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We propose a linear-optical implementation of a hyperentanglement-assisted quantum error-correcting code.
The code is hyperentanglement assisted because the shared entanglement resource is a photonic state hyper-
entangled in polarization and orbital angular momentum. It is possible to encode, decode, and diagnose channel
errors using linear-optical techniques. The code corrects for polarization “flip” errors and is thus suitable only
for a proof-of-principle experiment. The encoding and decoding circuits use a Knill-Laflamme-Milburn-like
scheme for transforming polarization and orbital angular momentum photonic qubits. A numerical optimization
algorithm finds a unit-fidelity encoding circuit that requires only three ancilla modes and has success prob-

ability equal to 0.0097.
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I. INTRODUCTION

Quantum error correction plays an active role in the future
realization of a quantum communication system [1,2]. Sev-
eral optical experiments have already implemented simple
quantum error-correction routines [3-5].

The entanglement-assisted stabilizer formalism is a recent
extension of the theory of quantum error correction that in-
corporates entanglement shared between a sender and re-
ceiver [6,7]. A further extension of this theory incorporates
gauge qubits [8] and others give a structure appropriate for a
stream of quantum information [9—11]. The likely candidate
for implementing an entanglement-assisted code is photonics
because the entanglement-assisted model is more appropriate
for quantum communication rather than quantum computing.

In this paper, we propose a linear-optical implementation
of a hyperentanglement-assisted quantum code. Our code is
hyperentanglement assisted because it exploits hyperen-
tanglement of two photons [12]. Two photons are hyperen-
tangled if they have entanglement in multiple degrees of
freedom such as polarization and orbital angular momentum
(OAM) [13,14]. The benefit of hyperentanglement is that a
linear-optical setup suffices to perform a complete Bell-state
analysis [15-17]. Our proposal for the hyperentanglement-
assisted code relies on the recent optical realization [18] of
the superdense coding protocol [19] and the close connection
between entanglement-assisted quantum error correction and
superdense coding [7]. We also employ a recent numerical
optimization algorithm [20] to find an encoding circuit and a
decoding circuit that has unit fidelity, success probability
equal to 0.0097, and requires only three ancilla modes. The
circuits act on both the polarization and OAM degrees of
freedom of the photonic qubits.

We structure this paper as follows. The first section re-
views hyperentangled states, the single-photon polarization-
OAM states, and mentions that it is possible to distinguish
the single-photon polarization-OAM states with linear optics.
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We then discuss the superdense coding protocol for hyperen-
tangled states and highlight the connection between super-
dense coding and entanglement-assisted quantum error cor-
rection. We give a brief description of our code, its error
analysis, and corrective operations. The final part of this pa-
per discusses the numerical optimization technique for find-
ing our code’s encoding circuit and decoding circuit.

II. HYPERENTANGLED STATES

The standard hyperentangled state is a state of two pho-
tons simultaneously entangled in polarization and OAM:

YHD + VW) @ (0 0)+|0 ).

The symbols H and V represent horizontal and vertical po-
larization, respectively, and the symbols (9 and O represent
paraxial Laguerre-Gauss spatial modes with +% and —#, re-
spective units of OAM [21]. Changing the polarization de-
gree of freedom of Alice’s photon in the above state accord-
ing to the four standard Pauli operators, while leaving the
OAM degree of freedom unchanged, gives the following
four hyperentangled states:

|5 =2(HH) = V) ® (O O)+]0 O)),

Wy =1(HV) = [VE) @ (O O)Y+| O O). (1)

We can rewrite the above four states in terms of the single-
photon polarization-OAM states ¢~ , ¢~ [30],

D% = (85 ® U + b1 © Ui + Y5 © B + YL © ),
(W) =3B by ¥ 1 © by = YL@ s F Y3 © ).
where A and B label the first and second respective photons

and the single-photon polarization-OAM states ¢~ and ¢~
are as follows:
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_|HOoYx|VO) L |HO)=|VO)
V2 ’ \2 '
The above “quad-rail” basis states [HO), [HD), [VO), [VO)

are four-mode single-photon states defined in terms of the
Fock basis,

d)i

|HO>E |1>HO

0116, |0)vs|0) v »

|HO )= |O>Ho

D e[ 0y |0)ye s

[VO) =10)5610) 50 [ Dy 0)ye,

VO ) =10)56510) 570, [0)yes [ 1ye (2)

Hyperentangled states are useful because a linear-optical
analyzer distinguishes the single-photon polarization-OAM
states ¢, ¢~ and thus distinguishes the hyperentangled
states |[®*), |¥*) as well [15-17].

III. SUPERDENSE CODING AND ENTANGLEMENT-
ASSISTED QUANTUM ERROR CORRECTION

We briefly describe the superdense coding protocol for
polarization encoding and hyperentangled states [18]. A
sender Alice and a receiver Bob share a hyperentangled state
|®*)YE. Alice encodes one of four classical messages (two
classical bits) by applying one of four transformations to her
half of |[®*)A8: (1) The identity, (2) |V)——|V), (3) |[H)«|V),
or (4) both |V)——|V) and |H) < |V). Let Z denote the second
operation and let X denote the third operation. The result is
to transform the original state |®*)*2 to one of the four states
|®F)AB|W=)B She then sends her half of the encoded
|®*)8 to Bob. Bob performs a single-photon polarization-
OAM state analysis in the basis ¢, on each of the sys-
tems A and B to distinguish the message Alice transmitted.

In the above analysis, it is important to stress that the
dense coding transformations affect only the polarization de-
gree of freedom of the hyperentangled state |®*)*5. The clas-
sical information resides in a four-dimensional subspace of
the 16-dimensional Hilbert space. The extra dimensions help
in single-photon polarization-OAM state analysis in order to
distinguish the classical messages.

Reference [7] discusses the close relationship between su-
perdense coding and entanglement-assisted quantum error
correction. In superdense coding, one exploits the classical
bits encoded in a Bell state so that Alice can transmit classi-
cal information to Bob. In entanglement-assisted error cor-
rection, one exploits the encoded classical bits for use as
error syndromes. Another way of thinking about this latter
scenario is that Eve, the environment, is superdense coding
messages (errors) into the Bell states. Bob can determine the
errors that Eve introduces by measuring in the Bell basis.

IV. OPERATION OF THE CODE

The operation of our code begins with an initial, unen-
coded state consisting of one information photon and one
hyperentangled state,
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FIG. 1. (Color online) The operation of the hyperentanglement-
assisted quantum code. The qubits labeled as A and A; (red in the
online version) belong to the sender Alice and the qubit labeled as
B; (blue in the online version) belongs to the receiver Bob though
all qubits belong to Bob after the noisy channel. Alice and Bob
share a hyperentangled state |®*)*181 prior to quantum communi-
cation. Alice uses the hyperentangled state to aid in encoding an
information photon in the state |)*. Her encoding circuit consists
of one controlled-phase gate. She sends her photons over a noisy
polarization-error quantum channel. Bob receives the photons, per-
forms a decoding circuit, and performs two single-photon
polarization-OAM analyses in the basis ¢=, " on the systems A;
and B to determine the error syndrome. Bob finally performs a
recovery operation to obtain the information photon |#) that Alice
first sent.

[t HyhBr. 3)

The information photon is as follows: |)* = a|H)*+ B|V)A.
The sender Alice possesses photons A and A; and the re-
ceiver Bob possesses photon B;. The entanglement-assisted
communication paradigm assumes that Alice and Bob share
the hyperentangled state prior to quantum communication.
Figure 1 highlights the operation of our hyperentanglement-
assisted quantum code.

The sender Alice applies an encoding circuit consisting of
one controlled-sign gate (we discuss this gate later in more
detail) so that the state shared between Alice and Bob is the
following unnormalized encoded state:

[P+ [ DY) 4+ Z]gp ()~ [y,
)

She sends her photons A and A; over a noisy polarization-
error channel (discussed below). Bob receives the photons
and we relabel them as B and B{, respectively. For now,
suppose that the channel does not introduce an error. Bob
finally applies the decoding circuit (same as the encoding
circuit) and the resulting decoded state is as follows:

| B )P, (5)

where the information photon appears in Bob’s system B.
Bob performs two single-photon polarization-OAM analyses
in the basis ¢, ¢~ on the systems B| and B, to diagnose the
channel error. The polarization-OAM analysis distinguishes
the four states {|®),|¥*)}. Bob measures the result |®*)
when the channel does not introduce noise. The state |®*) is
a syndrome that determines the channel error. Bob does not
need to perform a recovery operation in this case.

V. ERROR ANALYSIS

In general, the channel introduces errors on the photons
that Alice transmits. We assume in this paper that the channel
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TABLE I. The table details the results of Bob’s Bell state analy-
sis. The states in the third column are syndromes that determine the
channel error (“error”) and the recovery operation (“recovery”) that
Bob should perform to recover the initial information photon.

Error Recovery Syndrome
1 1 P*
XA X O-
XM z vt
XAxA zZX v

is a noisy polarization-error channel (analogous to the clas-
sical bit-flip channel). A noisy polarization-error channel in-
dependently applies a polarization error X that flips the hori-
zontal and vertical polarization bases. We assume that this
channel affects the polarization degree of freedom only and
does not affect the OAM degree of freedom. Although this
channel may not be entirely realistic, it provides a platform
for a proof-of-principle demonstration of the operation of an
entanglement-assisted quantum code [31].

The code protects against a single polarization error on
either of the two photons A or A; that Alice sends. It also
protects against a double polarization error on both photons.
Suppose that a polarization error occurs on photon A. After
Bob applies the decoding circuit, the state becomes

X|y)B|@-)B181. Bob measures the photons B and B, deter-
mines they are in the state |®~), and flips the polarization of
photon B to recover the initial information photon |¢). Table
I summarizes the other cases.

VI. OPTICAL ENCODING AND DECODING CIRCUIT

The seminal paper of Knill, Laflamme, and Milburn
(KLM) showed how to perform two-qubit interactions with
linear-optical ~ devices [22,23]. Their method is a
measurement-assisted scheme. It first mixes a set of “com-
putational ” modes and ancilla modes in a linear-optical de-
vice and then counts the photons in the ancilla modes. The
optical transformation acts on the computational modes. The
ancilla modes help perform this transformation and we mea-
sure them at the end of the measurement-assisted scheme.
The gates exploit the Hong-Ou-Mandel quantum interference
of indistinguishable photons [24]. These measurement-
assisted transformations are heralded, nondeterministic, and
nondestructive. A destructive gate involves a measurement
on the computational modes—the informational state col-
lapses to one of the states in the measurement basis even
when the gate succeeds. A nondestructive gate requires a
measurement only on the ancilla modes—the result is that all
the information encoded in the state remains intact when the
gate succeeds [23,25].

The measurement-assisted scheme is useful for dual-rail
encoded qubits and even polarization-encoded qubits [26],
but until now, no one has considered its application to “quad-
rail ” encoded quantum information in polarization-OAM
states.

The  implementation of a  polarization-OAM
measurement-assisted scheme requires unconventional
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linear-optical elements analogous to beam splitters and other
tools of linear optics acting on OAM states of photons. Ho-
lographic elements suffice for this purpose because they act
on OAM components [18]—similarly to the action of polar-
ization beam splitters on photon polarization. The extension
of the measurement-assisted scheme to OAM states is a gen-
eralization of the idea in Ref. [26]. There, the authors ex-
tended the measurement-assisted scheme to polarization-
encoded qubits. Here, we use a similar idea to extend the
measurement-assisted scheme to OAM states.

The encoding transformation corresponding to our code
generates the encoded state in (4). It is a controlled-sign gate
that acts on the four-dimensional Hilbert space H, ® H, of
the information photon A and the polarization subspace of
Alice’s part A; of the hyperentangled state in (3). The gate
acts on the polarization degrees of freedom and leaves the
OAM degrees of freedom invariant. It is a linear-optical
transformation on a set of six modes—two modes for the A
system and four modes for the A system. The gate leaves the
following basis states:

)Y |H O,

A H O Y, [HYA VO Y,

VoY, vAroY,  [vAHOY,  (6)

invariant and adds a phase to the remaining basis states,

VAV O Y1 — — |V o Y,

VAV O Y — = [V v oyt ()

We make a statement about the mathematical structure of
the Hilbert space of polarization-OAM states. It is possible
to decompose any Hilbert space with a tensor product struc-
ture. For example,

span{|H O ),|V O ),
= span{|H),

HO) Vo))
V)} ® spanf| O ),

O}

While in the paraxial approximation, local optical transfor-
mations on the subspaces span {|H),|V)} and span {|O), |O)}
respect the tensor-product decomposition of the full four-
dimensional space. However, the tensor-product notation in
Eq. (1) from Ref. [18] may be somewhat misleading in the
context of a measurement-assisted transformation (which the
authors of Ref. [18] do not discuss). A qubit-coupling
measurement-assisted transformation, based on the mixing of
creation operators in separate modes, does not respect such a
tensor-product decomposition in general. Instead such an op-
eration acts naturally on a space constructed as a direct sum,
e.g., span {{HO),|VO)}@® span {{HD),|VO)}. The above
restriction places a constraint on the form of the linear-
optical encoding circuit and decoding circuit.

Knill devised an optimal solution for the controlled-sign
gate [27]. We could use Knill’s two dual-rail qubit gate for
an implementation of the transformation in (7). It requires
the combination of two separate transforms: The first acts on
the O OAM states and the second acts on the O OAM states.
Each transformation requires two ancilla modes and has a
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success probability of 2/27 [27]. This “Knill combination”
scheme thus requires four ancilla modes with a success prob-
ability of (2/27)?~0.0055.

We have employed the numerical optimization technique
in Ref. [20] for our encoding circuit rather than the above
Knill combination scheme. Our optical scheme for the en-
coding transformation in (6) and (7) requires only three an-
cilla photons and has a success probability of 0.0097 (nearly
a twofold increase over the Knill combination scheme).

We briefly describe the numerical optimization technique
for finding a general linear-optical circuit [20]. An NXN
matrix, where N is the number of optical modes, completely
characterizes an optical transformation. The numerical
implementation of the optimization algorithm performs a
gradient search in the space of these matrices. The algorithm
first finds a matrix that guarantees a unit transformation fi-
delity and then performs a constrained optimization of suc-
cess probability in the unit fidelity subspace. Each optimiza-
tion cycle ends at some local maximum of success
probabilitiy. The resulting Kraus transformation, or contrac-
tion map, acting on the computational modes matches the
desired target transformation in the case of a successful mea-
surement outcome on the ancilla modes.

We now describe the results of the procedure for our case
where the encoding circuit acts on the modes for Alice’s
systems A and A; and three ancilla modes. We performed the
optimization in the 81-dimensional complex space of a
GL(9) matrix (six modes for Alice’s systems A and A; and
three ancilla modes). Such a matrix admits a decomposition
into a sequence of operations where each operation corre-
sponds to a standard optical element [28]. We were able to
simplify the transformation even more by using a technique
from Ref. [27]. The optimal transformation actually acts on
three modes only: The vertical polarization of Alice’s photon
A, the vertical polarization and © OAM of Alice’s photon A,
and the vertical polarization and © OAM of Alice’s photon
A;. The reduction of the optimal solution to a three-mode
operation should make it easier to implement experimentally.
The following equations illustrate the reduced transforma-
tion:

A A
|y >?/|n2>v%> — (= 1)/tm *”2)|n | >Ié/|n2>v<l’> )

A A
|n]>?/|n2>v%§ — (= 1)f(n|'n2)|nl>lé/|n2>vé§s

where n; and n, are photon numbers equal to either zero or
one and the function f is equal to one if ny=n,=1 and is
equal to zero otherwise. One can verify that the implemen-
tation of the above reduced transformation is equivalent to
the full transformation in (7). Figure 2 illustrates a sample
distribution of success probabilities in increasing order.

The best found solution provides a success probability of
0.009 74276 at a fidelity of 1—(6X107%). This solution,
most likely, is the optimal global solution, or at least close to
the global optimum. One cannot verify the global character
of a solution by numerical tools only. However, we have
found that further optimization with the current scheme does
not improve the result. The success probability shows a
slight increase for nonunit fidelity: At the level of 0.99 fidel-
ity, we have found a solution with success probability of
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FIG. 2. (Color online) The figure displays the results of the
numerical gate optimization algorithm for our case of six computa-
tional modes and three ancilla modes. The algorithm starts an opti-
mization at a randomly selected point in the space of 6 X 6 matrices
and maximizes the gate fidelity. The second stage of the optimiza-
tion algorithm is a constrained optimization of success probability
within the unit fidelity subspace. The figure displays ordered suc-
cess probability for the best 500 optimization cycles of the total
amount of 2000 optimizations for fidelity >1-107". The algorithm
finds an encoding circuit with a success probability almost 2 times
that of the Knill combination scheme.

0.011. Further relaxing the unit fidelity requirement does not
lead to any significant increase of the success probability.
We now address the issue of implementing our
hyperentanglement-assisted quantum code. As described
above, our encoding circuit solution corresponds to some
optical transformation matrix. The first question arising in
connection with the possible experimental implementation of
such an optical transformation is whether the obtained matrix
is unitary. Currently, we use an optimization algorithm that
searches for an arbitrary matrix, one not necessarily re-
stricted to the subspace of unitary matrices. Therefore, one
may need to apply a unitary dilation procedure [27,29] to
embed the matrix into a larger unitary matrix. However, a
solution corresponding to a maximal success probability is a
matrix requiring minimal dilation, due to the singular behav-
ior of the gradient of the success probability function on the
manifold of unitary matrices. Indeed the two best solutions
(see inset in Fig. 2) correspond to matrices with the follow-
ing singular values {1, 1, 1, 1, 1, 0.5}. One needs to introduce
only one additional vacuum mode to embed the matrix into
an SU(7) matrix in order to implement the transformation in
the form of beam splitters and phase shifters. Reference [28]
suggests the scheme of such a decomposition. Mathemati-
cally, it corresponds to a factorization of an arbitrary SU(N)
matrix into a product of SU(2) matrices. The implementation
in Ref. [28] requires N(N—1)/2 beam splitters. However, it
is well known that in some important cases one can find a
simpler decomposition [27]. Knill’s scheme requires only
four beam splitters for the realization of an SU(4) matrix,
whereas the original KLM scheme requires eight beam split-
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ters for an SU(6) matrix. The matrix we have obtained is
rather complicated because we were not able to find a “nice”
decomposition (see the Appendix for the matrix).

VII. CONCLUSION

We have presented an optical implementation of an
entanglement-assisted quantum code that should be realiz-
able with current technology. The code encodes one informa-
tion photon with the help of a hyperentangled state.
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APPENDIX

Below we list the matrix that implements the transforma-
tion for the encoding circuit. We do not provide it as one
large matrix because the individual entries are too large, but
instead provide it a few columns at a time. The first three
columns are as follows:

-0.253936+i0.215424 0 -0.0269989 +i0.211 134
0 1 0
0.0473299 +i0.183042 0 —0.136 174 +i0.454 254
0 0 0
0.196 523 -i0.216478 0 —0.233 841 +i0.184 769
0 0 0
-0.33549-i0.135251 0 0.314695+i0.192 451
0.318 659 +i0.380 869 0 0.3053 +i0.314 815
i 0.277613-i0.411775 0 -0.0145173 +i0.484 746 i

The second three columns are as follows:
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0 -0.249991-i0.213976 0O
0 0 0
0 0.262553+i0.141112 0O
16 0 0
0 -0.159651+1:0.187183 0
0 0 @
0 -0.515822+1i0.243508 0O
0 0.220057-i0.296955 0O
0 0.039117+i0.303606 O

where a=-0.611 421-10.791 452. The next two columns are
as follows:

0.410 744 +i0.0245 062

0.367 852 —i0.184 455

0 0
—-0.4806 —i0.326 223 0.298 488 —i0.221 226
0 0
—0.264 695 -i0.0518 749 0.153 492 + i0.498 569
0 0
-0.23816-i0.143929 —-0.278 242 —i0.005 318 07
0.132 686 —i0.193 403 —-0.0860 369 +i0.415 03

0.382 029 +i0.183 596

—0.229 701 +i0.0475 146

The last column is as follows:

—0.0349 526 +i0.229 345
0
—-0.0337 073 +i0.290 301
0
0.403 926 — i0.202 786
0
-0.337872-i0.218 04
—0.334 824 - i0.268 026
—0.164 744 +i0.395 987 i
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