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We present filtering equations for single-shot parameter estimation using continuous quantum measurement.
By embedding parameter estimation in the standard quantum filtering formalism, we derive the optimal Baye-
sian filter for cases when the parameter takes on a finite range of values. Leveraging recent convergence results
�R. van Handel, e-print arXiv:0709.2216�, we give a condition which determines the asymptotic convergence
of the estimator. For cases when the parameter is continuous valued, we develop quantum particle filters as a
practical computational method for quantum parameter estimation.
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I. INTRODUCTION

Determining unknown values of parameters from noisy
measurements is a ubiquitous problem in physics and engi-
neering. In quantum mechanics, the single-parameter prob-
lem is posed as determining a coupling parameter � that con-
trols the evolution of a probe quantum system via a
Hamiltonian of the form H�=�H0 �1–7�. Traditionally, an
estimation procedure proceeds by �i� preparing an ensemble
of probe systems, either independently or jointly; �ii� evolv-
ing the ensemble under H�; and �iii� measuring an appropri-
ate observable in order to infer �. The quantum Cramèr-Rao
bound �1,2,5,6,8� gives the optimal sensitivity for any pos-
sible estimator and much research has focused on achieving
this bound in practice, using entangled probe states and non-
linear probe Hamiltonians �9–11�.

Yet, it is often technically difficult to prepare the exotic
states and Hamiltonians needed for improved sensitivity. In-
stead, an experiment is usually repeated many times to build
up sufficient statistics for the estimator. In contrast, the bur-
geoning field of continuous quantum measurement �12� pro-
vides an opportunity for on-line single-shot parameter esti-
mation, in which an estimate is provided in near real-time
using a measurement trajectory from a single probe system.
Parameter estimation via continuous measurement has been
previously studied in the context of force estimation �13� and
magnetometry �14�. Although Verstraete et al. developed a
general framework for quantum parameter estimation, both
�13,14� focus on the readily tractable case when the dynami-
cal equations are linear and the quantum states have Gauss-
ian statistics. In this case, the optimal estimator is the quan-
tum analog of the classical Kalman filter �15–17�.

In this paper, we develop on-line estimators for continu-
ous measurement when the dynamics and states are not re-
stricted. Rather than focusing on fundamental quantum lim-
its, we instead consider the more basic problem of
developing an actual parameter filter for use with continuous
quantum measurements. By embedding parameter estimation
in the standard quantum filtering formalism �12�, we con-

struct the optimal Bayesian estimator for parameters drawn
from a finite dimensional set. The resulting filter is a gener-
alized form of one derived by Jacobs �18� for binary state
discrimination. Using recent stability results of van Handel
�19�, we give a simple check for whether the estimator can
successfully track to the true parameter value in an
asymptotic time limit. For cases when the parameter is con-
tinuous valued, we develop quantum particle filters as a
practical computational method for quantum parameter esti-
mation. These are analogous to, and inspired by, particle fil-
tering methods that have had much success in classical fil-
tering theory �20,21�. Although the quantum particle filter is
necessarily suboptimal, we present numerical simulations
which suggest they perform well in practice. Throughout, we
demonstrate our techniques using a single qubit magnetome-
ter.

The remainder of the paper is organized as follows. Sec-
tion II reviews quantum filtering theory. Section III develops
the estimator and stability results for a parameter from a
finite-dimensional set. Section IV presents the quantum par-
ticle filtering algorithm, which is appropriate for estimation
of continuous valued parameters. Section V concludes.

II. QUANTUM FILTERING

In this section, we review the notation and features of
quantum filtering and quantum stochastic calculus, predomi-
nantly summarizing the presentation in �12�, which provides
a more complete introduction. Readers who are completely
new to these topics can consult �22� for a more accessible
introduction. In the general quantum filtering problem, we
consider a continuous stream of probe quantum systems in-
teracting with a target quantum system. The probes are sub-
sequently measured and provide a continuous stream of mea-
surement outcomes. The task of quantum filtering is to
provide an estimate of the state of the target system given
these indirect measurements. In the quantum optics setting,
the target system is usually a collection of atomic systems,
with Hilbert space HA and associated space of operators A.
The probe is taken to be a single mode of the quantum elec-
tromagnetic field, from which vacuum fluctuations give rise
to white noise statistics.
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In the limit of weak atom-field coupling, the joint atom-
field evolution is described by the following quantum sto-
chastic differential equation �QSDE�:

dUt = �LdAt
† − L†dAt −

1

2
L†Ldt − iHdt�Ut, �1�

where L�A is an atomic operator that describes the atom-
field interaction and H�A is the atomic Hamiltonian. The
interaction-picture field operators dAt ,dAt

† are quantum
white noise processes with a single nonzero Itô product
dAtdAt

†=dt.
For any atomic observable XA�A, the Heisenberg evolu-

tion or quantum flow is defined as �XA�t= jt�XA�=Ut
†�XA

� I�Ut. Application of the Itô rules gives the time evolution
as

djt�XA� = jt�L�XA��dt + jt��L†,XA��dAt + jt��XA,L��dAt
†,

�2�

with Lindblad generator

L�XA� = i�H,XA� + L†XAL −
1

2
L†LXA −

1

2
XAL†L . �3�

Similarly, the observation process, which we take to be ho-
modyne detection of the scattered field, is given by Mt
=Ut

†�At+At
†�Ut. The Itô rules give the corresponding time

evolution

dMt = jt�L + L†�dt + dAt + dAt
†. �4�

Together, Eqs. �2� and �4� are the system-observation pair
which define the filtering problem. The quantum flow de-
scribes our knowledge of how atomic observables evolve
exactly under the joint propagator in Eq. �1�, but it is inac-
cessible since the system is not directly observed. Nonethe-
less, the scattered fields as measured in Eq. �4� carry infor-
mation about the atomic system, providing a continuous
measurement of the observable L+L†, albeit corrupted by
quantum noise. The quantum filtering problem is to find
�t�XA�=E�jt�XA� �M�0,t��, the best estimate �in a least-squares
sense� of an atomic observable conditioned on the measure-
ment record. We invite the reader to consult �12,22� for de-
tails on deriving the recursive form of this filter, which is
governed by the �classical� stochastic differential equation
�SDE�

d�t�XA� = �t�L�XA��dt + ��t�L†XA + XAL − �t�L† + L�

��t�XA��� � �dMt − �t�L + L†�dt� . �5�

We see that this is an entirely classical filter driven by the
classical measurement stream Yt. Oftentimes, it is more con-
venient to work with the adjoint form of the equation for �t,
which satisfies Tr�XA�t�=�t�XA� for all XA�A. The state �t
is often called the conditional density matrix. The SDE or
stochastic master equation �SME� for �t is then

d�t = − i�H,�t�dt + �L�tL
† −

1

2
L†L�t −

1

2
�tL

†L�dt

+ �L�t + �tL
† − Tr��L + L†��t��t	dWt, �6�

where the innovations process, dWt=dMt−Tr��L+L†���dt, is
a Wiener process that satisfies E�dWt�=0 and Itô rule
�dWt�2=dt.

A. Qubit example

Consider the setup depicted in Fig. 1. A qubit, initially in
the pure state �+x
, precesses about a magnetic field B while
undergoing a continuous measurement along z. In terms of
the general framework, H=B�y and L=���z, where �� is
the continuous measurement strength in the weak coupling
limit. We will not dwell on the underlying physical mecha-
nism which gives rise to the �z measurement, though con-
tinuous polarimetry measurements could suffice �23�. Plug-
ging into Eq. �5�, the quantum filter for the Bloch vector nt
= ��t��x� ,�t��y� ,�t��z�� is

d�t��x� = 2B�t��z�dt − 2��t��x�dt − 2���t��x��t��z�dWt,

�7�

d�t��y� = − 2M�t��y�dt − 2���t��x��t��y�dWt, �8�

d�t��z� = − 2B�t��x�dt + 2���1 − �t��z�2�dWt, �9�

with innovations dWt=dMt−2���t��z�dt. It is not difficult
to verify that the quantum filter maintains pure states and
that the initial state n0= �1,0 ,0� remains on the Bloch circle
in the x-z plane. Letting � be the angle from the positive x
axis such that tan �=�t��z� /�t��x�, we then simplify the fil-
ter to

d�t = − 2Bdt + � sin�2�t�dt + 2�� cos��t�dWt, �10�

where now dWt=dMt−2�� sin �t. Figure 2 shows a com-
puter simulation of a typical measurement trajectory and fil-
tered Bloch vector values when B=0. Note that in the ab-
sence of a magnetic field, the steady states are the �z
eigenstates, which are reached with probabilities given by
the Born rule �24�.

III. ESTIMATION OF A PARAMETER FROM A FINITE
SET

Using the atomic system as a probe for the unknown pa-
rameter � �29�, we set the atomic Hamiltonian of the quan-
tum filter to

H = �H0, H0 � A . �11�

Supposing we knew the true value of the parameter, the
quantum filtering equations would give us the best least-
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FIG. 1. �Color online� Continuous measurement of single qubit
precessing in an external magnetic field.

BRADLEY A. CHASE AND J. M. GEREMIA PHYSICAL REVIEW A 79, 022314 �2009�

022314-2



squares estimate of the atomic system conditioned on the
measurements and the knowledge of dynamics induced by �
through H. But given the optimality of the filter, we could
equally well embed the parameter � as a diagonal operator 	
acting on an auxiliary quantum space, after which the filter
still gives the best estimate of both system and auxiliary
space operators. Finding the best estimate of � conditioned
on the measurements simply corresponds to integrating the
equations for �t�	�.

More precisely, extend the atomic Hilbert space
HA�H� � HA and the operator space A�D�H�� � A,
where D�H�� is the set of diagonal operators on H�. Assum-
ing � takes on N possible values ��1 , . . . ,�N	, dim D�H��
=N. Introduce the diagonal operator

D�H�� � 	 = �
i=1

N

�i��i
�i� �12�

so that 	��i
=�i��i
 with ��i
�H�. This allows one to gener-
alize Eq. �11� as

H � 	 � H0 � D�H�� � A . �13�

Any remaining atomic operators XA�A act as the identity
on the auxiliary space, i.e., I � XA. Given these definitions,
the derivation of the quantum filtering equation remains es-
sentially unchanged, so that the filter in either the operator
form of Eq. �5� or the adjoint form of Eq. �6� is simply
updated with the extended forms of operators given in the
last paragraph.

Since � is a classical parameter, we require that the re-
duced conditional density matrix ����t=TrHA

��t� be diagonal
in the basis of 	. Thus we can write

����t = �
i=1

N

pt
�i���i
�i� , �14�

where

pt
�i� � Tr����i
�i� � I��t�

� �t���i
�i� � I� � E���i
�i� � I�M�0,t��

� P�� = �i�M�0,t�� . �15�

Then pt
�i� is precisely the conditional probability for � to have

the value �i and the set �pt
�i�	 gives the discrete conditional

distribution of the random variable represented by 	. Simi-
larly, by requiring operators to be diagonal in H�, we ensure
that they correspond to classical random variables. In short,
we have simply embedded filtering of a truly classical ran-
dom variable in the quantum formalism.

The fact that both states and operators are diagonal in the
auxiliary space suggests using an ensemble form for filtering.
As such, consider an ensemble consisting of a weighted set
of N conditional atomic states, each state evolved under a
different �i. Later, in Sec. IV, we will call each ensemble
member a quantum particle. For now, we explicitly write the
conditional quantum state as
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FIG. 2. �Color online� �Bot-
tom� Simulated typical measure-
ment trajectory for continuous Z
measurement, �=1, B=0. �Top�
Filtered values of �t��x� and
�t��z� for simulated trajectory.
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�t
E = �

i=1

N

pt
�i���i
�i� � �t

�i�, �16�

where �t
�i� is a density matrix on HA. The reduced state,

TrHA
��t

E�, is clearly diagonal in the basis of 	. Using the
extended version of the adjoint quantum filter in Eq. �6�, one
can derive the ensemble quantum filtering equations

d�t
�i� = − i��iH0,�t

�i��dt + �L�t
�i�L† −

1

2
L†L�t

�i� −
1

2
�t

�i�L†L�dt

+ �L�t
�i� + �t

�i�L† − Tr��L + L†��t
�i���t

�i�	dWt, �17a�

dpt
�i� = �Tr��L + L†��t

�i�� − Tr�I � �L + L†��t
E�	pt

�i�dWt,

�17b�

dWt = dMt − Tr�I � �L + L†��t
E�dt . �17c�

We see that each �t
�i� in the ensemble evolves under a quan-

tum filter with H=�iH0 and is coupled to other ensemble
members through the innovation factor dWt, which depends
on the ensemble expectation of the measurement observable.
Note that one can incorporate any prior knowledge of � in
the weights of the initial distribution �p0

�i�	.
The reader should not be surprised that a similar approach

would work for estimating more than one parameter at a
time, such as three Cartesian components of an applied mag-
netic field. One would introduce an auxiliary space for each
parameter and extend the operators in the obvious way. The
ensemble filter would then be for a joint distribution over the
multidimensional parameter space. Similarly, one could use
this formalism to distinguish initial states, rather than param-
eters which couple via the Hamiltonian. For example, in the
case of state discrimination, one would introduce an auxil-
iary space which labels the possible input states, but does not
play any role in the dynamics. The filtered weights would
then be the probabilities to have been given a particular ini-
tial state. In fact, using a slightly different derivation, Jacobs
�18� derived equations similar to Eq. �17� for the case of
binary state discrimination. Yanagisawa �25� recently studied
the general problem of retrodiction or “smoothing” of quan-
tum states. In light of his work and results in the following
section, the retrodictive capabilities of quantum filtering are
very limited without significant prior knowledge or
feedback.

A. Conditions for convergence

Although introducing the auxiliary parameter space does
not change the derivation of the quantum filter, it is not clear
how the initial uncertainty in the parameter will impact the
filter’s ability to ultimately track to the correct value. Indeed,
outside of anecdotal numerical evidence �which we will pres-
ently add to�, there has been little formal consideration of the
sensitivity of the quantum filter to the initial state estimate.
Recently, van Handel �19� presented a set of conditions
which determine whether the quantum filter will asymptoti-
cally track to the correct state independently of the assumed
initial state. Since we have embedded parameter estimation

in the state estimation framework, such stability then deter-
mines whether the quantum filter can asymptotically track to
the true parameter, i.e., whether limt→
 pt

�j�=�ij when �=�i.
In this section, we present van Handel’s results in the context
of our parameter estimation formalism and present a simple
check of asymptotic convergence of the parameter estimate.
We begin by reviewing the notions of absolute continuity
and observability.

In the general stability problem, let �1 be the true under-
lying state and �2 be the initial filter estimate. We say that �1
is absolutely continuous with respect to �2, written �1��2, if
and only if ker �1�ker �2. In the context of parameter esti-
mation, we assume that we know the initial atomic state
exactly, so that �1��2 as long as the reduced states satisfy
�1

E��2
E. Since these reduced states are simply discrete prob-

ability distributions, ��pt
i�1	 and ��pt

i�2	, this is just the stan-
dard definition of absolute continuity in classical probability
theory. In our case, the true state has �pt=0

�j� �1=�ij if the pa-
rameter has value �i. Thus, as long as our estimate has non-
zero weight on the ith component, �1��2. This is trivially
satisfied if �pt=0

�j� �2�0 for all j.
The other condition for asymptotic convergence is that of

observability. A system is observable if one can determine
the exact initial atomic state given the entire measurement
record over the infinite time interval. Observability is then
akin to the ability to distinguish any pair of initial states on
the basis of the measurement statistics alone. Recall the defi-
nition of the Lindblad generator in Eq. �3� and further define
the operator K�XA�=L†Xa+XaL. Then according to Proposi-
tion 5.7 in �19�, the observable space O is defined as the
smallest linear subspace of A containing the identity and
which is invariant under the action of L and K. The filter is
observable if and only if A=O, or equivalently dim A
=dim O.

In the finite-dimensional case, van Handel presents an it-
erative procedure for constructing the observable space. De-
fine the linear spaces Zn�A as

Z0 = span�I	 ,

Zn = span�Zn−1,L�Zn−1�,K�Zn−1�	, n  0. �18�

The procedure terminates when Zn=Zn+1, which is guaran-
teed for some finite n=m, as the dimension of Zn cannot
exceed the dimension of the ambient space A. Moreover, the
terminal Zm=O, so that using a Gram-Schmidt procedure,
one can iteratively find a basis for O and easily compute its
dimension. Note that for operators A and B, the inner product
A ,B
 is the Hilbert-Schmidt inner product Tr�A†B�.

Given these definitions, one has the following theorem for
filter convergence and corollary for parameter estimation.

Theorem 1. �Theorem 2.5 in �19�� Let �t
�i�XA� be the

evolved filter estimate, initialized under state �i. If the sys-
tem is observable and �1��2, the quantum filter is asymp-
totically stable in the sense that
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��t
�1�XA� − �t

�2�XA��M�0,t�
�1 →

t→


0 ∀ Xa � A , �19�

where the convergence is under the observations generated
by �1.

One could use this theorem to directly check the stability
of the quantum filter for parameter estimation, using the ex-
tended forms of operators in L and K and being careful that
the observability condition is now dim O=dim D�H�� � A.
However, the following corollary relates the observability of
the parameter filter to the observability of the related filter
for a known parameter. Combined with the discussion of
extending the absolute continuity condition, this then gives a
simple check for the stability of the parameter filter.

Corollary 1.1. Consider a parameter � which takes on one
of N distinct positive real values ��i	. If the quantum filter
with known parameter is observable, then the corresponding
extended filter for estimation of � is observable.

Proof. In order to satisfy the observability condition, we
require dim O=Nr, where we have set dim A=r and used
the fact that dim D�H��=N. Given that the filter for a known
parameter is observable, its observable space coincides with
A and has an orthogonal operator basis �Ai	, where we take
A0= I.

Similarly, consider the N-dimensional operator space
D�H��. If ��i	 are distinct, any set of the form

�	k1,	k2, . . . ,	kN	,ki � N,ki � kj if i � j �20�

is linearly independent, since the corresponding generalized
Vandermonde matrix

V� = ��1
k1 �1

k2 . . . �1
kN

] ] � ]

�N
k1 �N

k2 . . . �N
kN
� �21�

has linearly independent columns �26�.
Following the iterative procedure, we construct the ob-

servable space for the parameter estimation filter starting
with I � A0, which is the identity in the extended space. We
then iteratively apply L and K until we have an invariant
linear span of operators. The only nontrivial operator on the
auxiliary space comes from the Hamiltonian part of the Lind-
blad generator, which introduces higher and higher powers of
the diagonal matrix 	. Since dim D�H�� � A is finite, this
procedure must terminate. The resulting observable space
can be decomposed into subspaces

Oi = �	ki
j

� Ai	, i = 1, . . . ,r ki
j � N �22�

where ki
j is some increasing sequence of non-negative inte-

gers which correspond to the powers of 	 that are introduced
via the Hamiltonian. Note that the specific values of ki

j de-
pend on the commutator algebra of H0 and the atomic-space
operator basis �Ai	. Regardless, since the Hamiltonian in L
can always add more powers of 	, the procedure will not
terminate until Oi is composed of a largest linearly indepen-
dent set of powers of 	. This set has at most N distinct
powers of 	, since it cannot exceed the dimension of the
auxiliary space. Given that any collection of N powers of 	
is linearly independent, this means once we reach a set of N

powers ki
j, the procedure terminates and dim Oi=N. Since O

has r subspaces Oi, each of dimension N, dim O=Nr as
desired and the observability condition is satisfied. �

Although these conditions provide a simple check, we
would like to stress that they do not determine how quickly
the convergence occurs, which will depend on the specifics
of the problem at hand. Additionally, as posed, the question
of observability is a binary one. One might expect that some
unobservable systems are nonetheless “more observable”
than others or simply that unobservable systems might still
be useful for parameter estimation. Given the corollary
above, one can see that this may occur if a single parameter
� j =0. Then V� has a row of all zeros, so that the maximal
dimension of a set of linearly independent powers of 	 is
N−1. Similarly, if one allows both positive and negative
real-valued parameters, the properties of V� are not as obvi-
ous, though in many circumstances, having both �i and −�i
renders the system unobservable. We explore these nuances
in numerical simulations presented in Sec. III A 1.

1. Qubit example

Consider using the single qubit magnetometer of Sec. II
as a probe for the magnetic field B. Since the initial state is
restricted to the x-z plane, the y component of the Bloch
vector is always zero and thus is not a relevant part of the
atomic observable space, which is spanned by �I ,�x ,�z	. In
some sense, the filter with known B is trivially observable,
since we assume the initial state is known precisely.

When B is unknown, the ensemble parameter filter is
given by

d�t
�i� = − 2Bidt + � cos��t

�i���sin��t
�i�� − 2�z
E�dt

+ 2�� cos��t
�i�� dWt, �23a�

dpt
�i� = 2�� �sin��t

�i�� − �z
E	pt
�i�dWt, �23b�

where dWt=dMt−2���z
E and �z
E=�ipt
�i� sin��t

�i��. We
simulated this filter by numerically integrating the quantum
filter in Eq. �10� using a value for B uniformly chosen from
the given ensemble of potential B values. This generates a
measurement current dMt, which is then fed into the en-
semble filter of Eq. �23�. For all simulations, we set �=1 and
used a simple Itô-Euler integrator with a step size dt=10−5

�27�.
Figure 3�a� shows a simulation of a filter for the case B

� �2� ,5� ,8� ,12�	. The filter was initialized with a uniform
distribution, p0

�i�=1 /4. For the particular trajectory shown,
the true value of B was 2� and we see that the filter success-
fully tracks to the correct B value. This is not surprising,
given that the potential values of B are positive and distinct,
thus satisfying the convergence corollary. It is also interest-
ing to note that the filter quickly discounts the probabilities
for 8�, 12�, which are far from the true value. Conversely,
the filter initially favors the incorrect B=5� value before
honing in on the correct parameter value.

In Fig. 3�b�, we show a simulation for the case of
B� �+� ,−�	, which does not satisfy the convergence corol-
lary. In fact, using the iterative procedure, one finds the ob-
servable space is spanned by �I � I , I � �z ,B � �x ,B2 � I ,B2
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� �z ,B3 � �x	. But since B= � � 0
0 −� �, B2=�2I so that only three

of the six operators are linearly independent. Although the
filter does not converge to the true underlying value of B=
+�, it does reach a steady state that weighs the true value of
B more heavily. Simulating 100 different trajectories for the
filter, we observed 81 trials for which the final probabilities
were weighted more heavily toward the true value of B. This
confirms our intuition that the binary question of observabil-
ity does not entirely characterize the performance of the pa-
rameter filter.

Figure 4 shows the rate of convergence of filters meant to
distinguish different sets of B. The rate of convergence is
defined as the ensemble average of the random variable

I� = �1 if pt
�i�  � for any i

0 otherwise.
� �24�

Although any individual run might fluctuate before converg-
ing to the underlying B value, the average of I� over many
runs should give some sense of the rate at which these fluc-

tuations die down. For the simulation shown, we set �
=0.95 and averaged I0.95 over 1000 runs for two different
cases—either all possible B values are greater than � or all
are less than �. As shown in the plot, the former case shows
faster convergence since the B field drives the dynamics
more strongly than the measurement process, which in turn
makes the trajectories of different ensemble members more
distinct. Of course, one cannot make the measurement
strength too weak since we need to learn about the system
evolution.

IV. QUANTUM PARTICLE FILTER

Abstractly, developing a parameter estimator in the con-
tinuous case is not very different than in the finite dimen-
sional case. One can still introduce an auxiliary space H�,
which is now infinite dimensional. In this space, we embed
the operator version of � as

D�H�� � 	 =� d����
�� , �25�

where 	��
=���
 and � ���
=���−���. Again, by extending
operators appropriately, the filters in Eqs. �5� and �6� become
optimal parameter estimation filters. We generalize the con-
ditional ensemble state of Eq. �16� to

�t
E =� d�pt�����
�� � �t

���, �26�

where pt���� P�� �M�0,t�� is the continuous conditional prob-
ability density. Although the quantum filter provides an exact
formula for the evolution of this density, calculating it is
impractical, as one cannot exactly represent the continuous
distribution on a computer. The obvious approximation is to
discretize the space of parameter values and then use the
ensemble filter determined by Eq. �17�; indeed such an ap-
proach is very common in classical filtering theory and en-
compasses a broad set of Monte Carlo methods called par-
ticle filters �20,21�.
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The inspiration for particle filtering comes from noting
that any distribution can be approximated by a weighted set
of point masses or particles. In the quantum case, we intro-
duce a quantum particle approximation of the conditional
density in Eq. �26� as

pt��� � �
i=1

N

pt
�i���� − �i� . �27�

The approximation can be made arbitrarily accurate in the
limit of N→
. Plugging this into Eq. �26�, we recover pre-
cisely the form for the discrete conditional state given in Eq.
�16�. Accordingly, the quantum particle filtering equations
are identical to those of the ensemble filter given in Eq. �16�.
The only distinction here is in the initial approximation of
the space of parameter values. Thus the basic quantum par-
ticle filter simply involves discretizing the parameter space,
then integrating the filter according to the ensemble filtering
equations.

The basic particle filter suffers from a degeneracy prob-
lem, in that all but a few particles may end up with negligible
weights pt

�i�. This problem is even more relevant when per-
forming parameter estimation, since the set of possible val-
ues for � are fixed at the outset by the choice of discretiza-
tion. Even if a region in parameter space has low weights, its
particles take up computational resources, but contribute
little to the estimate of �. More importantly, the ultimate
precision of the parameter estimate is inherently limited by
the initial discretization; we can never have a particle whose
parameter value �i is any closer to the true value � than the
closest initial discretized value.

In order to circumvent these issues, we adopt the kernel
resampling techniques of Liu and West �28�. The idea is to
replace low weight particles with new ones concentrated in
high weight regions of parameter space. One first samples a
source particle from the discrete distribution given by the
weights �pt

�i�	, ensuring new particles come from more prob-
able regions of parameter space. Given a source particle, we
then create a child particle by sampling from a Gaussian
kernel centered near the source particle. By repeating this
procedure N times, we create a different set of particles
which populate more probable regions of parameter space.
Over time, this adaptive procedure allows the filter to move
away from unimportant regions of parameter space and more
finely explore the most probable parameter values.

The details of the adaptive filter lie in parametrizing and
sampling from the Gaussian kernel. Essentially, we are given
a source particle, characterized by ��i
�i� and �t

�i�, and using

the kernel, create a child particle, characterized by ��̃i
�̃i�
and �̃t

�i�. One could attempt to sample from a multidimen-
sional Gaussian over both the parameter and atomic state
components, but ensuring that the sampled �̃t

�i� is a valid
atomic state would be nontrivial in general. There will be
some cases, including the qubit example in Sec. IV A, where
the atomic state is conveniently parametrized for Gaussian
resampling. But for clarity in presenting the general filter, we
will create a child particle with the same atomic state as the
parent particle.

Under this assumption, the Gaussian kernel for parent par-
ticle i is characterized by a mean ��i� and variance �2�i�, both
defined over the one-dimensional parameter space. Rather
than setting the mean of this kernel to the parameter value of
the parent, Liu and West suggest setting

��i� = a�i + �1 − a��̄, a � �0,1� , �28�

where �̄=�ipt
�i��i is the ensemble mean. The parameter a is

generally taken to be close to one and serves as a mean
reverting factor. This is important because simply resampling
from Gaussians centered at �i results in an overly dispersed
ensemble relative to the parent ensemble. The kernel vari-
ance is set to

�2�i� = h2Vt, h � �0,1� , �29�

where Vt=�ipt
�i���i− �̄�2 is the ensemble variance and h is the

smoothing parameter. It is generally a small number chosen
to scale with N, so as to control how much kernel sampling
explores parameter space. While a and h can be chosen in-
dependently, Liu and West relate them by h2=1−a2, so that
the new sample does not have an increased variance.

Of course, it would be computationally inefficient to per-
form this resampling strategy at every time step, especially
since there will be many steps where most particles have
non-negligible contributions to the parameter estimate. In-
stead, we should only resample if some undesired level of
degeneracy is reached. As discussed by Arulampalam et al.
�21�, one measure of degeneracy is the effective sample size

Neff =
1

�
i=1

N

�pt
�i��2

. �30�

At each time step, we then resample if the ratio Neff /N is
below some given threshold. We are not aware of an optimal
threshold to choose in general, but the literature suggest 2/3
as a rule of thumb �20�.

Altogether, the resampling quantum particle filter algo-
rithm proceeds as follows:

Initialization for i=1, . . . ,N:
1. Sample �i from the prior parameter distribution.
2. Create a quantum particle with weight pt

�i�=1 /N, pa-
rameter state ��i
�i� and atomic state �0

�i�=�0, where �0 is the
known initial atomic state.

Repeat for all time:
1. Update the particle ensemble by integrating a time step

of the filter given in Eq. �16�.
2. If Neff /N is less than the target threshold, create a new

particle ensemble.
Resample for i=1, . . . ,N:
�a� Sample an index i from the discrete density �pt

�i�	.
�b� Sample a new parameter value �̃i from the Gaussian

kernel with mean ��i� and variance �2�i� given by Eqs. �28�
and �29�.

�c� Add a quantum particle to the new ensemble with

weight pt
�i�=1 /N, parameter state ��̃i
�̃i�, and atomic state

�t
�i�=�t

�i�.
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Unfortunately, checking asymptotic convergence of the
filter is more involved in the continuous-valued case, as the
observability and absolute continuity conditions require extra
care in infinite dimensions. However, given that the quantum
particle filter actually works on a discretized space, in prac-
tice we can simply use the results we had for the finite-
dimensional case. As before, we note that one can generalize
the quantum particle filter to multidimensional parameters by
using a multidimensional Gaussian kernel. One might also
consider using alternate kernel forms such as a regular grid
which has increasingly finer resolution with each resampling
stage. We will not consider such extensions here.

A. Qubit example

We now consider a resampling quantum particle filter for
the qubit magnetometer introduced earlier in the paper. As
hinted at in Sec. IV, since the qubit state is parametrized by
the continuous variable �t, we can easily resample both the
magnetic field Bi and state ��i� using a two-dimensional

Gaussian kernel for �B̃i , �̃
�i��, with mean vector and covari-

ance matrix given by generalizations of Eqs. �28� and �29�.
Since different values of B result in different state evolutions,
resampling both the state and magnetic field values should
result in child particles that are closer to the true evolved
state.

Figure 5 shows a typical run of the quantum particle filter
for N=1000 particles. The true B value was 5� and the prior
distribution over B was taken to be uniform over the interval
�0,10��. As before, we used an Itô-Euler integrator with a
step size of dt=10−5�. Note that both the timespan of inte-
gration and the potential values of B range from 0 to 10� in

our units. The resampling parameters were a=0.98, h=10−3

and resampling threshold 2/3. Note that we chose not to use
Liu and West’s relation between a and h.

In order to generate the figure, each particle’s weight and
parameter values were stored at 50 equally spaced times over
the integration timespan. Using Matlab’s ksdensity function,
these samples were then used to reconstruct pt�B� via a
Gaussian kernel density estimate of the distribution. The re-
sulting kernel density estimate was then evaluated at 150
equally spaced B values in the range �0,10��, which we
plotted as pt�B�dB with dB=10� /150. As is seen in the fig-
ure, after some initial multimodal distributions over param-
eter space, the filter hones in on the true value of B=5�. For

the simulation shown, the final estimate was B̂=5.03� with
uncertainty �B̂=0.18�. The filter resampled seven times over
the course of integration.

V. CONCLUSION

We have presented practical methods for single-shot pa-
rameter estimation via continuous quantum measurement. By
embedding the parameter estimation problem in the standard
quantum filtering problem, the optimal parameter filter is
given by an extended form of the standard quantum filtering
equation. For parameters taking values in a finite set, we
gave conditions for determining whether the parameter filter
will asymptotically converge to the correct value. For param-
eters taking values from an infinite set, we introduced the
quantum particle filter as a computational tool for suboptimal
estimation. Throughout, we presented numerical simulations
of our methods using a single qubit magnetometer.

Our techniques should generalize straightforwardly for es-
timating time-dependent parameters and to a lesser extent,
estimating initial state parameters. The binary state discrimi-
nation problem studied by Jacobs �18� is one such example
and his approach is essentially a special case of our ensemble
parameter filter. We caution that the utility of initial state or
parameter estimation depends heavily on the observability
and absolute continuity of the problem at hand. Future ex-
tensions of our work include exploring alternate resampling
techniques for the quantum particle filter and developing
feedback strategies for improving the parameter estimate.
More broadly, we believe there is much to be learned from
classical control and parameter estimation theories.
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