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Quantum state propagation over binary-tree configurations is studied in the context of quantum spin net-
works. For a binary tree of order 2, a simple protocol is presented which allows one to achieve arbitrary high
transfer fidelity. It does not require fine-tuning of local fields and two-node coupling of the intermediate spins.
Instead it assumes simple local operations on the intended receiving node: their role is to brake the transverse
symmetry of the network that induces an effective refocusing of the propagating signals. Some ideas on how
to scale up these effects to a binary tree of arbitrary order are discussed.
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I. INTRODUCTION

The paradigmatic approach to quantum communication
assumes the possibility of “loading” quantum information
�i.e., qubits� into mobile physical systems which are then
transmitted from the sender of the messages to their intended
receiver. Such flying qubit architecture for quantum commu-
nication has found its natural implementation in optics where
photons play the role of information carriers. In many re-
spects this appears to be the most reasonable choice, espe-
cially when long distances are involved in the communica-
tion. However, the recent development of controllable
quantum many-body systems, such as optical lattices �1�,
phonons in ion traps �2�, Josephson arrays �3�, and polaritons
in optical cavities �4�, makes it plausible to consider alterna-
tive quantum-communication scenarios such as the so-called
quantum wire architectures �5�. Here the transfer of quantum
information proceeds over an extended network of coupled
quantum systems �e.g., spins� which are at rest with respect
to the communicating parties. In this case the messages are
encoded into the internal states of the spins, while the infor-
mation flow proceeds by their mutual interactions, which,
when properly tuned, induce a net transfer of messages from
two separate regions of the network �6–8�. The quantum
wire architecture is, of course, of limited application, since it
assumes the sender and the receiver to have access to the
same quantum network �in any real implementation the latter
will always have a reduced size�. However, these techniques
may play an important role in the creation of clusters of
otherwise independent quantum computational devices. Fur-
thermore, the study of quantum network communication pro-
tocols is an ideal playground to test and devise new quantum
communication protocols.

Perfect transfer among any two regions of a quantum net-
work can always be achieved if one allows the communicat-
ing parties to have direct access on the individual nodes of
the network �for instance, this can be done by swapping se-
quentially the information from one node to a subsequent
one�. These strategies are, however, extremely demanding in
terms of control and, even in the absence of external noise,
are arguably prone to error due to the large number of quan-
tum gates that have to be applied to the system. A less de-
manding approach consists in fixing the interaction of the

network once and for all and letting the Hamiltonian evolu-
tion of the system to convey the sender message to the re-
ceiver. In this context perfect transmission can be achieved
either by engineering the spin couplings �9–12� or by choos-
ing proper encoding and decoding protocols �13–17�.

In this paper we discuss the propagation of quantum in-
formation over binary-tree �BT� quantum networks. Together
with the star configuration, the BT configuration is arguably
the most significant network topology in circuit design. The
former is typically used as hubs to wire different computa-
tional devices �for an analysis of such a system in the context
of spin network communication, see Ref. �11��. Star configu-
rations have been also extensively studied for entanglement
distribution �18� and cloning �19�. BT networks instead are
employed to route toward external memory elements �i.e.,
database�. The information flow on unmodulated and uncon-
trolled BT was first discussed in Ref. �20� while, more re-
cently, BT quantum networks have been employed to design
efficient quantum random access memory elements �21�.

The paper is organized as follows. In Sec. II we start by
analyzing the first nontrivial BT system, introducing the no-
tation, and setting the problem. In Sec. III we then describe a
transfer protocol that allows one to deliver a generic quan-
tum message to any desired final edges of the second-order
BT network by exploiting simple end-gate operations. In
Sec. IV we discuss various techniques that allow us to scale
up the protocol, adapting it to a BT of arbitrary order. The
paper finally ends with the conclusions and discussion in
Sec. V.

II. SYSTEM DESCRIPTION

First-order BT networks are just particular instances of
star networks �11�. Consequently the simplest nontrivial ex-
ample of BT networks is the second-order one shown in Fig.
1. In the following we will assume the lines connecting the
nodes to represent XY �exchange� spin interactions �the re-
sults, however, can be generalized to include XXZ or Heisen-
berg couplings�. The resulting Hamiltonian is thus

H =
J0

2 �
�i,j�

��x
i �x

j + �y
i �y

j � + �
j

� j

2
��z

j + 1� , �1�

where the summation is performed over all couples i and j,
which are connected through an edge, where �x,y,z

i are the
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Pauli matrices associated with the ith node and where the
�i’s appear in consequence of the interaction with local mag-
netic fields �in this expression the labels i and j stand for the
joint indexes �a ,b� of Fig. 1�. As usual �5�, we assume that
initially the system is in the ferromagnetic “all-spin-down”
ground state ���	�0¯0�. At time t=0 we then place an
�unknown� qubit state ���=��0�+��1� on the leftmost site
�0,0� �for instance, by swapping it from an external
memory�. With this choice the global state of the network is
now described by the vector

��in� = ���� + ��1�0,0�� , �2�

where �1�a,b�� represents the network state where the node
�a ,b� is in the spin up state �1�, while the remaining ones are
in the down state �0�—i.e.,

�1�a,b�� 	 �0 ¯ 0 1�a,b� 0 ¯ 0� . �3�

Knowing that the z component of the total spin is preserved
by the Hamiltonian evolution of the system �i.e., �H ,Sz

tot�
=0�, we can conclude that the dynamics is costrained in the
subspace of single flips: On this subspace H acts in a very
simple way that can be inferred from the graphical structure
of the network—i.e.,

H�1�a,b�� = ��a,b��1�a,b�� + J0 �
�c,d�

�1�c,d�� , �4�

where the sum is taken over all sites �c ,d� connected with
�a ,b�. Our goal is to find a procedure that would allow us to
transfer the qubit state ��� to the rightmost sites �2,b� with
b� 
1,2 ,3 ,4� of our choice—i.e.,

��in� → ��fin
�b�� 	 ���� + ��1�2,b�� . �5�

Following Refs. �10,11�, one could try to solve this problem
by fine-tuning the parameters J0 and � j of H in such a way
that the free Hamiltonian evolution of the system will be able
to transform ��in� into ��fin

�b�� after some time interval �.1

This, however, is in general a quite complex calculation
which entails solving an inverse eigenvalue problem. More-
over, if any, the solutions obtained using such a strategy will
be arguably highly asymmetrical in the distribution of the
local magnetic fields � j’s. To avoid all this, here we will
pursue a different approach by limiting the freedom one has
in choosing the Hamiltonian parameters, but as in Refs.
�14,16,17�, allowing local manipulation on the receiving
node of the network �i.e., �2,b��. Under these conditions we
can show that a simple protocol exists that realizes the trans-
formation �3� with arbitrary accuracy. It assumes a homoge-
neous network structure where all the ratios � j /J0 are chosen
to be identical and equal to some fixed value, and it is com-
posed of the following three steps.

�1� The system is allowed to evolve freely under the ac-
tion of H for some time �.

�2� At this point, on the receiving node �2,b� is performed
a fast �ideally instantaneous� local phase-shift transformation
S�2,b�.

�3� The network is then allowed to evolve for an extra
time interval 2�.

During the first step, due to the homogeneity of the
Hamiltonian, the information flows along the left-right axis
of the network, while delocalizing along the south-north
axis. The value of � is approximately the time interval an
excitation takes to travel from the leftmost node �0,0� to the
rightmost column formed by the nodes �2,1�, �2,2�, �2,3�, and
�2,4�. The role of the local phase-shift transformation S�2,b�
of step �2� is to brake the south-north symmetry of the re-
sulting state by flipping the sign of a specific wave-vector
component. The system is then allowed to evolve freely for a
time interval which is twice the initial one: this is approxi-
mately the time it takes an excitation to leave the rightmost
column, “bounce back” to the leftmost node, and return to
the rightmost network column. Due to the symmetry brake
introduced at the second step, however, the signal will now
not diffuse over all the four sites �2,1�, �2,2�, �2,3�, and �2,4�,
but instead it will focus on the intended receiving node
�2,b�. A detailed description of the protocol will be pre-
sented in Sec. III.

A. Diagonalization of the Hamiltonian

To solve our problem we can exploit the fact that the
ground state ��� of the network does not evolve to restrict
ourselves to the case �=0—i.e., ���= �1�. We then simplify
the structure of the Hamiltonian �1� assuming all � j’s to be
identical—i.e., � j 	�. In dealing with magnetic spins this
means that we are applying a homogeneous magnetic field of
constant strength B�−� all over the system. We could set
�=0, since the energy is defined up to a constant, but we let
it be nonzero to guarantee that ��� is the ground state of the
system. We now choose the following basis for the single-
excitation sector, which divides the Hamiltonian in invariant
blocks:

B1�
�v0� 	 �1�0,0�� ,

�v1� 	 �1�0,1�� ,

�v2� 	
1
2

��1�1,1�� + �1�1,2��� ,

�v3� 	
1

2
��1�2,1�� + �1�2,2�� + �1�2,3�� + �1�2,4��� ,

�
B2��v4� 	

1
2

��1�1,1�� − �1�1,2��� ,

�v5� 	
1

2
��1�2,1�� + �1�2,2�� − �1�2,3�� − �1�2,4��� ,�

1Along these lines, for instance, one could map the propagation
over the network into a simpler problem by setting a subset of the
� j’s to a value 	 much greater than the remaining constants of the
systems. This will induce an effective decoupling of the selected
nodes from the remaining part of the network, simplifying the un-
derlying topology.
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B3��v6� 	
1

2
��1�2,1�� − �1�2,2�� + �1�2,3�� − �1�2,4��� ,

�v7� 	
1

2
��1�2,1�� − �1�2,2�� − �1�2,3�� + �1�2,4��� .�

In this basis the matrix representing H is given by

��
� J0

J0 � J

J � J

J �
�

�� J

J �
�

�� 0

0 �
�� , �6�

with J	2J0. This shows that the evolution of the network
can be effectively described as three independent linear
chains, the first composed of four nodes and the other of two
elements each. The basic idea in deriving the above basis is
that any state in the form �1�a,b�� is decoupled from the “sin-
glet” superposition 1

2
��10�− �01�� of the two nearest-neighbor

qubits on its right, e.g., the two states 1
2

��1�2,b��− �1�2,b+1���
with b=1,3 are decoupled from the whole network and pro-
vide an alternative basis for the block B3.

Of special interest for us is, of course, the block B1, which
is the only one to have an overlap with the input state �2�. It
is clear that the case J0=J would be much simpler to deal
with �in this case, for instance, one could adapt the linear
chain analysis of Refs. �6,10� to simplify the calculation�.
Such an option, however, is not possible if we assume the
coupling strengths of the network to be fixed a priori. Any-
way we can use a trick to obtain the same result without
adjusting the coupling strength, which, as discussed in the
final paragraph of the present section, allows us to improve
also the controllability of the setup. We suppose thus to
modify the system by adding an additional spin connected
only to site �0, 1� with the usual XY coupling of strength J0,
as shown in the inset of Fig. 1. With this choice the Hamil-
tonian �1� is replaced by

Hnew 	 H +
J0

2
��aux

x �0,1
x + �aux

y �0,1
y � +

�

2
��aux

z + 1� . �7�

Now that we enlarged the Hilbert space, we have to deal with
the nine-dimensional space of single flips. However, since
the singlet state 1

2
��1�0,0��− �1aux�� is decoupled from the rest,

if we encode the “logic” state �1� on the sending end of the
network as �v0

new�	 1
2

��1�0,0��+ �1aux��, instead of using
�1�0,0��, not only do we recover a dynamics costrained in an
eight-dimensional space, but we obtain also an effective cou-
pling of strength J=2J0 between �v0

new� and �v1� �here �1aux�
is the analog of the states �3� with the spin up localized on
the auxiliary node�. The four-dimensional block of our effec-
tive Hamiltonian thus becomes

H�4� 	 �
� J

J � J

J � J

J �
� . �8�

Following Ref. �10�, this can be easily put in diagonal form,
obtaining the eigenvalues

E1 	
2� − �5 + 1�J

2
, E2 	

2� − �5 − 1�J
2

,

E3 	
2� + �5 − 1�J

2
, E4 	

2� + �5 + 1�J
2

, �9�

with the corresponding eigenstates described by the vectors

�e1� 	
1

5 + 5
�− 1,

1 + 5

2
,−

1 + 5

2
,1� ,

�e2� 	
1

5 − 5
�1,

1 − 5

2
,
1 − 5

2
,1� ,

�e3� 	
1

5 − 5
�− 1,

1 − 5

2
,−

1 − 5

2
,1� ,

�e4� 	
1

5 + 5
�1,

1 + 5

2
,
1 + 5

2
,1� , �10�

expressed in the basis �v0
new�, �v1�, �v2�, and �v3�.

Apart from simplifying the spectral properties of the
Hamiltonian, the introduction of the site “aux” adds also an
additional feature that substantially enhances our ability of
controlling the system. We have already mentioned that the
singlet state 1

2
��1�0,0��− �1aux�� is decoupled from all other

vectors of the system. Therefore we can “entrap” our qubit of
information at the leftmost end of the network for as much
time as we like by encoding its logic-1 component in such a
singlet state. When we want the transfer to start, we simply
apply a local phase shift Saux on the auxiliary spin that in-
duces the mapping �1aux�→−�1aux�. This will transform
1
2

��1�0,0��− �1aux�� into �v0
new�, bringing the encoded message

into the four-dimensional subspace associated with the
Hamiltonian �8� and allowing the first step of the above pro-
tocol to begin.

III. TRANSFER PROTOCOL

In this section we analyze in detail the performance of the
protocol defined in Sec. II. Without loss of generality we
consider the case in which the receiving node is �2, 1�—i.e.,
b=1. We recall that our aim is to obtain the transition
�v0

new�→ �1�2,1��, and we notice that

�1�2,1�� =
1

2
��v3� + �v5� + �v6� + �v7�� . �11�

The protocol: step 1. In the first stage of the protocol the
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system is initialized into �v0
new� and freely evolves for some

time �. The goal here is to find � and � such that this vector
is mapped into �v3�, which represents a symmetric combina-
tion in which the input excitation is spread all over the right-
most nodes of the network. As already noticed, this process
is formally equivalent to the information transfer along a
linear chain of four spins coupled by uniform XY first-
neighbor interactions. From Ref. �10� we know that such
transferring cannot be exact. Nevertheless, the transfer fidel-
ity can be made arbitrarily close to 1. Indeed, defining
U���=exp�−iH�� and using Eq. �9�, we have

�v3�U����v0
new� = �

k=1

4

e−iEkt�v3�ek��ek�v1�

=
5 − 5

20
�e−iE1� − e−iE4��

+
5 + 5

20
�e−iE2� − e−iE3�� . �12�

This will be exactly 1 if one could find � such that e−iE1�

=e−iE3�=−1 and e−iE2�=e−iE4�=1. Even though these condi-
tions are impossible to be satisfied exactly �10�, an approxi-
mate solution is obtained by choosing

� =
7 + 5

2
J =

7 + 5
2

J0 �13�

and

� = �n 	
2n + 1

J

 , �14�

with n integer. Under this assumption Eq. �12� yields

�v3�U��n��v0
new� =

1

2
�1 + e−i�n� , �15�

where �n	5�2n+1�
. The exponential in Eq. �15� never
takes the value 1, but since 5 is an irrational number, it
approaches it indefinitely. Therefore for any �0 we can
choose n such that ��v3�U��n��v0

new���1−�. As a result, the

state of the system, with high accuracy, is now described by
the vector �v3�.

The protocol: step 2. As a second step, we act locally on
the node �2, 1�, applying the phase-shift unitary transforma-
tion S21, which changes the sign to the state �1�2,1��, i.e.,

S21�1�2,1�� = − �1�2,1�� , �16�

while preserving the remaining single-excitation states. This
can be done, for instance, by acting with an intense magnetic
field which acts locally on �2, 1� for a time interval shorter
than the characteristic times of the Hamiltonian H. When
acting on �v3� the unitary S21 yields the transformation

S21�v3� =
1

2
��v3� − �v5� − �v6� − �v7�� . �17�

This superposition contains the four states that compose the
state �1�2,1��, but the relative phases are wrong—see Eq. �11�.
Luckily, the third step fixes this issue with free evolution
only.

The protocol: step 3. Finally, we just have to wait for a
time 2�n and the relative phases adjust themselves to give the
state �1�2,1��. In fact, by explicit calculations it can be shown
that

�v3�U�2�n��v3� =
1

2
�1 + e−i2�n� � 1,

�vk�U�2�n��vk� = − e−i�n � − 1, for k = 5,6,7. �18�

Both expressions are justified by the fact that e−i�n �1, and
they imply that after the third step we have reached state
�1�2,1�� with as good an approximation as we like.

The above operations can be summarized with the appli-
cation of the unitary operator

Vn 	 U�2�n�S�2,1�U��n� . �19�

Therefore the resulting transfer fidelity can be expressed as

Fn 	 ��1�2,1��Vn�v0
new��2

= �1 + e−i�n

8
�2�3e−i�n +

1 + e−2i�n

2
+ �1 + e−i�n�2�2

=
1

4
cos2��n/2��3 − cos2��n/2��2, �20�

which approaches 1 if e−i�n �1, giving us the desired
result—see Fig. 2.

IV. SOME IDEAS TO SCALE UP THE SYSTEM

Unfortunately our protocol does not extend easily to
higher-order trees �or at least we could not find a simple way
of doing it�. The idea we pursued in trying to scale up a
second-order BT is to connect in some way the ends of a tree
to the beginning of another. The resulting structure is no
longer a tree of the type described above, but it is still a valid
means to obtain a larger number of outputs. As an example,
we could connect �say� two second-order trees to the ends of

(0,0)

(1,1)

(1,2)

(2,4)

(2,3)

(2,2)

(2,1)

(0,1)

Spin Tree

(0,0)

(aux)

(0,1)

FIG. 1. Spin tree of second order. The nodes are connected
through edges which describe the XY interactions defined by the
Hamiltonian �1� and are identified by a double index �a ,b�, with
�0,0� corresponding to the leftmost graph element. Inset: auxiliary
spin added to the BT in order to homogenize the effective couplings
in the block form representation �6�. The additional spin provides
also a controllable trigger to start the information transfer.
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a first-order tree to obtain an eight-output quantum switch or
four second-order trees to the ends of a fifth second-order
tree to obtain a 16-output quantum switch—see Fig. 3. The
former setup can be solved by properly merging the protocol
of Ref. �11� with our second-order BT propagation scheme;
this, however, will require us to employ nonuniform mag-
netic fields at least for the first spins and does not admit
simple concatenation. We thus decided to focus on the sec-
ond architecture, which instead can be trivially concatenated
to form a larger setup. We found a relatively simple way to
make the required connections, but at the expense of consid-
ering some coupling strength engineering and including an-
tiferromagnetic interactions, which means that the “all-
down” configuration is no longer the ground state, although
still stationary. A combination of time evolution and a phase
shift will do all the work. First of all, each receiving end of
a tree must be accompanied by an auxiliary qubit, as done
before for the sending end. This is similar to what happened
when is �0,0�aux is introduced. It is easy to see that the right-
most singlets

�s2b� 	
1
2

��1�2,b�� − �1�2,b�
aux ��

are isolated, while the corresponding triplets

�t2b� 	
1
2

��1�2,b�� + �1�2,b�
aux ��

interact with the network and evolve, with an effective cou-
pling strength 2 times the original one. In order for our
protocol to be still valid, we need to modify the coupling
strengths of the rightmost branches so that matrix �8� �now
with J0=J� remains unchanged. Moreover, the local opera-
tion on the receiving end �2,b� must now be performed si-
multaneously on �2,b� and �2,b�aux, i.e., we must now apply
S2b � S2b

aux. In this way, once the excitation reaches one of the
end triplets of the tree, it can be trapped there with a phase
shift on the auxiliary qubit of that site, storing information in
the relative singlet. To clarify this, we outline that in this new
configuration our protocol is capable of achieving the �ap-
proximate� transfer:

���� + ��1�0,0�� → ���� + ��t2b� . �21�

Now by applying a local phase shift S2b
aux the state is trans-

formed into

���� + ��s2b� , �22�

which is decoupled from the rest.
If by some means we could transfer this state to the sin-

glet at the beginning of the next tree �denoted by primed
indexes�, i.e., obtain the state

���� + �
1
2

��1�0�,0��� − �1�0�,0��
aux �� 	 ���� + ��s0�0�� ,

�23�

we could then perform the local operation S�0�,0��
aux to obtain

the corresponding triplet state

���� + ��t0�0�� ,

which can be transferred along the new tree with the usual
protocol. The structure shown in Fig. 4 �which we will call a
“singlet link”� achieves perfect transfer between two singlets,
since in the subspace 
�s21� , �10� , �s0�0��� it is equivalent to a
chain of length 3 with constant couplings �10�; moreover, the
evolution of �t21� is decoupled from that of �t0�0�� thanks to
the opposite signs of the couplings along the vertical axis.
The lines stand for XY interaction of strength
J�ferromagnetic� and −J�antiferromagnetic�, respectively. As
an example, we have considered site �2, 1� of a second-order
tree plus its auxiliary qubit, connected with site �0� ,0�� plus
its auxiliary of another tree. We outline again that we are
working in the subspace of single flips, as our Hamiltonian
still conserves Sz

tot. In the considered example we have

H�s21� = ��s21� + 2J�10� ,

H�t21� = ��t21� + J�1�1,1�� ,

lo
g 1

0
(1

−
F

)

log10 n

0.5 1.0 1.5 2.0 2.5 3.0

�12

�10

�8

�6

�4

�2

FIG. 2. �Color online� Minimum “infidelity” �1−Fn� achievable
according to Eq. �20� for n� �0,N� as a function of N—i.e.,
�1−F�min	minn�N�1−Fn�. Notice that already for n=8 we get val-
ues of F greater than 1–10−6. From the plot we can infer an almost
linear dependence of �1−F�min with respect to N, yielding the
�approximated� behavior Fmin�1−cN−�, with ��1 and c being
constant.

(2,3)

(0,0)aux

(0,0)

(0,1)

(1,1)

(1,2)

(2,3)aux

(2,2)aux
(2,2)

(2,1)aux
(2,1)

(2,4)aux
(2,4)

FIG. 3. Modified tree for the purpose of scaling up. Each right-
most qubit is accompanied now by an auxiliary; moreover, all right-
most couplings are adjusted by a factor 1 /2.
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H�s0�0�� = ��s0�0�� + 2J�10� ,

H�t0�0�� = ��t0�0�� + 2�1�0�,1��� ,

where �t0�0��	 1
2

��1�0�,0���+ �1�0�,0��
aux ��.

We can see from the above equations that once the infor-
mation enters a tree through a triplet state, it does not come
out of it until we make a phase shift on the desired end �and
at the right time�. At this point the information goes to the
singlet and propagates to the starting singlet of another tree,
thanks to the singlet link; then, it is transferred to the corre-

sponding triplet with a local phase shift and propagation be-
gins on the next tree. We shall repeat this procedure until
information reaches the desired end on the last array of trees.
Of course, we must control a priori the total error due to the
presence of second-order trees. Fixing a “single-tree time” �̄,
will give a satisfactory overall transfer fidelity.

V. CONCLUSIONS

In this paper we have presented a protocol for quantum
state transfer on BT spin networks of order 2. As in Refs.
�14,16,17�, it is based on local operations that must be per-
formed on the receiving nodes. Differently from �16,17�,
however, it does not involve a swapping operation between
the receiving nodes and external memories and arbitrarily
high fidelity can be obtained in just three operational steps.
Generalization of this technique to higher-order BT is cur-
rently under investigation: arguably this will involve more
complex end-gates operations possibly on more than one of
the rightmost nodes. We have, however, provided a simple
way to scale up the problem by concatenating smaller BT
networks through connecting gates which can be turned on
and off by simple local phase gate transformations.
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