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High-accuracy nonrelativistic variational calculations employing explicitly correlated Gaussian basis func-
tions have been performed to determine the energies and the expectation values of some operators for the
lowest four 1P1 states of the beryllium atom. The states correspond to the electron configurations 1s22s1np1,
where n=2, 3, 4, and 5. The calculations were performed for both finite and infinite mass of the Be nucleus.
The basis set for each state was grown to the level of 5000 Gaussians. With that many functions we achieved
a tight energy convergence. The reported values, to the best of our knowledge, are the most accurate ever
obtained for the four states.
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I. INTRODUCTION

Explicitly correlated Gaussian functions �ECGFs� provide
a powerful tool for very accurate calculations of bound states
of small atomic and molecular systems. The explicit depen-
dency of these functions on the interparticle distances allows
an effective description of the correlation effects that are
usually strong in the case of particles interacting with Cou-
lombic forces. Perhaps the most attractive feature of the
ECGFs is that all the necessary matrix elements involving
the Hamiltonian, as well as other common operators, can be
analytically evaluated relatively easily for an arbitrary num-
ber of particles and can be expressed with compact and
closed formulas. This feature of the Gaussians has stimulated
an interest in using these functions in very accurate atomic
and molecular calculations.

In one of our previous works �1� we derived and imple-
mented formulas for calculating atomic and molecular sys-
tems with one of the particles in a p state. As the approach
was general and not based on the Born-Oppenheimer ap-
proximation, the particles could be electrons, nuclei, or any
other type of particles. In fact, one of the numerical examples
presented in that work was a system with a positron in a p
state. In the formulas presented in Ref. �1� we used complex
exponential parameters in the Gaussians that provides addi-
tional radial flexibility to those functions in describing the
oscillatory behavior of the wave function. Apart from the
formulas for the Hamiltonian matrix elements, we also pre-
sented expressions for calculating analytical derivatives �the
gradient� of the energy with respect to complex Gaussian
exponential parameters. In the variational optimization of the
wave function the availability of the analytical gradient is
key in generating very extended and well optimized basis
sets that assure very good convergence of the calculations in
terms of the total energy and other properties. A nontrivial
aspect of the implementation of the ECGF method has al-
ways been an effective parallellization of the computer code.
In an ideal case one would like to achieve a linear scaling of
the calculation with the number of processors �for a large
number of processors�. Even though there are many parts of
the variational optimization algorithm that scale very well,

there are also parts that are more difficult to effectively par-
allelize. Also, the efficiency of the parallelization depends on
the computer platform used for the calculation.

The aim of this paper is to describe a series of the four
lowest singlet 1P1 states of the beryllium atom corresponding
to the electron configurations 1s22s1np1, n=2, 3, 4, and 5.
The main question we are addressing is how well the non-
relativistic energies of the four states can be converged when
a large number of ECGFs is used in expanding the wave
function. In the previous paper �1� we used a relatively small
basis set for the ground state �1s22s12p1� calculation to test
the algorithms and the computer code for calculating the
Hamiltonian matrix elements and the energy gradient. We
also tested the effectiveness of the code paralellization and
the gradient-based optimization approach. In the present pa-
per we employ the approach to carry out very accurate large-
scale calculations of the four Be 1P1 states to demonstrate
the capability of the ECGF method to very accurately de-
scribe P states of a four-electron atomic system.

Although atomic calculations with ECGFs for states with
non-zero total angular momentum have been done before by
other authors �see, for example, Refs. �2,3��, neither of those
calculations was carried to the level of accuracy achieved in
the present paper. For example, the lowest 1P state of beryl-
lium was calculated by Komasa and Rychlewski �3� using
the infinite-nuclear-mass �INM� and their best variational en-
ergy obtained with 1200 basis functions was
−14.473 442 016 a.u. By applying the gradient-based mini-
mization algorithm we were able to lower this value in Ref.
�1� to −14.473 442 537 a.u. using only 800 ECGFs. Here we
show that by increasing the basis set to 5000 function �while
optimizing the nonlinear parameters to a somewhat lesser
degree� we achieve a further significant improvement in low-
ering the energy.

The presentation of this paper includes the following.
First we briefly review the approach used in the calculations
and we describe the form of the variational wave function.
Next we present the results that include the total energies
calculated for the finite and infinite masses of the Be nucleus
and some expectation values commonly determined in
atomic calculations. In the last section we calculate some

PHYSICAL REVIEW A 79, 022501 �2009�

1050-2947/2009/79�2�/022501�6� ©2009 The American Physical Society022501-1

http://dx.doi.org/10.1103/PhysRevA.79.022501


n 1P1→m 1P1 and n 1P1→m 1S0 transition energies and we
compare them with the experimental values.

II. HAMILTONIAN

The present calculations have been done with a scheme
that directly takes into account the finite mass of the beryl-
lium nucleus �the finite-nuclear-mass �FNM� approach�.
Such calculations require a transformation of the Hamil-
tonian from the laboratory coordinate frame to an internal
frame and an elimination of the center-of-mass motion from
the consideration. In our approach such a transformation
starts with the laboratory-frame Cartesian coordinates Ri, de-
scribing the N particles forming the atom �these include the
nucleus and the electrons� with masses Mi and charges Qi.
Next, the motion of the center-of-mass is separated out using
a new set of Cartesian coordinates where the first three are
the center-of-mass coordinates and the remaining 3N−3 co-
ordinates are internal coordinates. The center of the internal
coordinate system is placed at the nucleus �the so-called ref-
erence particle�. All other particles �electrons� are referred to
the reference particle using the relative coordinates ri=Ri+1
−R1. These coordinates, together with the three coordinates
describing the position of the center-of-mass r0, are our new
coordinates. With the total mass of the system denoted as
Mtot=�i=1

N Mi, the coordinate transformation has the follow-
ing form:

r0 =
M1

Mtot
R1 +

M2

Mtot
R2 + ¯ +

MN

Mtot
RN,

r1 = − R1 + R2,

r2 = − R1 + R3, . . . ,

rn = − R1 + RN. �1�

Upon the transformation �1�, the laboratory frame Hamil-
tonian separates into the Hamiltonian describing the motion
of the center-of-mass of the system and the following “inter-
nal” Hamiltonian:

Ĥint = −
1

2
��

i=1

n
1

�i
�ri

2 + �
i�j

n
1

m0
�ri

� �rj� + �
i=1

n
q0qi

ri
+ �

i�j

n
qiqj

rij
,

�2�

where n=N−1, the prime symbol denotes the matrix-vector
transposition, rij = �r j −ri�, mi=Mi+1, qi=Qi+1, and �i
=m0mi / �m0+mi� �for 9Be nucleus we used 16 424.2037 for
m0�. This Hamiltonian we used in the present calculations.

The Hamiltonian �2� describes the motion of n pseudopar-
ticles with masses mi and charges qi in the central field gen-
erated by the charge of the nucleus located in the center of
the coordinate system. We use the term pseudoparticles �or
perhaps we should call them pseudoelectrons� because the

charges of the particles described by Ĥint are the same as the
charges of the electrons, but their masses are slightly smaller.
The motions of the pseudoelectrons are coupled through the

mass polarization terms �i�j
n m0

−1�ri
� �rj

and through the Cou-
lombic interactions. By setting the nuclear mass to infinity

Ĥint becomes the Hamiltonian used in atomic calculations
based on the INM approach.

III. BASIS FUNCTIONS

The general form of the basis functions for describing the
L=1 atomic states used in this paper is

�k = zpk
exp�− r��Ak � I3�r� . �3�

Here zpk
is the z coordinate of pseudoparticle �pseudoelec-

tron� pk, Ak is an n�n real symmetric matrix of exponential
parameters unique for each basis function, and Ak � I3 de-
notes the Kronecker product of Ak and the 3�3 identity
matrix I3. Notice that, in general, index pk is not the same for
all basis functions �which is denoted by including index k in
zpk

� and can range from 1 to n. In a general case of a system
consisting of different types of particles index pk can be con-
sidered as an integer variational parameter and should be
optimized along with other basis function parameters. How-
ever, for atoms where all pseudoparticles are the same �in-
distinguishable�, one can use the same value of pk �say, pk
=1� for all basis functions. This does not lead to any incom-
pleteness of the basis set.

As the basis functions �3� have to be square integrable,
matrix Ak must be positive definite. A convenient way to
assure this is to represent Ak in the form of the Cholesky
decomposition Ak=LkLk�, where Lk is a triangular matrix �the
so-called Cholesky factor�. A matrix represented in the
Cholesky factored form is automatically positive definite, re-
gardless of the signs and magnitudes of the elements of Lk.
There is a significant practical advantage of using the
Cholesky-factored form of Ak. Since there is no need to im-
pose any restrictions on the elements of Lk, the variational
optimization of these elements can be performed with no
constraints and they can be allowed to vary in the range
�−� , +��. For such an optimization very fast and efficient
algorithms can be employed. This would not be the case, if
the variational parameters were the elements of matrix Ak.

The trial wave function, and what follows the basis func-
tions used in the wave function expansion, should possess a
certain symmetry with respect to the permutations of the
electrons involved in the system. This symmetry can be
implemented by applying certain symmetry projectors,

which are linear combinations of permutational operators P̂�

to each basis function. For a specific state of the system the
appropriate symmetry operator can be determined based on

well known procedures �4�. Permutational operators P̂� are

products of elemental transposition operators P̂ij. In its origi-

nal form P̂ij permutes electrons. In our approach it needs to
be transformed to permute pseudoelectrons. As the R→r
transformation is linear, the transformation of the internal
coordinates �i.e., the coordinates of pseudoparticles� under
the permutation of particles is also linear and can be de-
scribed by a permutation matrix Pij = Pij � I3. The action of
permutational operators on the basis functions �3� was de-
scribed in more details in Ref. �1�.
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IV. VARIATIONAL PROCEDURE

A variational calculation with explicitly correlated Gaus-
sians can generate a very accurate energy and the corre-
sponding wave functions provided that the Gaussian expo-
nential parameters are well optimized. Such an optimization
is by far the most time consuming step of the calculation.
The optimization can be accelerated by utilizing the analyti-
cal energy gradient with respect to the exponential param-
eters of the basis functions. In our previous papers �5–8� we
used the gradient in the variational energy minimization and
we showed that this dramatically speeded up the calcula-
tions.

In the Rayleigh-Ritz variational scheme the wave function
of the system, �, after the elimination of the spin variables, is
approximated as a linear combination of K basis functions
�k:

��r� = �
k=1

K

ckŶ�k�r� . �4�

Here Ŷ is some permutational symmetry projector �a linear

combination of permutational operators P̂�� and ck are the
linear variational parameters. The minimization of the energy
functional with respect to the parameters ck yields the secular
equation

�H − �S�c = 0, �5�

where H and S are the Hamiltonian and overlap matrices,
respectively, and c is the vector of the linear coefficients ck.
The solutions of Eq. �5� give upper bounds � to the exact
ground- and excited-state energies of the system. The corre-
sponding sets of the linear parameters c define the wave
functions.

By taking the differential of Eq. �5�

d�H − �S�c = �dH�c − �d��Sc − ��dS�c + �H − �S�dc

�6�

and multiplying by c† �the dagger stands for transposed and
complex conjugated� from the left we obtain

d� = c†�dH − �dS�c . �7�

In the above equation we assumed that the wave function is
normalized �c†Sc=1�. dH and dS are determined with re-
spect to the variations of the Lk matrices and require calcu-
lations of the first derivatives of the H and S matrix elements
with respect to the Lk matrix elements. We refer the reader to
our previous paper �1� for more details regarding the algo-
rithm for calculating the gradient of the energy with respect
to the exponential matrices of the L=1 Gaussians.

In the calculations carried out in this paper each of the
four 1P1 states of Be has been determined separately. This
involved variational optimization of the basis set for each
state performed in a separate calculation using the FNM ap-
proach. In the calculations the basis set for each state has
been grown to the size of 5000 functions in the following
multistep scheme. First, a set of 100 functions was generated
with a random selection procedure and the whole set was
optimized using the gradient-based minimization procedure.

In this step, the nonlinear parameters of all basis functions
were optimized simultaneously. Next, the basis set was
grown up to 5000 functions by successive additions of ten
functions. These ten functions were generated based on the
distribution of nonlinear parameters of the basis functions
already included in the basis set. After each addition the
basis set was reoptimized with the gradient-based procedure.
Here, however, we did not optimize the parameters of all
basis functions simultaneously. Instead, we reoptimized the
entire basis set by varying the parameters of one function at
a time. Optimizing the parameters of only one basis function
at a time is somewhat less effective, but saves a significant
amount of computer time, because at each step of the opti-
mization cycle only one row and one column of matrices H
and S need to be updated. The results obtained for basis sets
with increasingly larger number of functions for each state
are discussed next.

V. RESULTS

In Table I we show how the total nonrelativistic FNM and
INM energies for each of the four states vary when the basis
set size changes from 1000 to 5000 in increments of 1000.
The INM calculations were performed with the basis sets
generated in the FNM calculations with only the linear ex-
pansion coefficients being allowed to adjust through the so-
lution of the secular equation �5�. The nonlinear parameters

TABLE I. Convergence of the total energies �in a.u.� of 9Be and
�Be for the four lowest 1P1 states. The values obtained with the
largest basis size include estimates of the remaining absolute
uncertainty.

State Basis Size E�9Be� E��Be�

2 1P1 1000 −14.472 533 452 −14.473 441 083

2000 −14.472 542 454 −14.473 450 082

3000 −14.472 543 386 −14.473 451 014

4000 −14.472 543 606 −14.473 451 234

5000 −14.472 543 683�70� −14.473 451 311�70�

3 1P1 1000 −14.392 231 761 −14.393 132 415

2000 −14.392 241 460 −14.393 142 114

3000 −14.392 242 494 −14.393 143 148

4000 −14.392 242 724 −14.393 143 378

5000 −14.392 242 802�70� −14.393 143 456�70�

4 1P1 1000 −14.361 024 843 −14.361 925 442

2000 −14.361 036 239 −14.361 936 839

3000 −14.361 037 349 −14.361 937 948

4000 −14.361 037 606 −14.361 938 206

5000 −14.361 037 697�90� −14.361 938 297�90�

5 1P1 1000 −14.346 955 516 −14.347 855 945

2000 −14.346 973 552 −14.347 873 983

3000 −14.346 975 179 −14.347 875 610

4000 −14.346 975 562 −14.347 875 993

5000 −14.346 975 695�130� −14.347 876 126�130�
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were not reoptimized for the infinite-mass case. As our pre-
vious experience in atomic calculations has shown, there is
no practical need for this costly reoptimization if the change
of the inverse nuclear mass is very small �which was

1 /16 424.2037→0 in these calculations�. The readjustment
of only the linear coefficients fully recovers the shift of the
total energy of the system in such a case. As one can see, for
all four states with 5000 functions the nonrelativistic energy

TABLE II. Some expectation values of 9Be and �Be. All values are in a.u.

State
Basis
Size 	ri

−2
 	rij
−2
 	ri

−1
 	rij
−1
 	ri
 	rij
 	ri

2
 	rij
2 
 		�ri�
 		�rij�


21P1 1000 14.2147053 1.54234409 2.06904279 0.693271378 1.77593076 2.97666084 6.51786078 12.9222351 8.71134 0.261726
9Be 2000 14.2147582 1.54232602 2.06904453 0.693271514 1.77593949 2.97668912 6.51814856 12.9228338 8.71949 0.261479

3000 14.2147638 1.54232353 2.06904468 0.693271442 1.77594111 2.97669413 6.51819031 12.9229286 8.72079 0.261397

4000 14.2147653 1.54232287 2.06904474 0.693271472 1.77594087 2.97669410 6.51819054 12.9229311 8.72168 0.261345

5000 14.2147658 1.54232263 2.06904475 0.693271467 1.77594101 2.97669453 6.51819446 12.9229399 8.72178 0.261323

31P1 1000 14.2240391 1.50062424 2.02863857 0.612294358 3.19314412 5.81025657 29.2958482 59.4355440 8.73600 0.262822
9Be 2000 14.2241073 1.50060140 2.02863977 0.612292485 3.19306527 5.81014368 29.2953221 59.4350157 8.74460 0.262474

3000 14.2241144 1.50059822 2.02863991 0.612292347 3.19305529 5.81012840 29.2952052 59.4348347 8.74629 0.262359

4000 14.2241159 1.50059743 2.02863993 0.612292281 3.19305333 5.81012570 29.2951853 59.4348114 8.74658 0.262322

5000 14.2241166 1.50059718 2.02863994 0.612292268 3.19305277 5.81012502 29.2951846 59.4348160 8.74698 0.262314

41P1 1000 14.2371907 1.48934122 2.01228307 0.579084396 5.49344954 10.3638224 104.232155 208.980861 8.74538 0.263741
9Be 2000 14.2372763 1.48931011 2.01228781 0.579089214 5.49212160 10.3612331 104.179622 208.875870 8.75847 0.263241

3000 14.2372861 1.48930562 2.01228815 0.579089408 5.49203685 10.3610715 104.176997 208.870687 8.76126 0.263057

4000 14.2372883 1.48930466 2.01228820 0.579089386 5.49201402 10.3610277 104.176034 208.868770 8.76220 0.263028

5000 14.2372890 1.48930405 2.01228821 0.579089358 5.49200963 10.3610198 104.175863 208.868447 8.76235 0.262972

51P1 1000 14.2420035 1.48586006 2.00506958 0.564539312 8.56891753 16.4933331 277.922176 556.179701 8.75068 0.264408
9Be 2000 14.2421410 1.48579863 2.00507474 0.564542158 8.56353641 16.4826765 277.537381 555.410331 8.76371 0.263521

3000 14.2421538 1.48579184 2.00507503 0.564542075 8.56306390 16.4817516 277.501557 555.339002 8.76583 0.263332

4000 14.2421573 1.48579113 2.00507531 0.564542436 8.56294208 16.4815127 277.494281 555.324466 8.76752 0.263327

5000 14.2421584 1.48579081 2.00507537 0.564542479 8.56289731 16.4814253 277.490908 555.317765 8.76765 0.263324

21P1 1000 14.2164802 1.54250579 2.06916812 0.693302984 1.77586108 2.97656492 6.51741211 12.9214805 8.71297 0.261770
�Be 2000 14.2165327 1.54248744 2.06916979 0.693302984 1.77586982 2.97659333 6.51769616 12.9220704 8.72112 0.261523

3000 14.2165382 1.54248490 2.06916992 0.693302866 1.77587169 2.97659901 6.51774086 12.9221730 8.72241 0.261442

4000 14.2165398 1.54248423 2.06916997 0.693302882 1.77587147 2.97659912 6.51774082 12.9221765 8.72331 0.261390

5000 14.2165402 1.54248398 2.06916998 0.693302871 1.77587165 2.97659968 6.51774506 12.9221867 8.72341 0.261368

31P1 1000 14.2258022 1.50078444 2.02876260 0.612324848 3.19308420 5.81016537 29.2952947 59.4342942 8.73762 0.262866
�Be 2000 14.2258702 1.50076145 2.02876377 0.612322938 3.19300378 5.81004944 29.2947254 59.4336779 8.74622 0.262518

3000 14.2258773 1.50075822 2.02876391 0.612322766 3.19299360 5.81003357 29.2946041 59.4334830 8.74791 0.262403

4000 14.2258788 1.50075740 2.02876391 0.612322664 3.19299197 5.81003157 29.2945900 59.4334740 8.74820 0.262366

5000 14.2258795 1.50075715 2.02876392 0.612322647 3.19299135 5.81003079 29.2945859 59.4334718 8.74860 0.262357

41P1 1000 14.2389493 1.48950158 2.01240734 0.579115561 5.49331769 10.3635987 104.228250 208.973068 8.74700 0.263785
�Be 2000 14.2390343 1.48947028 2.01241212 0.579120491 5.49196642 10.3609625 104.174820 208.866256 8.76008 0.263285

3000 14.2390441 1.48946575 2.01241247 0.579120681 5.49187631 10.3607897 104.171947 208.860555 8.76288 0.263101

4000 14.2390462 1.48946477 2.01241250 0.579120634 5.49185365 10.3607462 104.171000 208.858675 8.76381 0.263072

5000 14.2390470 1.48946414 2.01241250 0.579120581 5.49185026 10.3607405 104.170855 208.858414 8.76397 0.263016

51P1 1000 14.2437620 1.48601999 2.00519317 0.564569081 8.56894055 16.4934202 277.924897 556.185184 8.75230 0.264452
�Be 2000 14.2438987 1.48595851 2.00519870 0.564572686 8.56334369 16.4823329 277.525880 555.387334 8.76533 0.263565

3000 14.2439112 1.48595171 2.00519911 0.564572839 8.56281337 16.4812930 277.486486 555.308872 8.76744 0.263376

4000 14.2439146 1.48595101 2.00519942 0.564573277 8.56266930 16.4810098 277.477879 555.291678 8.76913 0.263371

5000 14.2439157 1.48595068 2.00519949 0.564573351 8.56261583 16.4809051 277.473979 555.283923 8.76926 0.263368
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is converged to the relative accuracy of at least 10−8 and
likely even better than that. As expected, the convergence is
somewhat better for the lowest state than for the fourth ex-
cited state. With the increase of the number of nodes in the
wave function, the higher states become more difficult to
describe and require more basis functions in order to reach
the same accuracy as achieved for the lower states. The re-
sults shown in Table I allow a calculation of the finite-
nuclear-mass effect on the total energy. This effect is slightly
larger for the ground 2 1P1 state �0.000 907 628 a.u.; the re-
sult with 5000 basis functions� than for the fourth 5 1P1 state
�0.000 900 432 a.u.�.

In the next step we used the FNM and INM wave func-
tions to calculate expectation values of some elementary op-
erators. The results are shown in Table II for all four states
and for the basis set sizes ranging from 1000 to 5000. Here
are some comments that can be made upon examining the
results.

The convergence of all the expectation values with the
number of basis functions is very good. As expected, the
expectation values of single powers of the interparticle dis-
tances converge faster than of the squares of the distances.
For both Dirac delta functions 		�ri�
 and 		�rij�
, four deci-
mal figures are converged for all states.

As expected, the 	ri
 and 	rij
 expectation values �as well
as the 	ri

2
 and 	rij
2 
 expectation values� increase with the

excitation level following the increase of the distance of the
p electron from the core of the atom. The core contraction
that occurs with the excitation does not offset this increase.

The contraction of the core electron density resulting from
the outer p electron moving to larger distances due to the
electron excitation results in a slight increase of the electron
density at the nucleus which is manifested by an increase of
the 		�ri�
 expectation value. The same effect is seen in the
		�rij�
 expectation value.

For all four states, making the nucleus move along with
the electrons by changing its mass from infinity to the finite
mass in the calculations results in a slight increase of the
average nucleus-electron distance �	ri
� and a small reduc-
tion of the electron density at the nucleus �the 		�ri�
 expec-
tation value�.

In Table III we show transition energies between the n 1P
states calculated using the 9Be and �Be total energies ob-
tained with 5000 basis functions and presented in Table I.

The calculated transition energies are compared with the
transition energies determined from the experimental data
taken from Ref. �9�. Let us first examine the transition
5 1P1→2 1P1. The calculated energy for this transition using
the �Be energies of 27560.57 cm−1 is 5.43 cm−1 off from the
experimental value of 27 555.14 cm−1. Including the FNM
effect by using the 9Be energies in the calculation lowers the
transition energy to 27 558.99 cm−1 and reduces the discrep-
ancy between the experiment and the calculations to
3.85 cm−1. For the 4 1P1→2 1P1 and 3 1P1→2 1P1 transi-
tions the discrepancy between the calculated 9Be transition
and the experiment is smaller, 3.39 and 2.02 cm−1, respec-
tively. This can be explained by the fact that relativistic ef-
fects, which are not accounted for in the present calculations,
but which need to be included to achieve better agreement
with the experiment, cancel out to a higher degree for these
transitions than for the 5 1P1→2 1P1 transition. For the tran-
sitions that involve higher states the difference between the
experiment and the calculations becomes even smaller. This
is because the magnitude of the relativistic effects due to the
excited p electron become progressively smaller, while the
relativistic effects due to the inner electrons cancel out al-
most completely.

The same trends can be observed for n 1P1→m 1S0 tran-
sitions, which are shown in Table IV. To compute these tran-
sitions we used the total energies of −14.667356446��Be�
and −14.666 435 464�9Be� a.u. and −14.418 240 230��Be�
and −14.417 335 005�9Be� a.u. for 2 1S0 and 3 1S0 states of
beryllium taken from our previous work �10�. To be consis-
tent, we used the energies obtained with 5000 functions,
though the convergence of these S state energies with 5000
basis functions is likely to be slightly better than the conver-
gence of the P state energies with the same number of basis
functions. In any event, the convergence of nonrelativistic
energies for both the P and S states is quite high and for the
purpose of determining the transition energies �shown in
Tables III and IV� the values can be considered nearly exact.
The n 1P1→m 1S0 transitions show somewhat larger differ-
ence between the computed values and the experimental
ones than for the m 1P1→n 1P1 transitions. This is because
the relativistic effects for S and P states are quite different

TABLE III. n 1P1→m 1P1 transition energies �in cm−1� for �Be
and 9Be compared with the experimental transition energies �9�. 

is the difference between the calculated transition for 9Be and the
experiment. The estimated uncertainties of calculated transitions
due to finite size of the basis are given in parentheses.

Transition �Be 9Be Experiment 


5 1P1→2 1P1 27 560.57�2� 27 558.99�2� 27 555.14 3.85

4 1P1→2 1P1 24 474.28�1� 24 472.74�1� 24 469.35 3.39

3 1P1→2 1P1 17 625.54�1� 17 624.01�1� 17 621.99 2.02

5 1P1→3 1P1 9935.03�2� 9934.98�2� 9933.15 1.83

4 1P1→3 1P1 6848.74�1� 6848.73�1� 6847.36 1.37

5 1P1→4 1P1 3086.29�1� 3086.25�1� 3085.79 0.46

TABLE IV. n 1P1→m 1S0 transition energies �in cm−1� for �Be
and 9Be compared with the experimental transition energies �9�. 

is the difference between the calculated transition for 9Be and the
experiment. The estimated uncertainties of calculated transitions
due to finite size of the basis are given in parentheses.

Transition �Be 9Be Experiment 


5 1P1→2 1S0 70 117.83�3� 70 113.32�3� 70 120.49 −7.17

4 1P1→2 1S0 67 031.54�2� 67 027.06�2� 67 034.70 −7.64

3 1P1→2 1S0 60 182.79�2� 60 178.33�2� 60 187.34 −9.01

2 1P1→2 1S0 42 557.26�2� 42 554.33�2� 42 565.35 −11.02

5 1P1→3 1S0 15 443.14�3� 15 442.08�3� 15 443.23 −1.15

4 1P1→3 1S0 12 356.85�2� 12 355.83�2� 12 357.44 −1.61

3 1S0→2 1P1 12 117.43�2� 12 116.90�2� 12 111.91 4.99

3 1P1→3 1S0 5508.11�2� 5507.10�2� 5510.08 −2.98
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and, thus, do not cancel out as much as in the case of
m 1P1→n 1P1 transitions. Moreover, the largest discrepancy
is observed in the transitions that involve the 2 1S0 state
where the relativistic effects are largest as they usually are
for the atomic ground states.

VI. SUMMARY

Very accurate nonrelativistic calculations with the finite
nuclear mass have been performed for four lowest 1P1 states
of Be using large basis sets of explicitly correlated Gaussian
functions. The variational nonrelativistic energies obtained in
the calculations are by far the lowest obtained for these
states. The total energies of the four lowest 1P1 states com-
puted in this study and the energies of the two lowest 1S0
states obtained in our previous work were used to determine
the n 1P1→m 1P1 and n 1P1→m 1S0 transition energies. The
comparison of the results with the experimental transition
energies shows that the calculations are off from the experi-
ment by 0.5–11 cm−1. While some very small additional im-

provement of the agreement can probably come from in-
creasing the number of the basis functions beyond 5000, the
most important improvement is expected to come from in-
cluding the relativistic corrections in the calculations. We
already calculated those corrections for S states of beryllium
�10� and their inclusion, together with the inclusion of the
leading quantum electrodynamic corrections computed pre-
viously by Komasa and Pachucki �11�, brought the calculated
transition energies for those states much closer to the experi-
ment. It is our intent to now develop algorithms for calculat-
ing relativistic corrections with ECGFs for states with higher
orbital angular
momenta.
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�10� M. Stanke, D. Kȩdziera, S. Bubin, and L. Adamowicz, Phys.
Rev. Lett. 99, 043001 �2007�.

�11� K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001
�2004�.

SERGIY BUBIN AND LUDWIK ADAMOWICZ PHYSICAL REVIEW A 79, 022501 �2009�

022501-6


