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Necessary and sufficient conditions for bipartite entanglement are derived, which apply to arbitrary Hilbert
spaces. Motivated by the concept of witnesses, optimized entanglement inequalities are formulated solely in
terms of arbitrary Hermitian operators, which makes them useful for applications in experiments. The needed
optimization procedure is based on a separability eigenvalue problem, whose analytical solutions are derived
for a special class of projection operators. For general Hermitian operators, a numerical implementation of
entanglement tests is proposed. It is also shown how to identify bound entangled states with positive partial
transposition.
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I. INTRODUCTION

Entanglement is considered to be the key resource of the
rapidly developing fields of quantum-information processing
and quantum computation, for an introduction see, e.g., �1�.
Among the early proposals concerning the applications of
entangled states are those for quantum key distribution �2�,
quantum dense coding �3�, and quantum teleportation �4�.
Despite the resulting great interest in entangled quantum
states, their complete characterization is still an unsolved
problem.

It is known that entanglement can be fully identified by
applying all positive but not completely positive �PNCP�
maps to a given state �5�. The problem of this approach,
however, consists in the fact that the general form of the
PNCP maps is essentially unknown. The presently best stud-
ied PNCP map is the partial transposition �PT� �6�. It is
known that PT gives a complete characterization of entangle-
ment in Hilbert spaces of dimension 2 � 2 and 2 � 3 �5�.
Bipartite entanglement can also be completely characterized
via PT in infinite-dimensional Hilbert spaces, as long as only
Gaussian states are considered, whose moments up to second
order fully describe their properties �7,8�. By using higher-
order moments, a complete characterization has been given
for those entangled states which exhibit negativities after ap-
plication of the PT map �9�. This approach gives no insight
into bound entangled states remaining positive after PT. To
overcome this limitation, to the matrices of moments other
kinds of PCNP maps have been applied �10�, including Ko-
ssakowsky, Choi, and Breuer maps �11–13�. The identifica-
tion of bound entanglement in this way, however, turned out
to be a cumbersome problem.

An equivalent approach of identifying entanglement is
based on special types of Hermitian operators, called en-
tanglement witnesses. The witnesses were introduced as a
class of linear operators, whose mean values are non-
negative for separable states but can become negative for
entangled states �5�. Presently only some classes of entangle-
ment witnesses are available. Once a witness is known, an

optimization can be performed �14�. Also nonlinear wit-
nesses have been studied �15–17�, which may increase the
number of entangled states to be identified by a single wit-
ness, in comparison with a given linear witness. However, if
one is able to construct the general form of the linear wit-
nesses, the problem of identifying entanglement is com-
pletely solved.

In the present contribution we show that any entangle-
ment witness can be expressed in terms of completely posi-
tive Hermitian operators, whose general form is well known.
On this basis we derive entanglement inequalities, which are
formulated solely in terms of general Hermitian operators.
We also provide an approach for optimizing such inequali-
ties, by introducing a separability eigenvalue problem. Our
method is a powerful tool for analyzing experimental data, to
verify any kind of entanglement. One may also identify gen-
eral bound entangled states whose density operator has a
positive partial transposition �PPT�.

The paper is structured as follows. In Sec. II we derive the
most general form of entanglement conditions in terms of
Hermitian operators. This leads us to an optimization
problem—the separability eigenvalue problem—which is
studied in Sec. III. In Sec. IV this problem is solved for a
class of projection operators and a general numerical imple-
mentation of entanglement tests for arbitrary quantum states
is given. A method for the identification of bound entangled
states is considered in Sec. V. Finally, in Sec. VI we give a
brief summary and some conclusions.

II. ENTANGLEMENT CONDITIONS

Let us consider two systems A and B, represented by ar-
bitrary Hilbert spaces HA and HB with orthonormal bases
being ��ei��i�I and ��f j�� j�J, respectively, with I and J being
arbitrary sets. Note that the Hilbert spaces are not necessarily
finite or separable. Even spaces with an uncountable bases
are under study.

An entanglement witness is a bounded Hermitian operator

Ŵ, which has positive expectation values for separable states
and it has negative eigenvalues �5�. For our purposes a gen-
eralization of the class of entanglement witnesses is useful.
One can think of bounded Hermitian operators, which have
positive expectation values for separable states:
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tr��̂Ŵ� � 0�∀ �̂ separable� , �1�

	Ŵ	 = sup��w�:w eigenvalue of Ŵ� � � . �2�

All operators fulfilling the conditions �1� and �2� shall define
the set PPAB, operators in this set are called partial positive

operators. All operators Ĉ fulfilling the conditions 
��Ĉ���
�0�∀����HA � HB� together with Eq. �2�, with Ĉ in place

of Ŵ, shall denote the set P of positive semidefinite opera-
tors. So all entanglement witnesses are elements of the dif-
ference of these sets, PPAB \P.

It was shown by Horodeckis �5�, that for any entangled

state �̂ there exists an entanglement witness Ŵ�PPAB \P,

so that the expectation value becomes negative, tr��̂Ŵ��0.
For this inseparability theorem only linear entanglement wit-
nesses were used, which are sufficient to identify all en-
tangled states. For this reason we restrict our considerations
to linear witnesses, which are elements of the set PPAB.

Let us consider the important example of witnesses based
on the PT map. Recently it has been shown �9�, that for any

state �̂ with a negative PT �NPT� there exists an operator f̂ ,
such that


� f̂† f̂�PT� = tr��̂� f̂† f̂�PT� � 0. �3�

These operators have been studied in detail as functions of
the annihilation and creation operators of two harmonic os-

cillators, f̂�â , â† , b̂ , b̂†�. All the resulting � f̂† f̂�PT are examples
of elements of PPAB, in particular they include all entangle-
ment witnesses for NPT states.

Now we will turn to the construction of entanglement
witnesses in their most general form. As outlined above, the
problem of finding all entanglement witnesses via PNCP
maps is very difficult. Here we will introduce a different but
equivalent approach to entanglement witnesses, which re-

quires the class of P operators only. A Hermitian operator Ĉ
is positive, if and only if it can be written as

Ĉ = f̂† f̂ . �4�

In the first step we will now generate any entanglement wit-
ness out of a difference of positive operators.

Lemma 1. For any entanglement witness Ŵ exists a real

number ��0 and a positive Hermitian operator Ĉ so that Ŵ

can be written as Ŵ=�1̂− Ĉ.
Proof. The bounded operator in spectral decomposition is

Ŵ=���Ŵ�wdP̂�w�, with P̂ being a projection-valued measure

and ��Ŵ� the bounded set of eigenvalues. Let the supremum

of all eigenvalues be �=sup ��Ŵ�. For all separable quantum

states, Ŵ must be a positive map, which implies ��0,

Ŵ = ��
��Ŵ�

1dP̂�w� − �
��Ŵ�

�� − w�
=c,c�0

dP̂�w�

= �1̂ − �
���1̂−Ŵ�

cdP̂�c� = �1̂ − Ĉ ,

which is the demanded form.
To formulate a entanglement theorem for positive Hermit-

ian operators, we need the definition of optimal entanglement
witnesses as given by Lewenstein et al. �14�. An entangle-

ment witness Ŵ1 is finer than Ŵ2, if and only if the entangle-

ment of any state detected by Ŵ2 is also detected by Ŵ1
�beside other entangled states, which are not detected by

Ŵ2�. An entanglement witness Ŵopt is optimal, if and only if

no witness is finer than Ŵopt.
Therefore, a state is separable, if and only if for all opti-

mal entanglement witnesses the expectation value is positive.

To find these witnesses, we need the function fAB�Â�, which

maps a general Hermitian operator Â to its maximal expec-
tation value for a separable state:

fAB�Â� = sup�tr��̂Â�:�̂ separable�

= sup�
a,b�Â�a,b�:
a�a� = 
b�b� = 1� . �5�

It is obvious, that a Hermitian operator Ŵ=�1̂− Ĉ is a gen-

eral element of PPAB, if and only if �� fAB�Ĉ�. It is optimal,

if and only if �= fAB�Ĉ�.
Theorem 1. A state �̂ is entangled, if and only if there

exists Ĉ�P: fAB�Ĉ�� tr��̂Ĉ�.
Proof. Let Ŵopt be an optimal witness, which detects the

entanglement of �̂,

tr��̂Ŵopt� � 0,

tr��̂�fAB�Ĉ�1̂ − Ĉ�� � 0,

fAB�Ĉ�tr��̂� � tr��̂Ĉ� ,

fAB�Ĉ� � tr��̂Ĉ� .

The other way around, a state �̂ is separable, if and only if

for all Ĉ, fAB�Ĉ�� tr��̂Ĉ�. This is a kind of distance crite-
rion. Our entanglement Theorem 1 does no longer require the
explicit form of any entanglement witness. Entanglement is

completely verified by Hermitian operators Ĉ�P, which are

given by Eq. �4�. The needed functions fAB�Ĉ� are readily
obtained from Eq. �5�.

Let us now consider a bounded Hermitian operator Â,
which can always be expressed in terms of a positive opera-

tor Ĉ and a real number ��R,
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Â = �1̂ + Ĉ . �6�

It is obvious, that all bounded Hermitian operators can be

written in the form of Â. This can be used to further simplify
Theorem 1.

Theorem 2. A state �̂ is entangled, if and only if there

exists a Hermitian operators Â: fAB�Â�� tr��̂Â�.
Proof. Note that tr��̂�=1. The function fAB is

fAB�Â� = sup�� + 
a,b�Ĉ�a,b�:
a�a� = 
b�b� = 1� = � + fAB�Ĉ� .

From Theorem 1 follows:

fAB�Ĉ� � tr��̂Ĉ� ,

� + fAB�Ĉ� � � + tr��̂Ĉ� ,

fAB�Â� � tr��̂Â� .

From Theorem 2 entanglement can be numerically tested.
The set P and the set of bounded Hermitian operators have
the same cardinality. Now the construction of positive Her-
mitian operators, Eq. �4�, becomes superfluous and the num-
ber of tests does not increase.

Let us consider a simple implication of Theorem 2. The

entanglement test for a bounded Hermitian operator Â reads
as

sup�
a,b�Â�a,b�:
a�a� = 
b�b� = 1� � tr��̂Â� . �7�

The entanglement condition for the state �̂ with the operator

−Â is

sup�
a,b��− Â��a,b�� � tr��̂�− Â�� �8�

⇔inf�
a,b�Â�a,b�� � tr��̂Â� . �9�

Equation �9� is a second entanglement condition for the op-

erator Â and it is equivalent to the original condition �7� for

the operator −Â.

Entanglement witnesses of the form Ŵ= Â

−inf�
a ,b�Â�a ,b��1̂ had been considered before, see �18�.
Here we gave the proof that any entanglement witness can be
given in this form, which is a much stronger statement. This
has been done for arbitrary dimensional Hilbert spaces.

III. SEPARABILITY EIGENVALUE PROBLEM

Let us consider the calculation of the function fAB. The

Hermitian operator Â has the following projections:

Âa = trA�Â��a�
a� � 1̂B�� = 
a�Â�a� , �10�

Âb = trB�Â�1̂A � �b�
b��� = 
b�Â�b� . �11�

Now the extrema of 
a ,b�Â�a ,b� can be obtained. From Eq.
�5�, the extremum of the function

g��a�,
a�, �b�,
b�� = g�a,b� = 
a,b�Â�a,b� �12�

is calculated under the constraints h1�a�= 
a �a�−1=0 and
h2�b�= 
b �b�−1=0. The functional derivatives are denoted
by �

�
a� and �
�
b� . This leads to two Lagrange multipliers L1 ,L2

and the conditions

0 =
�g

�
a�
− L1

�h1

�
a�
− L2

�h2

�
a�
, �13�

0 =
�g

�
b�
− L1

�h1

�
b�
− L2

�h2

�
b�
. �14�

This can be written as

Âb�a� = L1�a� , �15�

Âa�b� = L2�b� . �16�

Multiplying the first equation with 
a� and the second with

b�, the Lagrange multipliers are obtained as L1=L2=g. This
leads to the following.

Definition 1. The equations

Âb�a� = g�a� ,

Âa�b� = g�b� ,

with the constraints 
a �a�= 
b �b�=1, are called separability
eigenvalue equations.

The separability eigenvalue problem can be solved by
computers or, in simple cases, by hand. The closed set ��a�
� �b� : 
a �a�= 
b �b�=1� is bounded in HA � HB. The smooth
function g�a ,b� defined on this set is bounded by �g�a ,b��
	 	Â	. Therefore, a solution of the separability eigenvalue
equation exists. According to the calculation �12�–�16� we
can formulate the following.

Lemma 2. The function fAB can be written as

fAB�Â� = sup�g� ,

with g being eigenvalues of the separability eigenvalue equa-
tions.

Proof. See the calculations �12�–�16� and Eq. �5�
We also obtain inf�
a ,b�Â�a ,b��=inf�g�, with g separabil-

ity eigenvalue. In the following we want to consider some
properties of the solution of the separability eigenvalue equa-
tions.

Proposition 1. Let g0, �a0 ,b0� be a solution of the separa-
bility eigenvalue problem of the bounded Hermitian operator

Â.

�1� The vector Â�a0 ,b0� has a Schmidt decomposition, see
�1�, with the term g0�a0 ,b0�,

Â�a0,b0� = g0�a0,b0� + �
k�0,l�0


k,l�ak,bl� ,

��ak��k,��bl��l orthonormal bases.
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�2� If g1�g0, �a1 ,b0� �or �a0 ,b1�� is another solution then

a0 �a1�=0 �or 
b0 �b1�=0�.

�3� If g1�g0, �a1 ,b1� is another solution then �a0 ,b0� and
�a1 ,b1� are linearly independent.

Proof. �1� The general form of the vector is �
�
= Â�a0 ,b0�=�k,l
k,l�ak ,bl�,


a0,b0�Â�a0,b0� = g0 = 
0,0,


ak,b0�Â�a0,b0� = 
ak�Âb0
�a0� = g0
ak�a0� = 0 = 
k,0 �k � 0� ,


a0,bl�Â�a0,b0� = 
bl�Âa0
�b0� = g0
bl�b0� = 0 = 
0,l �l � 0� .

Thus, �
�=g0�a0 ,b0�+�k�0,l�0
k,l�ak ,bl�.
�2� The first part of separability eigenvalue equations read

as

Âb0
�a0� = g0�a0� and Âb0

�a1� = g1�a1� .

These are eigenvalue equations for the Hermitian operator

Âb0
—acting on HA—for different eigenvalues. Thus,


a0 �a1�=0.
�3� Assume linear dependence, ��a0 ,b0�= �a1 ,b1�. Since


a1 �a1�= 
b1 �b1�=1, we obtain �� � =1. This would imply


a0 ,b0�Â�a0 ,b0�= 
a1 ,b1�Â�a1 ,b1�, which is a contradiction to
g1�g0.

These properties of the separability eigenvalue equations
can be easily seen for the solution of the example given in
Sec. IV A.

IV. IMPLEMENTATION OF ENTANGLEMENT TESTS

In the following we want to study two aspects of the
results obtained so far. In Sec. IV A, an analytical solution of
the separability eigenvalue problem will be derived for a
special class of projection operators. In Sec. IV B, a general
entanglement test for arbitrary quantum states is under study.

A. Tests by pure states

For example, let us solve the separability eigenvalue

equations for the special class of operators of the form Â


= �
�

�. The normalized vector �
� can be expanded as

�
� = �
i,j


i,j�ei� � �f j� ↔ �
i,j


i,j�ei�
f j� = M̂ . �17�

In the same way the vectors �a��HA and �b��HB can be
written as �a�=�iai�ei� and �b�=� jbj�f j�. The separability ei-
genvalue equations can be written for each component as

�
k,l



k,l
* akbl��

j

b
j
*
ij = gai �∀ i� , �18�

�
k,l



k,l
* akbl��

i

a
i
*
ij = gbj �∀ j� . �19�

Inserting Eqs. �18� and �19� into each other and using Eq.
�12� in the form

g�a,b� = �
i,j


i,jai
*b

j
*��

k,l



k,l
* akbl� , �20�

for g�0 �g=0 being a trivial case� we can separate Eq. �18�
from Eq. �19�,

�
j,i�



i�,j
* 
i,jai� = gai �∀ i� , �21�

�
i,j�



i,j
* 
i,j�bj� = gbj �∀ j� . �22�

With the interpretation �
�↔M̂ we get

M̂M̂†�a� = g�a� , �23�

M̂†M̂�b� = g�b� . �24�

The positive and compact operators M̂M̂† and M̂†M̂ can be
given in spectral decomposition as

M̂M̂† = �
q

�mq�2�aq�
aq� , �25�

M̂†M̂ = �
q

�mq�2�bq�
bq� . �26�

Thus the nontrivial separability eigenvalues are gq,q= �mq�2.

Using M̂ =�qmq�aq�
bq� and �aq��=ei arg�mq��aq�, the state reads
as

�
� = �
q

�mq��aq�,bq� , �27�

where �aq�� and �bq� are orthonormal in each Hilbert space.
This is the Schmidt decomposition of �
�, cf., e.g., �1�. By
the above calculations we get the solutions

gp,q = ��mq�2, p = q �aq�,bq� ,

0, p � q �ap�,bq� ,
� �28�

fAB�Â
� = sup��mq�2� . �29�

For fAB�Â
�=1 the state �
�= �a ,b� is factorized, and Â
 does

not detect any entanglement. In all other cases, Â
 is useful
to identify entanglement.

Now we can write the special condition for entanglement,

by use of Â
 in Theorem 2, as



��̂�
� � sup��mq�2� . �30�

Let us consider the example of two harmonic oscillators in a
mixture of a superposition of coherent states, �−�
=N��� ,��− �−� ,−���, with vacuum, �0, 0�,

�̂mix = ��−�
−� + �1 − ���0,0�
0,0� , �31�

where 0���1 and N= �2�1−e−2����2+���2���−1/2. For this
state, higher-order moments are needed to verify NPT en-
tanglement even for �=1, see �9�. Based on the Bell state

�
�����= 1
�2

��0,1�+ �1,0��, with fAB�Â��=1 /2, the condi-
tion �30� reads as
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� �
sinh����2 + ���2�

�� + ��2
. �32�

It identifies entanglement of �̂mix for certain values of �, �,
and �. For other choices of �
�, even the simple condition
�30� may identify entanglement for more general parameters
of the mixed state under study.

B. General test operators

Let us now deal with the general form of Theorem 2. We
may explicitly construct all optimal entanglement witnesses
as

Ŵopt = fAB�Â�1̂ − Â . �33�

More generally, any element of PPAB can be written as Ŵ

=�1̂+Ŵopt ���0�. Note that, if � is a positive real number

and Ŵ an entanglement witness, then �Ŵ is also an entangle-

ment witness, which is as fine as Ŵ.
In the following we consider an implementation of our

method for a finite-dimensional Hilbert space HA � HB. A
numerical implementation could be a set of Hermitian opera-

tors �Âi�i=1,. . .,n with the properties,

	Âi	 = 1, �34�

∀ Â:	Â	 = 1 ∃ i:	Â − Âi	 � � . �35�

This is a kind of a spherical grid, with a maximal distance

��0 for any Hermitian operator Â to at least one element Âi,
for arbitrarily small �.

For example, let us consider the following construction.

We use the most general form of a Hermitian operator Â
together with the norm 	¯ 	max,

Â = �
p,q,r,s

Apqrs�ep, fq�
er, fs� , �36�

	Â	max = max
p,q,r,s

�Apqrs� , �37�

with Apqrs=A
rspq
* . We obtain each element of this set

�Âi�i=1,. . .,n for instance, by varying each Apqrs
�i� in the follow-

ing way. The absolute value �Apqrs
�i� � can be increased from 0

to 1 with steps �r. The argument arg�Apqrs
�i� � can be increased

from 0 to 2� with steps ��. Each operator has the norm

	Âi	max	1. We neglect operators with 	Âi0
	max=0 and renor-

malize the other operators as 	Âi	max
−1 Âi. Using the definition

of the norm, we obtain that for each Â with 	Â	max=1 exist

one element Âi with 	Â− Âi	max	��r2+��2=�. In this way

we may construct the test operators Âi for a desired precision
�.

Now one can solve with an appropriate algorithm the

separability eigenvalue equations for each Âi. This gives the

values of fAB�Âi� and according to Eq. �33� the optimal wit-
nesses

Ŵi = fAB�Âi�1̂ − Âi. �38�

Let us consider a grid of only six Hermitian operators. Figure
1 indicates, to which extent these optimal witnesses identify
entanglement. The gray area represents those entangled
states, which are not identified.

The test for entanglement is connected with an error de-
pending on the chosen value of �. If � becomes smaller, the
gray area in Fig. 1 is decreasing. For any given entangled
state �̂ there exists an ��0, so that its entanglement can be
identified by at least one of the chosen Hermitian operators

Âi. In practice, the possible values of � can be related to the
available experimental precision. The construction outlined
above shows clearly that we need only a finite number of
entanglement tests for the desired precision.

V. VERIFYING BOUND ENTANGLEMENT

As we have mentioned above, for NPT states all witnesses

can be given as ĈPT. Let us define the function gPT�a ,b�
= 
a ,b�ĈPT�a ,b�. The following proposition shows that the

solution of the separability eigenvalue problem for ĈPT be-
comes superfluous.

Proposition 2. If a general bounded Hermitian operator Â
has the solution g , �a ,b� of the separability eigenvalue equa-

tions, then ÂPT has the solution g , �a ,b*�. It follows

fAB�ÂPT�= fAB�Â�.
Proof. Since for the Hermitian operators �b�
b�T

= �b*�
b*�, we find for all g�a ,b�= 
a ,b�Â�a ,b�

g�a,b� = tr�Â��a�
a� � �b�
b��� = tr�ÂPT��a�
a� � �b�
b��PT�

= tr�ÂPT��a�
a� � �b*�
b*��� = gPT�a,b*� .

Thus, the optimization will lead to the solutions g , �a ,b*�.

FIG. 1. The chosen optimal witnesses Ŵi identify a manyfold of
entangled states, except those in the gray areas. The set of separable

states is approximated by the Ŵi.
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We find for the operators Â
= �
�

� presented in Sec.

IV A the function fAB�ÂPT�=sup��mq�2�, with �mq� being the
Schmidt coefficients. Since for this example g=0 is a sepa-
rability eigenvalue as well, see Eq. �28�, we get

inf�
a,b�Â
�a,b�� = inf�
a,b�Â

PT�a,b�� = 0. �39�

To obtain the known characterization for NPT entangled
states, �̂NPT, we use the entanglement condition as presented
in Eq. �9�, which simplifies to tr��̂NPT��
�

��PT��0.

Note that an arbitrary operator ÂPT is a Hermitian operator

as well. Since we can shift any operator Â+�1̂ without
changing the entanglement witness,

Ŵopt = fAB�Â�1̂ − Â = fAB��1̂ + Â�1̂ − ��1̂ + Â� , �40�

any entanglement test can be performed with an operator of

the form ĈPT. All entangled states which remain non-
negative under PT are bound entangled ones, see �19�. The
following characterization of PPT bound entangled states can
be given:

�̂BE is PPT bound entangled⇔

�1� ∀ Ĉ � P:0 	 tr��̂BEĈPT� ,

�2� ∃ Ĉ � P:inf�
a,b�Ĉ�a,b�� � tr��̂BEĈPT� . �41�

The first condition refers to PPT. The second condition iden-

tifies entanglement. The difference between ĈPT as a witness
for NPT entanglement and for entanglement in general is

equal to inf�
a ,b�Ĉ�a ,b��—the minimal separability eigen-
value, see Fig. 2.

VI. SUMMARY AND CONCLUSIONS

In the present paper we have proven the general form of
entanglement witnesses. On this basis we have derived nec-
essary and sufficient conditions for bipartite entanglement.
Optimal entanglement inequalities have been given in the
most general form. They have been formulated with arbitrary
Hermitian operators, which are easy to handle because of
their well-known structure and they are useful for applica-
tions in experiments.

Separability eigenvalue equations have been formulated.
They serve for the optimization of the entanglement condi-
tions for all chosen Hermitian operators. Some properties of
the solution of these equations have been analyzed. The
separability eigenvalue problem resembles the ordinary ei-
genvalue problem of Hermitian operators, with the additional
restriction that the solution is a factorizable vector.

We have analytically solved the separability eigenvalue
equations for a special class of projection operators. Using
these solutions, we could demonstrate entanglement of a
mixed state given in terms of continuous variables. A general
entanglement test of the proposed form can be implemented
numerically, with its error being related to the available ex-
perimental precision.

The method under study can also be used to identify any
bound entangled state with a positive partial transposition.
This requires to test the given states for the negativity of its
partial transposition. It turned out that the separability eigen-
values remain unchanged under partial transposition. Even-
tually, bound entanglement can be demonstrated by a com-
bination of a general entanglement test and a test for the
negativity of the partial transposition of the state under study.
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J. SPERLING AND W. VOGEL PHYSICAL REVIEW A 79, 022318 �2009�

022318-6



�13� H.-P. Breuer, Phys. Rev. Lett. 97, 080501 �2006�.
�14� M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys.

Rev. A 62, 052310 �2000�.
�15� P. Horodecki, Phys. Rev. A 68, 052101 �2003�.
�16� P. Hyllus and J. Eisert, New J. Phys. 8, 51 �2006�.

�17� O. Gühne and N. Lütkenhaus, Phys. Rev. Lett. 96, 170502
�2006�.

�18� G. Tóth, Phys. Rev. A 71, 010301�R� �2005�.
�19� M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.

Lett. 80, 5239 �1998�.

NECESSARY AND SUFFICIENT CONDITIONS FOR… PHYSICAL REVIEW A 79, 022318 �2009�

022318-7


