconfigurational expansion ���
=p=0

�N/2�n�p,m� pCn�pm� p�n�p ,m� p�, where the expansion coefficients
�Cn�pm� p� and orbitals ��k�r��, ��k��r�� assembling the configu-
rations ��n�p ,m� p�� are time-independent quantities. What are
then the self-consistent solutions that minimize �extremize�
the expectation value ���Ĥ�2a�m����?

The working equations of the stationary theory can be
obtained by resorting to imaginary time propagation and set-
ting t→−it in either equations of motion �33� and �39� or
equations of motion �37� and �40�, after the time-dependent
Lagrange multiplier 	�t� has been reinstated. Then, by trans-

lating the projection operators P̂�a�, P̂�m� to the respective
Lagrange multipliers ��kj

�a��, ��k�j�
�m� �, the resulting working

equations take on the form


q=1

M ���kq
�a�ĥ�a� + ��2��2,�2��kq

�a����q�

+ �2�con 
k�=1

M�

�qkk�
�m⇁2a��

q
*��k���

= 
j=1

M

�kj
�a��� j�, k = 1, . . . ,M ,


q�=1

M�

��k�q�
�m� ĥ�m� + ��2��2,�2��k�q�

�m� ���q��

+
�con

�2


k,q=1

M

�k�kq
�2a⇀m��k��q�

= 
j�=1

M�

�k�j�
�m� �� j��, k� = 1, . . . ,M� �41�

for the orbitals, and

H�2a�m�C = 	C ,

H
n�pm� p,n��p�m� �p�
�2a�m�

= �n�p,m� p�Ĥ�2a�m��n��p�,m� �p�� �42�

for the expansion coefficients. As seen in Sec. III, the time-
dependent Lagrange multiplier 	�t� emerges in the time-
independent theory as the eigenenergy of the coupled atom-

molecule system with 	= ���Ĥ�2a�m����.
The stationary equations for the orbitals �41� can be fur-

ther simplified. The stationary wave function �, as its time-
dependent counterpart, is invariant to independent unitary
transformations of the orbital sets ��k�r��, ��k��r�� and the
“inverse” transformation of the expansion coefficients
�Cn�pm� p�. We can use the unitary matrices which diagonalize
the matrices of Lagrange multipliers ��kj

�a��, ��k�j�
�m� �. We note

that the matrices of Lagrange multipliers are Hermitian ma-
trices for stationary states. As a result of this transformation,
we obtain a set of coupled equations for the orbitals that look
just as Eq. �41�, except for the right-hand sides being diago-
nal,


q=1

M ���kq
�a�ĥ�a� + ��2��2,�2��kq

�a����q�

+ �2�con 
k�=1

M�

�qkk�
�m⇁2a��

q
*��k���

= �k
�a���k�, k = 1, . . . ,M ,


q�=1

M�

��k�q�
�m� ĥ�m� + ��2��2,�2��k�q�

�m� ���q��

+
�con

�2


k,q=1

M

�k�kq
�2a⇀m��k��q�

= �k�
�m���k��, k� = 1, . . . ,M�. �43�

The form of the equation for the expansion coefficients �42�
does not change. Thus, the final result for the stationary
theory, Eqs. �42� and �43�, is a coupled system of integrod-
ifferential, nonlinear equations constituting eigenvaluelike
equations for the orbitals and eigenvalue equation for the
expansion coefficients; compare to Sec. III D. Generally, the
transformation of the matrices of Lagrange multipliers to di-
agonal form would make the orbitals delocalized. Hence, in
problems where working with localized orbitals is of advan-
tage or relevance, for instance in lattices, it is the form �41�
with the in general nondiagonal Lagrange multipliers which
is to be preferred.

B. Formulation for general interactions

The last stage of the theory is to return to the case of
generic noncontact interactions in the Hamiltonian �Eqs.
�1�–�3�� and have the respective theory derived. The deriva-
tion of the equations of motion follows essentially the same
steps taken in the previous Sec. IV A and there is obviously
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no need to repeat it. The only extra care needed is when
minimizing the conversion term in the functional action with
respect to the molecular orbitals, where exchange of vari-
ables is used. This point and related derivations are discussed
in Appendix A 2. Below, we report the final results of the
time-dependent as well as the self-consistent time-
independent theories.

The final form of the time-dependent equations of motion
of the orbitals reads, j=1, . . . ,M, j�=1, . . . ,M�,

i��̇ j� = P̂�a��ĥ�a��� j� + 
k=1

M

���a��t�� jk
−1

�
q=1

M 	��2W�kq
�a���q� + �2 

k�=1

M�

�qkk�
�m⇁2a�Ŵqk�

�m⇁2a�
� ,

i��̇ j�� = P̂�m��ĥ�m��� j�� + 
k�=1

M�

���m��t�� j�k�
−1

� 	 
q�=1

M�

��2W�k�q�
�m� ��q�� +

1
�2


k,q=1

M

�k�kq
�2a⇀m�Ŵkq

�2a⇀m�
� ,

�44�

where terms with products of reduced two-body density ma-
trices times one-body potentials �see below� are collected
together and denoted for brevity as

��2W�kq
�a� � 

s,l=1

M

�kslq
�a� Ŵsl

�a� + 
k�,q�=1

M�

�kk�qq�
�am� Ŵk�q�

�am�,

��2W�k�q�
�m� � 

s�,l�=1

M�

�k�s�l�q�
�m� Ŵs�l�

�m� + 
k,q=1

M

�kk�qq�
�am� Ŵkq

�ma�.

�45�

Comparing Eq. �37� of the previous Sec. IV A to Eq. �44�,
we see that in the latter more general, time-dependent local
potentials appear which are given explicitly by

Ŵsl
�a��r,t� =� �

s
*�r�,t�Ŵ�a��r,r���l�r�,t�dr�,

Ŵs�l�
�m� �r,t� =� �

s�
* �r�,t�Ŵ�m��r,r���l��r�,t�dr�,

Ŵk�q�
�am��r,t� =� �

k�
* �r�,t�Ŵ�am��r,r���q��r�,t�dr�,

Ŵkq
�ma��r,t� =� �

k
*�r�,t�Ŵ�am��r,r���q�r�,t�dr�,

Ŵkq
�2a⇀m��r,t� =� dr�Ŵ�2a⇀m�	r +

r�

2
,r −

r�

2



��k	r +
r�

2
,t
�q	r −

r�

2
,t
 ,

Ŵqk�
�m⇁2a��r,t� =� dr��q

*�r�,t�Ŵ�m⇁2a��r,r���k�	 r + r�

2
,t
 .

�46�

These potentials derive from the interaction terms and con-
version term in the Hamiltonian �Eqs. �1�–�3�� and, in the
specific case of contact particle-particle interactions, boil
down to products of orbitals, see for comparison Eqs. �34�
and �37�. The form of the equations of motion for the corre-
sponding expansion coefficients,

H�2a�m��t�C�t� = i
�C�t�

�t
,

H
n�pm� p,n��p�m� �p�
�2a�m� �t� = �n�p,m� p;t�Ĥ�2a�m��n��p�,m� �p�;t� , �47�

does not change for general interactions. Of course, the ma-
trix elements H

n�pm� p,n��p�m� �p�
�2a�m� �t� do depend on the specific form

of the particle-particle interactions.
Finally, the self-consistent, time-independent general

theory is obtained from the time-dependent one by taking t
→−it. The stationary self-consistent equations for the orbit-
als read


q=1

M ���kq
�a�ĥ�a� + ��2W�kq

�a����q� + �2 
k�=1

M�

�qkk�
�m⇁2a�Ŵqk�

�m⇁2a��
= 

j=1

M

�kj
�a��� j� → �k

�a���k�, k = 1, . . . ,M ,


q�=1

M�

��k�q�
�m� ĥ�m� + ��2W�k�q�

�m� ���q�� +
1
�2


k,q=1

M

�k�kq
�2a⇀m�Ŵkq

�2a⇀m�

= 
j�=1

M�

�k�j�
�m� �� j�� → �k�

�m���k��, k� = 1, . . . ,M�, �48�

where the arrows indicate the Lagrange multipliers in their
diagonal form, as done in Eq. �43�. Finally, the self-
consistent eigenvalue form of the equation for the expansion
coefficients,

H�2a�m�C = 	C ,

H
n�pm� p,n��p�m� �p�
�2a�m�

= �n�p,m� p�Ĥ�2a�m��n��p�,m� �p�� , �49�

remains unchanged for general interactions.
Equations �44� and �47� constitute a multiconfigurational

time-dependent theory for systems of bosonic atoms and
molecules with conversion �particle conversion in the ge-
neric case�. Furthermore, Eqs. �48� and �49� constitute a mul-
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ticonfigurational self-consistent time-independent theory for
systems of bosonic atoms and molecules with conversion
�particle conversion in the generic case�. Both theories ex-
tend the scope of the successful multiconfigurational time-
dependent Hartree method and its versions specified for sys-
tems of identical particles and mixtures to new physical
systems and problems.

V. SUMMARY AND CONCLUDING REMARKS

In this work we have derived a many-body propagation
theory for systems with particle conversion. The theory is
intended for systems with a finite number of interacting par-
ticles, typically in a trap potential. The theory has been ex-
emplified and working equations have been explicitly de-
rived for systems of interacting structureless bosonic atoms
and bosonic molecules undergoing the conversion “reaction”
2a�m. In doing so, we have also extended the scope of the
successful multiconfigurational time-dependent Hartree
�MCTDH� method and its versions specified for systems of
identical particles and mixtures to a broader class of physical
systems and problems. We note that the MCTDH method is
considered at present the most efficient wave-packet propa-
gation approach for in general distinguishable coupled de-
grees of freedom, with no particle conversion, of course. The
general multiconfigurational theory with particle conversion
shall be referred to as MCTDH-conversion theory, whereas
the explicit scenario derived throughout this work by
MCTDH-�2a�m� theory.

To treat systems with particle conversion, one has to work
in second quantization formalism, where the Hamiltonian
with particle-conversion terms can be represented. The next
step is to define the configurations. In the presence of particle
conversion configurations with different numbers of atoms
and different numbers of molecules are coupled. For in-
stance, consider the particular case of the conversion “reac-
tion” 2a�m. In this case, the subspace of coupled configu-
rations can be easily obtained by starting from the
configurations made of N atoms only, and operating repeat-
edly with the conversion operators in the Hamiltonian until
configurations made of the maximal number � N

2 � of mol-
ecules are reached.

In the multiconfigurational theory for the “reaction”
2a�m, there are M time-dependent orbitals ��k�r , t�� avail-
able for the atoms and M� time-dependent orbitals ��k��r , t��
for the molecules. The multiconfigurational ansatz for the
many-particle wave function ��t� is taken as linear combi-
nation with time-dependent coefficients �Cn�pm� p�t�� of all pos-
sible configurations ��n�p ,m� p ; t�� assembled from p molecules
and N−2p atoms, p=0, . . . , � N

2 �—distributed over the M and
M� respective orbitals—and coupled by the conversion term
in the Hamiltonian.

The evolution of ��t� is then determined by the Dirac-
Frenkel time-dependent variational principle. Utilizing the
Lagrangian formulation of the Dirac-Frenkel variational
principle, one arrives at two sets of coupled equations of
motion: The first set is for the orbitals ��k�r , t�� and
��k��r , t��, and the second for the expansion coefficients
�Cn�pm� p�t��. The first set is comprised of first-order differential

equations in time and nonlinear integrodifferential equations
in position space. The second set consists of first-order dif-
ferential equations with coefficients forming a time-
dependent Hermitian matrix. Thus, equations of motion, Eqs.
�33� and �39�, or Eqs. �37� and �40� �Eqs. �44� and �47� for
general interactions�, constitute the time-dependent multi-
configurational theory for bosonic atoms and molecules with
conversion—MCTDH-�2a�m� theory.

The structure of the equations of motion for systems with
particle conversion reminds of the structure of the equations
of motion in multiconfigurational time-dependent theories
for systems of identical particles and mixtures �32,33,53,54�:
�i� There are projection operators on the right-hand sides of
the equations of motion for the orbitals, ensuring that the
respective orbitals remain normalized and orthogonal to one
another for all times; �ii� the equations for the expansion
coefficients are first-order differential equations with time-
dependent coefficients; and �iii� the equations of motion for
the orbitals are formulated in terms of reduced density ma-
trices. This resemblance would allow one to transfer the ef-
fective numerical techniques that have been developed in the
past almost 20 years for multiconfigurational time-dependent
many-body systems without particle conversion
�7,8,12,29–33,53,54� to the present theory for systems with
particle conversion.

Particular attention has been paid to the reduced density
matrices appearing in the theory. As the multiconfigurational
expansion involves configurations with different numbers of
atoms and molecules, two types of reduced density matrices
are defined. There are particle-conserving reduced density
matrices, ��a��r1 �r2 ; t�, ��m��r1 �r2 ; t�, ��a��r1 ,r2 �r3 ,r4 ; t�,
��m��r1 ,r2 �r3 ,r4 ; t� and ��am��r1 ,r2 �r3 ,r4 ; t�, which directly
do not couple configurations with different numbers of atoms
and molecules. Despite this property, the particle-conserving
reduced density matrices, such as ��a��r1 �r2 ; t� and
��a��r1 ,r2 �r3 ,r4 ; t�, are not the standard density matrices in-
troduced by Löwdin �44� for many-particle systems without
conversion. The second type of reduced density matrices that
appear in the theory are particle nonconserving reduced den-
sity matrices, ��2a⇀m��r1 ,r2 �r3 ; t� and ��m⇁2a��r3 �r2 ,r1 ; t�,
and originate from the conversion term in the Hamiltonian.
They obviously have no analogs in systems without conver-
sion. Here, it is of interest by itself to study properties of
particle-conserving reduced density matrices and certainly of
particle nonconserving reduced density matrices in systems
with particle conversion.

The time-dependent multiconfigurational theory
MCTDH-�2a�m� readily admits the corresponding station-
ary theory. By resorting to imaginary time propagation, the
equations of motion of the time-dependent theory boil down
to the fully self-consistent time-independent multiconfigura-
tional theory, Eqs. �48� and �49�, for stationary states of the
system 2a�m, in presence of all particle-particle interac-
tions, of course. With this result, available self-consistent
multiconfigurational theories for systems without particle
conversion, noticeably for fermions �94,95�, distinguishable
degrees of freedom �13�, bosons �52�, and mixtures �54�, are
taken a step further, to systems with particle conversion.

A specific case of interest for systems of bosonic atoms
and molecules with conversion is the case of M =1 atomic
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and M�=1 molecular orbitals, which is presented in Sec. III
before the general MCTDH-�2a�m� theory is developed.
For M =1 and M�=1, the corresponding multiconfigurational
theory is the fully variational theory that results when the
shape of the atomic �a�r , t� and molecular �m�r , t� orbitals
and of each and every expansion coefficient Cp�t� are opti-
mized according to the variational principle. Being fully
variational with respect to the shape of the orbitals �a�r , t�,
�m�r , t� and with respect to the expansion coefficients
�Cp�t��, the theory generalizes the literature Gross-Pitaevskii
equation �57� and two-mode approximation �56,65� for
bosonic atoms and molecules with conversion. We term this
specific case of the general theory conversion mean field, as
there is only one orbital available for the bosonic atoms and
one for the molecules—the minimal number possible for
bosonic species.

At the other end, in the limit where the number M of
atomic orbitals and M� of molecular orbitals goes to infinity,
the MCTDH-�2a�m� theory becomes an exact representa-
tion of the time-dependent many-particle Schrödinger equa-

tion with the particle-conversion Hamiltonian Ĥ�2a�m� �Eqs.
�1�–�3��. In practice, one obviously has to limit M and M�.
Here, the employment of time-dependent orbitals, which has
been very successful for the MCTDH approach and its ver-
sions specified for identical particles and mixtures, is of great
help and advantage. Of course, even with time-dependent
orbitals the size of the Hilbert space grows rapidly with the
size of the system and the number of orbitals M and M�
employed. Consequently, with increasing system size and as
the number of orbitals which one has to employ becomes
larger, e.g., for stronger interactions, it is instructive to devise
truncation schemes beyond the usage of time-dependent mul-
ticonfigurational expansions over complete Hilbert sub-
spaces. We mention two such truncation strategies: �i� to
truncate time-dependent multiconfigurational expansions to
include parts of Hilbert subspaces, i.e., to include not all
available configurations for a given system size and number
of orbitals M ,M�; and �ii� to concentrate on the reduced
density matrices, write equations of motion for them directly,
and thereafter truncate the resulting hierarchy of equations of
motion for higher-order reduced density matrices at some
given order. The development of these truncation schemes
for time-dependent multiconfigurational expansions in sys-
tems with particle conversion extends beyond the scope of
the present work.

Finally, the explicit equations of motion presented in this
work are for the specific “reaction” 2a�m where the atoms
and molecules are structureless bosons—the MCTDH-
�2a�m� theory. Several other systems come to mind: �i�
Other “reactions” with bosonic atoms of the same kind, e.g.,
3a�m; �ii� “reactions” with bosonic atoms of a different
kind, e.g., a+a��m. In this case and for general particle-
particle interactions, the center of mass coordinate is, of

course, R=
mar+ma�r�

ma+ma�
, where ma and ma� are the masses of the

respective species; �iii� “reactions” including fermionic at-
oms, e.g., af +ab�mf and af +af �mb where the subscript b,
f stands for bosonic, fermionic species. In the latter case, a
unified form of the respective equations of motion and those
of the present work is anticipated; and �iv� a whole zoo of

“reactions” for particles with spin and/or internal structure.
The extension of MCTDH-�2a�m� theory for the above
concrete examples as well as for other systems with particle
conversion can be done by following the theory and deriva-
tion steps of the present work.
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APPENDIX A: FURTHER DETAILS OF THE DERIVATION
OF THE EQUATIONS OF MOTION

1. The specific case of the conversion mean field (fully
variational two-mode approximation)

When the variations of the functional action �9� with re-
spect to the orbitals and expansion coefficients are put to
zero, the following equations of motion are obtained:

��N̂a�	ĥ�a� − i
�

�t

 + �a�N̂a�N̂a − 1����a�2

+ �am�N̂aN̂m���m�2���a�

+ �2�con�b̂a
†b̂a

†ĉm��
a
*��m� = �a�t���a� ,

��N̂m�	ĥ�m� − i
�

�t

 + �m�N̂m�N̂m − 1����m�2

+ �am�N̂aN̂m���a�2���m�

+
�con

�2
�ĉm

† b̂ab̂a��a��a� = �m�t���m� �A1�

and

�H�a�m��t� − 	�t� · 1�C�t� = i
�C�t�

�t
. �A2�

The three time-dependent Lagrange multipliers �a�t�, �m�t�,
and 	�t� appear therein. How to eliminate them?

It is straightforward to eliminate 	�t�. This is done by
transforming the expansion coefficients as follows:

C̄�t� = e−i�t	�t��dt�C�t� . �A3�

Substituting Eq. �A3� into Eq. �A2� and removing at the end
the “bar” from all quantities we obtain

H�a�m��t�C�t� = i
�C�t�

�t
. �A4�

From Eqs. �A2�–�A4� we see that the role of the Lagrange
multiplier 	�t� is that of a �redundant� global time-dependent

phase of the many-particle wave function �̄�t�
=e−i�t	�t��dt���t�. We note that Eq. �A1� is not affected by the
transformation �A3� because reduced density matrices are
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“insensitive” to a global phase of the wave function, namely

��̄�t��¯ ��̄�t��= ���t��¯ ���t��.
The next step is to eliminate the remaining Lagrange mul-

tipliers �a�t� and �m�t�. Making use of the orbitals being
normalized and taking the respective scalar products of Eq.
�A1� with ��a� and ��m�, we obtain

�a�t� = �N̂a���a�ĥ�a� − i
�

�t
��a� +

�a

2
�N̂a�N̂a − 1����a

2��a
2�

+ �am�N̂aN̂m���a�m��a�m� + �2�con�b̂a
†b̂a

†ĉm���a
2��m� ,

�m�t� = �N̂m���m�ĥ�m� − i
�

�t
��m� +

�m

2
�N̂m�N̂m − 1��

���m
2 ��m

2 � + �am�N̂aN̂m���a�m��a�m�

+
�con

�2
�ĉm

† b̂ab̂a���m��a
2� . �A5�

Substituting Eq. �A5� into Eq. �A1�, employing the identities

��N̂a�	ĥ�a� − i
�

�t

 + �a�N̂a�N̂a − 1����a�2

+ �am�N̂aN̂m���m�2���a�

+ �2�con�b̂a
†b̂a

†ĉm��
a
*��m� − �a�t���a�

= �1 − ��a���a�����N̂a�	ĥ�a� − i
�

�t



+ �a�N̂a�N̂a − 1����a�2 + �am�N̂aN̂m���m�2���a�

+ �2�con�b̂a
†b̂a

†ĉm��
a
*��m�� ,

��N̂m�	ĥ�m� − i
�

�t

 + �m�N̂m�N̂m − 1����m�2

+ �am�N̂aN̂m���a�2���m�

+
�con

�2
�ĉm

† b̂ab̂a��a��a� − �m�t���m�

= �1 − ��m���m�����N̂m�	ĥ�m� − i
�

�t



+ �m�N̂m�N̂m − 1����m�2 + �am�N̂aN̂m���a�2���m�

+
�con

�2
�ĉm

† b̂ab̂a��a��a�� , �A6�

and dividing the result, respectively, by �N̂a� and �N̂m�, the
equations of motion �16� and �17� are obtained.

To eliminate the projection operators in front of the time

derivatives in Eq. �A6�, i.e., P̂�a�=1− ��a���a� and P̂�m�=1
− ��m���m� on the left-hand sides of Eq. �16�, we exploit the
invariance property of the wave function ��t�. Consider the
following phase transformations of the orbitals and coeffi-
cients:

�̄a�r,t� = e+i�a�t��a�r,t�, �̄m�r,t� = e+im�t��m�r,t� ,

C̄p�t� = e−i��N−2p��a�t�+pm�t��Cp�t�, p = 0, . . . ,�N/2� .

�A7�

Combining these phase transformations, the wave
function does not change: ���t��=p=0

�N/2�Cp�t��N−2p , p ; t�
=p=0

�N/2�C̄p�t��N−2p , p ; t�. We should also recall that trans-
forming the orbitals goes along with transforming the corre-
sponding annihilation, creation operators �another way to

look at this is that the field operators �̂a�r� and �̂m�r� are
time-independent, basis-set-independent quantities and, con-
sequently, transforming the orbitals requires the reverse
transformation of the annihilation operators�. Thus, Eq. �A7�
implies also the phase transformations

b̂̄a�t� = e−i�a�t�b̂a�t�, ĉ̄m�t� = e−im�t�ĉm�t� �A8�

for the atomic and molecular annihilation operators.
Now, plugging Eqs. �A7� and �A8� into the equations of

motion �16� for the orbitals and Eq. �22� for the expansion
coefficients �see also Eqs. �A4� and �A6��, and choosing the
phases

�a�t� = �t

i��a�t����̇a�t���dt�,

m�t� = �t

i��m�t����̇m�t���dt�, �A9�

equations of motion �20� and �23� are found. We note that the
phases �a�t� and m�t� are real quantities since
��a�t� ��a�t��=1 and ��m�t� ��m�t��=1, respectively, for all
times.

2. The general multiconfigurational theory

When the expressions for the field operators �̂a�r� and

�̂m�r� in terms of the time-dependent orbitals, Eq. �5�, are
substituted into the generic many-body Hamiltonian �1�–�3�,
one obtains

Ĥ�2a�m� = 
k,q

hkq
�a�b̂k

†b̂q + 
k,s,l,q

Wksql
�a� b̂k

†b̂s
†b̂lb̂q + 

k�,q�

hk�q�
�m� ĉk�

† ĉq�

+ 
k�,s�,l�,q�

Wk�s�q�l�
�m� ĉk�

† ĉs�
† ĉl�ĉq�

+ 
k,k�,q,q�

Wkk�qq�
�am� b̂k

†b̂qĉk�
† ĉq�
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+
1
�2


k�,k,q

�Wk�kq
�2a⇀m�ĉk�

† b̂kb̂q + Wqkk�
�m⇁2a�b̂q

†b̂k
†ĉk�� .

�A10�

The one-body, two-body, and conversion matrix elements ap-
pearing in Eq. �A10� are given by

hkq
�a� =� �

k
*�r,t�ĥ�a��r��q�r,t�dr ,

Wksql
�a� =� � �

k
*�r,t��

s
*�r�,t�Ŵ�a��r,r���q�r,t��l�r�,t�drdr�,

hk�q�
�m� =� �

k�
* �r,t�ĥ�m��r��q��r,t�dr ,

Wk�s�q�l�
�m� =� � �

k�
* �r,t��

s�
* �r�,t�

�Ŵ�m��r,r���q��r,t��l��r�,t�drdr�,

Wkk�qq�
�am� =� � �

k
*�r,t��

k�
* �r�,t�

�Ŵ�am��r,r���q�r,t��q��r�,t�drdr�,

Wk�kq
�2a⇀m� =� � �

k�
* 	 r + r�

2
,t
Ŵ�2a⇀m��r,r��

��k�r,t��q�r�,t�drdr�

=� � �
k�
* �r,t�Ŵ�2a⇀m�	r +

r�

2
,r −

r�

2



��k	r +
r�

2
,t
�q	r −

r�

2
,t
drdr�,

Wqkk�
�m⇁2a� =� � �

q
*�r,t��

k
*�r�,t�Ŵ�m⇁2a��r,r��

��k�	 r + r�

2
,t
drdr� = �Wk�kq

�2a⇀m��*.

�A11�

The change of variables used for Wk�kq
�2a⇀m� is needed in order

to perform the variation of this term with respect to the mo-
lecular orbitals, see below.

Now, the expectation value appearing in the functional
action �30� when expressed explicit with respect to the orbit-
als reads

���t��Ĥ�2a�m� − i
�

�t
���t�� = 

k,q=1

M

�kq
�a��hkq

�a� − 	i
�

�t



kq

�a�� +
1

2 
k,s,l,q=1

M

�kslq
�a� Wksql

�a� + 
k�,q�=1

M�

�k�q�
�m� �hk�q�

�m� − 	i
�

�t



k�q�

�m� �
+

1

2 
k�,s�,l�,q�=1

M�

�k�s�l�q�
�m� Wk�s�q�l�

�m� + 
k,q=1

M


k�,q�=1

M�

�kk�qq�
�am� Wkk�qq�

�am� +
1
�2


k,q=1

M


k�=1

M�

��k�kq
�2a⇀m�Wk�kq

�2a⇀m�

+ �qkk�
�m⇁2a�Wqkk�

�m⇁2a�� − i 
p=0

�N/2�


n�p,m� p

C
n�pm� p
* �Cn�pm� p

�t
, �A12�

where

	i
�

�t



kq

�a�

= i� �
k
*�r,t�

��q�r,t�
�t

dr , 	i
�

�t



k�q�

�m�

= i� �
k�
* �r,t�

��q��r,t�

�t
dr . �A13�

Equating the variation of the functional action �30� with respect to the orbitals to zero, making use of Eq. �A12�, the following
equations are obtained:


q=1

M ���kq
�a�	ĥ�a� − i

�

�t

 + 

s,l=1

M

�kslq
�a� Ŵsl

�a� + 
k�,q�=1

M�

�kk�qq�
�am� Ŵk�q�

�am����q� + �2 
k�=1

M�

�qkk�
�m⇁2a�Ŵqk�

�m⇁2a�� = 
j=1

M

�kj
�a��� j�, k = 1, . . . ,M ,


q�=1

M� ��k�q�
�m� 	ĥ�m� − i

�

�t

 + 

s�,l�=1

M�

�k�s�l�q�
�m� Ŵs�l�

�m� + 
k,q=1

M

�kk�qq�
�am� Ŵkq

�ma����q�� +
1
�2


k,q=1

M

�k�kq
�2a⇀m�Ŵkq

�2a⇀m� = 
j�=1

M�

�k�j�
�m� �� j�� ,

k� = 1, . . . ,M�. �A14�
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One delicate point in performing the variation of Wk�kq
�2a⇀m�

�the last term in the second line of the expectation value Eq.
�A12�� with respect to the molecular orbitals �

k�
* �r , t� is

worth mentioning. To perform this variation, a change of the
integration variables r, r� to the center of mass R= r+r�

2 and
relative r̄=r−r� coordinates is required. Assigning thereafter
back R→r, r̄→r�, the matrix element Wk�kq

�2a⇀m� is rewritten
in a form, see Eq. �A11�, which is amenable to explicit varia-
tion with respect to �

k�
* �r , t�.

The next step it to eliminate the Lagrange multipliers
��kj

�a��t�� and ��k�j�
�m� �t��. Making use of the orthonormality

properties of the atomic and molecular orbitals,
��k�t� ��q�t��=�kq and ��k��t� ��q��t��=�k�q�, and taking the
corresponding scalar products of Eq. �A14� with respect to
the orbitals, we obtain explicit expressions for the Lagrange
multipliers,

�kj
�a��t� = 

q=1

M ��kq
�a��hjq

�a� − 	i
�

�t



jq

�a�� + 
s,l=1

M

�kslq
�a� Wjsql

�a�

+ 
k�,q�=1

M�

�kk�qq�
�am� Wjk�qq�

�am� + �2 
k�=1

M�

�qkk�
�m⇁2a�Wqjk�

�m⇁2a�� ,

�k�j�
�m� �t� = 

q�=1

M� ��k�q�
�m� �hj�q�

�m� − 	i
�

�t



j�q�

�m� �
+ 

s�,l�=1

M�

�k�s�l�q�
�m� Wj�s�q�l�

�m� + 
k,q=1

M

�kk�qq�
�am� Wkj�qq�

�am� �
+

1
�2


k,q=1

M

�k�kq
�2a⇀m�Wj�kq

�2a⇀m�. �A15�

Substituting Eq. �A15� into Eq. �A14�, making use of the
identities


q=1

M ���kq
�a�	ĥ�a� − i

�

�t

 + 

s,l=1

M

�kslq
�a� Ŵsl

�a�

+ 
k�,q�=1

M�

�kk�qq�
�am� Ŵk�q�

�am����q�

+ �2 
k�=1

M�

�qkk�
�m⇁2a�Ŵqk�

�m⇁2a�� − 
u=1

M

�ku
�a���u�

= 	1 − 
u=1

M

��u���u�

�

q=1

M ���kq
�a�	ĥ�a� − i

�

�t



+ 
s,l=1

M

�kslq
�a� Ŵsl

�a� + 
k�,q�=1

M�

�kk�qq�
�am� Ŵk�q�

�am����q�

+ �2 
k�=1

M�

�qkk�
�m⇁2a�Ŵqk�

�m⇁2a��, k = 1, . . . ,M ,


q�=1

M� ��k�q�
�m� 	ĥ�m� − i

�

�t

 + 

s�,l�=1

M�

�k�s�l�q�
�m� Ŵs�l�

�m�

+ 
k,q=1

M

�kk�qq�
�am� Ŵkq

�ma����q��

+
1
�2


k,q=1

M

�k�kq
�2a⇀m�Ŵkq

�2a⇀m� − 
u�=1

M�

�k�u�
�m� ��u��

= 	1 − 
u�=1

M�

��u����u��

��

q�=1

M� ��k�q�
�m� 	ĥ�m� − i

�

�t



+ 
s�,l�=1

M�

�k�s�l�q�
�m� Ŵs�l�

�m� + 
k,q=1

M

�kk�qq�
�am� Ŵkq

�ma����q��

+
1
�2


k,q=1

M

�k�kq
�2a⇀m�Ŵkq

�2a⇀m��, k� = 1, . . . ,M�,

�A16�

and multiplying the result, respectively, by the inverse of the
reduced one-body density matrices and summing over

k=1
M ���a��t�� jk

−1 and k�=1
M� ���m��t�� j�k�

−1 , we obtain equations of
motion such as Eq. �33� with general interactions.

Finally, to eliminate the projection operators P̂�a�=1

−u=1
M ��u���u� and P̂�m�=1−u�=1

M� ��u����u�� in front of the
time derivatives �see Eqs. �A16� and �33��, we employ the

invariance properties of the wave function ��t�=�̄�t�, where

��k�r , t��→ ��̄k�r , t��, ��k��r , t��→ ��̄k��r , t��, and �Cn�pm� p�t��
→ �C̄n�pm� p�t��. For this, consider the following time-dependent
matrices:

D�a��t�,Dkq
�a� = i��k�t���̇q�t��, D�m��t�,Dk�q�

�m� = i��k��t���̇q��t�� .

�A17�

The matrices D�a��t� and D�m��t� are Hermitian matrices �be-
cause the respective orbitals are normalized and orthogonal
to one another, ��k�t� ��q�t��=�kq and ��k��t� ��q��t��=�k�q��
and hence can be diagonalized

�T�a��t��†D�a��t�T�a��t� = d�a��t� ,

�T�m��t��†D�m��t�T�m��t� = d�m��t� , �A18�

where d�a��t� and d�m��t� are the diagonal matrices of the
respective eigenvalues. Now, we define the unitary transfor-
mations �which are symbolically integrated�,
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iU̇sq
�a��t� = − 

k=1

M

Dsk
�a��t�Ukq

�a��t� ⇒ U�a��t� = e+i�tD�a��t��dt�U�a��0� ,

iU̇s�q�
�m� �t� = − 

k�=1

M

Ds�k�
�m� �t�Uk�q�

�m� �t� ⇒ U�m��t�

= e+i�tD�m��t��dt�U�m��0� , �A19�

with the initial conditions defined in the limit �→0 as �see in
this respect Ref. �33��

U�a���� = T�a��0�e+i�d�a��0�, U�m���� = T�m��0�e+i�d�m��0�.

�A20�

Then, the unitary transformations of the orbitals

�̄q�r,t� = 
k=1

M

Ukq
�a��t��k�r,t�, q = 1, . . . ,M ,

�̄q��r,t� = 
k�=1

M�

Uk�q�
�m� �t��k��r,t�, q� = 1, . . . ,M�

�A21�

lead to the desired result—equations of motion �37� and

�44�—where the projection operators P̂�a� and P̂�m� have been
eliminated from the left-hand sides.

The transformation �Cn�pm� p�t��→ �C̄n�pm� p�t�� accompanying
Eq. �A21� carries equations of motion �39� for the expansion
coefficients to the respective final result, Eqs. �40� and �47�.
It is instructive to obtain this result by proving that the equa-
tions of motion for the expansion coefficients are form
invariant. Namely, if H�2a�m��t�C�t�= i �C�t�

�t are satis-
fied for the untransformed quantities ��Cn�pm� p�t�� ,

��k�r , t�� , ��k��r , t��� then H̄�2a�m��t�C̄�t�= i �C̄�t�
�t are

satisfied for the transformed ones

��C̄n�pm� p�t�� , ��̄k�r , t�� , ��̄k��r , t���. The proof is straightfor-
ward. Equating the variation of the functional action �Eqs.
�30� and �32�� with respect to the expansion coefficients to

zero, the result can be written as follows: �n�p ,m� p ; t�Ĥ�2a�m�

− i �
�t ���t��, ∀ p ,n�p ,m� p. Since the transformed configurations

��n�p ,m� p ; t�� are given as linear combinations of the untrans-

formed configurations ��n�p ,m� p ; t��, the operator Ĥ�2a�m�− i �
�t

does not depend on the orbitals, and ��̄�t��= ���t��, we im-

mediately obtain �n�p ,m� p ; t�Ĥ�2a�m�− i �
�t ��̄�t��, ∀ p ,n�p ,m� p,

which concludes our proof. To our needs, since the trans-
formed orbitals �A21� obey the differential conditions

��̄k � �̇̄q�=0; k ,q=1, . . . ,M and ��̄k� � �̇̄q��=0; k� ,q�
=1, . . . ,M� �see Eq. �38��, the respective equations of motion
for the transformed coefficients boil down to

H̄�2a�m��t�C̄�t�= i �C̄�t�
�t �see Eqs. �40� and �47��.

APPENDIX B: MATRIX ELEMENTS
WITH MULTICONFIGURATIONAL WAVE FUNCTIONS

IN SYSTEMS WITH PARTICLE CONVERSION

There are two types of matrix elements in the theory. The
first type are matrix elements of the many-body Hamiltonian
with respect to the configurations. These matrix elements are
expressed using the matrix elements of the one-body terms,
two-body interaction terms, and the conversion term with
respect to the atomic and molecular orbitals. The second type
of matrix elements are the matrix elements of the reduced
density matrices appearing in the theory, which are expressed
in terms of the expansion coefficients.

In this appendix we prescribe these matrix elements. It is
easy to connect the matrix elements of particle-conserving
operators to the corresponding matrix elements appearing in
the available multiconfigurational theories for identical par-
ticles and mixtures. This assignment will shorten substan-
tially the discussion below. The matrix elements of particle
nonconserving operators will be presented in full detail.

1. Matrix elements of the Hamiltonian

The many-body Hamiltonian �Eqs. �1�–�3�� is written as a
sum of particle-conserving and particle nonconserving parts:

Ĥ�2a�m�= Ĥ�am�+Ŵ�2a�m�. The matrix elements of the

particle-conserving part Ĥ�am�, see Eqs. �1� and �2�, between
two general configurations derive from the following rela-
tion:

�n�p,m� p;t�Ĥ�am� − i
�

�t
�n��p�,m� �p�;t�

= �p,p��n�p,m� p;t�Ĥ�am� − i
�

�t
�n��p,m� �p;t� . �B1�

Thus, it corresponds to a matrix element of a mixture with
N−2p atoms and p molecules without conversion. The ma-
trix elements of the Hamiltonian of a mixture of two kinds of
bosons with respect to two general configurations have been
prescribed within the respective particle-conserving multi-
configurational theory for Bose-Bose mixtures, the
MCTDH-BB theory, see Ref. �54�.

To evaluate the matrix elements of the particle-

nonconserving part of the Hamiltonian, Ŵ�2a�m�=Ŵ�2a⇀m�

+Ŵ�m⇁2a�, see Eqs. �1� and �3�, between two general
configurations we have to introduce a shorthand notation
for different configurations. The reference configuration
is denoted by �n�p ,m� p ; t�= �n1

p , . . . ,nk
p , . . . ,nq

p , . . . ,
nM

p :m1
p , . . . ,mk�

p , . . . ,mM�
p ; t�. We remind that the occupation

numbers satisfy the relations: �n�p�=n1
p+ ¯ +nM

p =N−2p and
�m� p�=m1

p+ ¯ +mM�
p = p, where p is the number of molecules.

Now, the configuration �n�kq
p−1 ,m� k�

p−1 ; t���n1
p , . . . ,nk

p+1, . . . ,nq
p

+1, . . . ,nM
p :m1

p , . . . ,mk�
p −1, . . . ,mM�

p ; t� differs from
�n�p ,m� p ; t� by having p−1 molecules and N−2p+2 atoms,
where a molecule in the k�th orbital has dissociated to two
atoms, one in the kth orbital and the second in the qth orbital;
and the configuration �n�kk

p−1 ,m� k�
p−1 ; t���n1

p , . . . ,nk
p
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+2, . . . ,nM
p :m1

p , . . . ,mk�
p −1, . . . ,mM�

p ; t� differs from
�n�p ,m� p ; t� by having p−1 molecules and N−2p+2 atoms,
where a molecule in the k�th orbital has dissociated to two
atoms, both in the kth orbital. We employ a nomenclature
where the same ordering of the orbitals �1 , . . . ,�M and
�1 , . . . ,�M� as in Eq. �26� is kept for all configurations. In
this nomenclature the following states are equivalent:
�n�kq

p−1 ,m� k�
p−1 ; t���n�qk

p−1 ,m� k�
p−1 ; t�.

With this notation, the nonvanishing matrix elements of
the particle-nonconserving part of the Hamiltonian follow
from

�n�p,m� p;t�Ŵ�2a⇀m��n�kq
p−1,m� k�

p−1;t�

=
1
�2

Wk�kq
�2a⇀m��mk�

p �nk
p + 1��nq

p + 1�, k � q ,

�n�p,m� p;t�Ŵ�2a⇀m��n�kk
p−1,m� k�

p−1;t�

=
1
�2

Wk�kk
�2a⇀m��mk�

p �nk
p + 1��nk

p + 2� , �B2�

and the relation �n�p ,m� p ; t�Ŵ�m⇁2a��n�p� ,m� p� ; t�
= ��n�p� ,m� p� ; t�Ŵ�2a⇀m��n�p ,m� p ; t��*. We note that Wk�kq

�2a⇀m�

=Wk�qk
�2a⇀m� because Ŵ�2a⇀m��r ,r��=Ŵ�2a⇀m��r� ,r�. To sum-

marize, direct coupling in the matrix representation of the
Hamiltonian with respect to the configurations exists due to

the particle-nonconserving part of the Hamiltonian Ŵ�2a�m�

between configurations with p and p−1 molecules only, for
p=1, . . . , �N /2�.

2. Matrix elements of reduced density matrices

The multiconfigurational ansatz �26� can be written in the
following form:

���t�� = 
p=0

�N/2�

��p�t�� , �B3�

where each ��p�t��=n�p,m� pCn�pm� p�t��n�p ,m� p ; t� is a �non-
normalized� many-particle wave function with a definite
number of p molecules and N−2p atoms, and thus “de-
scribes” a bosonic mixture without conversion. Conse-
quently, the matrix elements of the particle-conserving re-
duced density matrices can be expressed as follows:

�kq
�a��t� = �b̂k

†b̂q� = 
p=0

�N/2�

��p�t��b̂k
†b̂q��p�t�� ,

�k�q�
�m� �t� = �ĉk�

† ĉq�� = 
p=0

�N/2�

��p�t��ĉk�
† ĉq���p�t�� ,

�kslq
�a� �t� = �b̂k

†b̂s
†b̂lb̂q� = 

p=0

�N/2�

��p�t��b̂k
†b̂s

†b̂lb̂q��p�t�� ,

�k�s�l�q�
�m� �t� = �ĉk�

† ĉs�
† ĉl�ĉq�� = 

p=0

�N/2�

��p�t��ĉk�
† ĉs�

† ĉl�ĉq���p�t�� ,

�kk�qq�
�am� �t� = �b̂k

†b̂qĉk�
† ĉq�� = 

p=0

�N/2�

��p�t��b̂k
†b̂qĉk�

† ĉq���p�t�� .

�B4�

In other words, the matrix elements of the particle-
conserving reduced density matrices can be readily read from
the reduced density matrices of the respective particle-
conserving multiconfigurational theory for Bose-Bose mix-
tures, the MCTDH-BB theory, see Ref. �54�.

The matrix elements of the particle-nonconserving re-
duced density matrices are given explicitly by

�k�kq
�2a⇀m� = �ĉk�

† b̂kb̂q�

= 
p=0

�N/2�


n�p,m� p

C
n�p,m� p
* Cn�kq

p−1,m�
k�
p−1�mk�

p �nk
p + 1��nq

p + 1� ,

k � q ,

�k�kk
�2a⇀m� = 

p=0

�N/2�


n�p,m� p

C
n�p,m� p
* Cn�kk

p−1,m�
k�
p−1�mk�

p �nk
p + 1��nk

p + 2� .

�B5�

All other matrix elements are derived from the symmetry of
the conversion operator, �k�qk

�2a⇀m�=�k�kq
�2a⇀m�, and the Hermitic-

ity relation �qkk�
�m⇁2a��t�= ��k�kq

�2a⇀m��t��*.
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