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We investigate the buildup of quasi-long-range order in the XX chain with a transverse magnetic field at
finite size. As the field is varied, the ground state of the system displays multiple level crossings producing a
sequence of entanglement jumps. Using the partial fidelity and susceptibility, we study the transition to the
thermodynamic limit and argue that the topological order can be described in terms of kink-antikink pairs and
marked by edge spin entanglement.
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Strongly interacting many-body systems display a variety
of zero temperature quantum phase transitions �QPTs� �1�.
Quantum criticality is a property of the ground state of the
system, ultimately arising from a reshuffling of the system’s
energy spectrum when control parameters are varied. In
many cases, this is accompanied by a symmetry breaking
and by the appearance of an order parameter indicating that
the macroscopic order is reached, characterized by long-
range correlations. There also exist phase transitions with
vanishing local order parameters. A typical example is the
Berezinskii-Kosterlitz-Thouless �BKT� transition, occurring,
e.g., in a system of planar classical spins at a finite tempera-
ture �2�. The transition is characterized by a “distortion” of
topological nature of the spatial spin configuration, giving
rise to quasi-long-range order in the system, whose correla-
tion functions display a power-law decay �3�. In the present
paper we will be dealing with ground states of one-
dimensional systems displaying topological order. The topo-
logical order in one dimension is peculiar and it can be char-
acterized by a sensitivity of the ground state by varying the
boundary conditions, giving rise to certain solitonic edge
states �see, for instance, �4��.

The prospect of practical applications, such as quantum
information processing, has led to an intense activity aimed
at a direct inspection of the properties of the ground state of
a given system. Our purpose is to characterize ground states
with a nontrivial topological order through their entangle-
ment content �5�. To illustrate what we believe are generic
features of topologically ordered states with vanishing local
order parameter, we focus on a specific system: the spin-1 /2
XX chain in an external magnetic field. According to the
general equivalence between the classical-d+1 and
quantum-d criticality �6�, this model displays a QPT from a
polarized to a BKT phase with quasi-long-range order. For
such a model, we demonstrate that the quasi-long-range or-
der manifests itself in the formation of “entangled edge
states” �with spins at the edge of the chain sharing entangle-
ment quite differently from bulk spins� and that it is charac-
terized at finite size by an instability of the ground state
determined by a sequence of energy level crossings as the

magnetic field is varied �7�. This gives rise to sudden jumps
of both the fidelity �8� and the pairwise entanglement �which,
thus, behave nonanalytically even at finite size�. As the size
of the chain increases, the number of crossings grows until
they become dense within a sharply defined critical region.
At the same time, their effect weakens, and the behavior of
an infinite chain can be obtained through a smearing of the
finite size observables, a procedure that we apply to the par-
tial state fidelity. Again, however, this holds true only for
bulk spins, while those at the boundaries show a kind of
rigidity and a reduced sensitivity to the QPT.

I. GROUND STATE OF THE XX MODEL

We consider N spin-1 /2 particles on a line, coupled by
nearest-neighbor XX interaction, with Hamiltonian

H = − J��
i=1

N
1

2
��i

x�i+1
x + �i

y�i+1
y � + B�i

z� , �1�

where the exchange constant J has been taken as the energy
unit. In the thermodynamic limit, the system undergoes a
first order transition from a fully polarized to a critical phase
with quasi-long-range order �3,9�.

Assuming open boundaries �with �N+1=0�, we employ the
Jordan-Wigner and Fourier transformations to introduce the
fermion operators

dk =� 2

N + 1�
l=1

N

sin	 �kl

N + 1

 �

m=1

l−1

�m
z �l

− �2�

that diagonalize H: H=�k=1
N �kdk

†dk+NB1 with �k=−2B
+2 cos���k� / �N+1��. The 2N eigenenergies and eigenkets

are �i��k=1
N �k�k

�i�+NB, and ��i=�k=1
N �dk

†��k
�i�

�	, with �k
�i�

= ��i�dk
†dk��i� �0,1�. The state �	 is the fermion vacuum:

dk �	=0 ∀ k.
The ground state and its energy vary with B, and different

ground states can be classified in terms of the number of
level crossings occurring in the system as B changes. Spe-
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cifically, when B
1, �k�0 for any k and, thus, the lowest
eigenvalue is obtained by taking the state with �k=1 ∀ k.
The ground state energy remains �g

0=−NB as long as B

cos�� / �N+1��. For these values of B no level crossing
occurs; the ground state is ��g

0=�l=1
N dl

†�	. The first crossing
occurs at B=cos�� / �N+1���B1. For cos�2� / �N+1���B
�cos�� / �N+1�� all of the �k are negative except for �1.
Thus, the ground state energy is obtained by subtracting its
positive contribution: �g

1=�g
0−�1. The corresponding eigen-

state is ��g
1=d1��g

0. Letting Bk=cos�k� / �N+1�� and defin-
ing the kth region, Bk+1�B�Bk, we can iterate the proce-
dure above to find the ground state ��g

k=dkdk−1¯d1��g
0

=�l=k+1
N dl

†�	 and its energy as

�g
k = − �N − 2k�B − 2�

l=1

k

cos	 �l

N + 1

 , �3�

where k represents the number of crossings, 1�k�N. For
B�BN, no other intersection occurs and the ground state is
simply given by the fermion vacuum state. The energy cross-
ings are plotted vs B in Fig. 2�a�.

To investigate the structure of the ground state and its
entanglement content, we rewrite it in the spin language,
using the eigenstates of �i

z. For k=0, the ground state is
�g

0= �↑ �N, which is separable. After the first crossing, it
becomes �g

1= ��l=1
N Sl

1��m=1
l−1 �m

z �l
−���̇g

0, where Sl
k

��2 / �N+1� sin���kl� / �N+1��. This is an entangled state,
given by a symmetric superposition of all possible kets with
one flipped spin. After k level crossings, the ground state is

given by �g
k=�k�=1

k ��l=1
N Sl

k���m=1
l−1 �m

z �l
−���↑ �N. Explicitly

�g
k = �

l1�l2�···�lk

Cl1l2···lk
�l1,l2, . . . ,lk , �4�

where �l1 , l2 , . . . , lk is the state with flipped spins at sites
l1 , l2 , . . . , lk, while the amplitudes are given by Cl1l2,. . .,lk
=�P�−1�PSl1

P�1�Sl2
P�2� , . . . ,Sl3

P�3�, where the sum extends over
the permutation group. At each crossing point, the ground
state jumps discontinuously in the spin Hilbert space from
one symmetric subspace to another, orthogonal to the
previous one.

II. FINITE SIZE EFFECTS

We now study ground state correlation, entanglement, and
fidelity at finite size. Due to the symmetry of the overall
state, the one-spin reduced density matrix is purely diagonal,
�l=

1
2 diag�1+ ��l

z ,1− ��l
z�; while for two spins at sites

�l ,m�, one has

�lm = a+�↑↑�↑↑� + a−�↓↓�↓↓� + b+�↑↓�↑↓� + b−�↓↑�↓↑�

+ e��↑↓�↓↑� + �↓↑�↑↓�� ,

with

a� = 1
4 �1 � ��l

z � ��m
z  + ��l

z�m
z � ,

b� = 1
4 �1 � ��l

z � ��m
z  − ��l

z�m
z � ,

and e= 1
2 ��l

x�m
x . Here, the local magnetization and transverse

correlation are given by ��l
z=1−gl,l and ��l

z�m
z 

= �1−gl,l��1−gm,m�−gl,m
2 , where

gl,m = 2�
r=1

k

Sl
rSm

r =
Sl

k+1Sm
k − Sl

kSm
k+1

2�cos	 �l

N + 1

 − cos	 �m

N + 1

� , �5�

which depends on the field B through the index k. The lon-
gitudinal correlation function ��l

x�m
x  is �10�

��l
x�m

x  = �
Gl,l+1 Gl,l+2 . . . Gl,m

Gl+1,l+1 Gl+1,l+2 . . . Gl+1,m

] ] �

Gm−1,l+1 Gm−1,l+2 . . . Gm−1,m

� , �6�

where Gl,m=�l,m−gl,m. This determinant becomes of the
Toeplitz type in the thermodynamic limit. For nearest neigh-
bors, we simply get ��l

x�l+1
x =Gl,l+1.

With these density matrices at hand, we discuss the en-
tanglement encoded in the state. Entanglement between a
single spin and the rest of the chain can be measured by the
one tangle �l=1− ��l

z2 �11�. This quantity depends on the
site for a finite chain, and, as a function of B, it displays
jumps at each crossing point Bk. Specifically, �i� �l equals
one at zero field for every site; �ii� the jumps near B= �1
become higher and higher moving from the end points to-
ward the center of the chain �see Fig. 1�a��. Thus, at the onset
of the critical region, bulk spins are more entangled than end
ones.

To evaluate pairwise entanglement, we use the concur-
rence �11� Cl,m=2 max�0, �e�−�a+a−�. Its behavior as a func-
tion of B for nearest-neighboring spins with jumps at cross-
ing points is shown in Fig. 1�b�. In particular, around B=0,
the pairwise entanglement is bigger near the end points of
the chain, while the reverse occurs at the border of the criti-
cal region.

The QPT can be further analyzed through the quantum
fidelity of ground states with slightly different fields B and

B̃=B+�B. Specifically, we consider the partial state fidelity
of reduced density matrix �a�B�=Trb ��B� when the system

is partitioned as a+b: Fa�B , B̃�=Tr���a�B��a�B̃���a�B�. F
characterizes the degree of change of the state as the field is
varied. For our purposes, it is sufficient to consider the sub-
system a to consist of just the lth spin �12�. Within the criti-
cal region, Fl is unit everywhere except for a series of dis-
crete and sharp drops at the crossing points B=Bk. For large
system sizes, when the crossings are dense in the interval
�B��1, we can perform a coarse-graining and evaluate F
only at these points. As a result of this procedure, only the
drop at B=1 remains, while all of the intermediate ones are
smeared out �see Fig. 1�c��. Interestingly enough, this behav-
ior occurs only for bulk spins. If, instead, one of the end
spins is singled out, the coarse-grained fidelity stays flat.

Even more direct evidence that for large N the state of the
bulk spins changes essentially in a continuous way, except
for the critical point B=1, is obtained by looking at the fi-
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delity susceptibility �12�: �F
l =lim�B→0−2 ln Fl / ��B�2, plot-

ted for a bulk spin in Fig. 1�b�. This behavior appears related
to the essential singularity shown by the block entropy at
B=1 �13�.

III. INFINITE SPIN CHAIN

For N→�, the intervals Bk+1�B�Bk become infinitesi-
mally small and ����k� / �N+1� becomes continuous, �
�arccos�B�, so that the sum in Eq. �3� gives an energy per
spin

lim
N→�

�g�B�
N

=
2

�
�B	arccos B −

�

2

 − �1 − B2� , �7�

which is analytic everywhere within the critical region, ex-
cept for B= �1. From the finite size analysis, however, we
know that such a region consists of a dense set of crossing
points �see Fig. 2�a�� and therefore can be considered as a
line of continuous QPT, with the ground state driven by B
through various symmetric spin subspaces with
k��N+1��arccos B� /� flipped spins. The correlation func-
tions behave differently for spins close to the chain bound-
aries and for bulk spins. Setting the distance r=m− l, the
limit N→� leads to different behaviors of ��l

��l+r
�  depend-

ing on whether l�r �bulk spins� or l�r �end point spins�
�14�. In particular, for B=0 ��=� /2�, ��l

z�l+r
z = �1 /r2�

�l+r�2 / �l+r /2�2, with a long distance behavior independent
of boundary conditions. In contrast, longitudinal correlations
are sensitive to the boundary

��l
x�l+r

x  = ��2Ã2r−1/2, l � r ,

4K	 l + 1

2

��2�Ã2r−3/4, l � r , � �8�

where Ã=0.645 002 5 and K�x� is a function given in �14�.
For N→�, we find gl,l+r�2 /��sin �r /r−sin ��2l

+r� / �2l+r��, so that, for bulk spins at B=0, ��l
x�l+r

x 
= � 2

� �r� j=1
�r/2�−1� 4j2

4j2−1
�r−2j, where �x� is the closest integer larger

than x, and ��l
z�l+r

z = �1− �−1�r� �−2�
�2r2 , which agrees with �15�.
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FIG. 1. �Color online� Comparison of the entanglement shared by spins at the beginning and at the center of the chain. �a� One tangle for
spin at site l as a function of the magnetic field for l=1 �solid line� and l=9 �dotted�. �b� Nearest-neighbor concurrence between spins 1 and
2 �solid line�, and 9 and 10 �dotted�. All of the plots are for N=19. �c� Partial state fidelities. �d� Partial state fidelity susceptibilities as a
function of external magnetic field Bk=cos� �k

N+1 � for N=30 �blue�, N=50 �red�, N=100 �yellow�, and N=200 �green� at l= �N+1� /2. The
fidelity approaches 1 as N increases. The parameters in the figures are dimensionless.
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FIG. 2. �Color online� �a� The ground state energy per spin
�black curve� against the magnetic field B in the thermodynamic
limit. The energy for N=20 is also plotted, together with the inter-
sections of the eigenvalues occurring at the crossing points Bk

=cos�k� / �N+1�� �vertical lines�. �b� Thermodynamic limit concur-
rence between two spins at distance �from topmost down� r=1
�blue�, r=2 �red�, r=3 �yellow�, r=4 �green�, and r=5 �cobalt�.
Entanglement between any two spins decreases as the distance be-
tween the spins increases. It is notable that all the parameters in the
figures are dimensionless.
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The concurrence Cl,l+r can be derived from the above cor-
relation functions. We find that liml→� Cl,l+r disappears for
r�2. Only two nearest spins are entangled, with
liml→� Cl,l+1=0.339 at B=0 �16�. Bulk concurrence
liml→� Cl,l+r between two spins at distance 1�r�5 is plot-
ted for various values of B in Fig. 2�b�, where the decay of
entanglement with the distance is also shown. For nearest-
neighboring spins, the concurrence goes �1 /B, disappearing
at B=1. Near this point, bipartite entanglement appears for
every r and any two spins in the chain become entangled,
although the magnitudes become smaller and smaller with r.
This is because B=1 is the factorizing point for the XX
model, with diverging entanglement range �17�. The one-
tangle liml→� �l behaves in a similar way.

IV. DISCUSSIONS

In this section we show how the ground state instability
and the edge entanglement are strictly related to the emer-
gence of quasi-long-range order. It is convenient to employ a
dual basis to describe the system: �n=�m�n�m

x . Once applied
to a fully polarized state, �n creates a topological excitation
�a kink� �6,18�. Indeed, any state with k spin flips �i.e., after
k crossings� can be viewed as a suitable combination of k
kink-antikink pairs. When B
1, there are no kinks and the
state is separable. Near the critical point, with B=1−�, the
ground state consists of a superposition of states with a
single spin flip, or a sea of condensed kink-antikink pairs �of
infinite length for N→��; such a condensation gives rise to
the divergence of the concurrence range. By decreasing B,
the size of the kink-antikink pairs decreases and their number
increases. At B=0, the ground state has a single �degenerate�
kink, with half of the spins pointing down and half pointing
up. The state is “highly” symmetric and every spin is maxi-
mally entangled with the rest of the chain, but bipartite en-
tanglement is present with the nearest neighbor only. This is
due to the fact that the concurrence depends �and it is always
smaller than� the longitudinal correlation function, which ul-
timately tends to zero because of the presence of the kinks.
Indeed, with quasi-long-range order �which arises because
the spin waves are massless�, the long-range correlation
function decays since the kinks are heavy. The critical region
is an instability line because the system is driven through
different Hilbert space sectors labeled by different quantum
numbers �the eigenvalues of the total magnetization �i�i

z�

with a different number of kinks-antikinks pairs. At finite
size the phenomenon of switching among states with a dif-
ferent number of kinks is witnessed by the sequence of
jumps in the entanglement, which are smeared out for N
→�, except at �B�=1 as evidenced by the partial state fidel-
ity.

Kinks are essentially bulk excitations and the picture
above is modified near the boundaries. Indeed, surface spins
share entanglement differently from bulk ones: for small
magnetic fields, every spin is highly entangled with the rest,
but the end spins participate essentially to bipartite entangle-
ment, while the bulk ones are rather involved in multipartite
correlations. On the other hand, near �B�=1, surface spins are
less entangled than those at the center �indeed, the first jumps
of �1 and C1,2 are smaller than the corresponding ones for
bulk spins�. Thus, end spins are less sensitive to the onset of
the critical region �as shown also by the fidelity�, while they
are more entangled when the quasi-long-range order is fully
established. This peculiar edge entanglement is reminiscent
of the solitonic edge states found in �4� and could constitute
a fingerprint for topological order in one dimension, valid
beyond our specific model. Finally, we note that preliminary
analysis has shown that the formalism we have developed
opens the way for understanding the role of cluster type
states �19� close to QPT, especially for quantum information
purposes. Indeed, a Hamiltonian for the cluster state can be
mapped onto a model with Ising order by means of the dual
transformations employed above. This provides a nontrivial
disentangling protocol for the cluster states �20� that will be
explored in a subsequent work.

Summarizing, through the study of the entanglement con-
tent and of the fidelity of the ground state, we have investi-
gated the quasi-long-range order in the XX model and its
connection to the quantum instability arising at finite size as
a result of the presence of topological excitations. We have
also discussed the special entanglement properties of the
edge spins arguing that they are a direct manifestation of the
topological character of the QPT.
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