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Thermal escape out of a metastable well is considered in the weak friction regime, where the bottleneck for
decay is energy diffusion, and at lower temperatures, where quantum tunneling becomes relevant. Within a
systematic semiclassical formalism an extension of the classical diffusion equation is derived starting from a
quantum mechanical master equation. In contrast to previous approaches finite barrier transmission also affects
transition probabilities. The decay rate is obtained from the stationary nonequilibrium solution and captures the
intimate interplay between thermal and quantum fluctuations above the crossover to the deep quantum regime.
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I. INTRODUCTION

Thermally activated escape over high-energy barriers can
be found in a huge variety of physical and chemical pro-
cesses [1-4]. While these issues have been studied for quite
a while now, the subject has gained new interest in the con-
text of quantum-information processing, where read-out de-
vices for superconducting quantum bits based on Josephson
junctions (JJs) have been implemented [5-7]. In these real-
izations the exponential sensitivity of the switching rate out
of the zero voltage state on the barrier topology has been
exploited to discriminate the qubit states. Recently, a new
type of detector (Josephson bifurcation amplifier) has been
developed where an underdamped microwave driven JJ is
operated in a bistable regime close to a bifurcation of two
stable dynamical states [8,9]. In this range the JJ acts as an
anharmonic oscillator which is extremely sensitive to ther-
mal and quantum fluctuations and may thus switch from one
dynamical state (small-amplitude oscillation) to the other one
(large-amplitude oscillation) or vice versa. Even though in
this type of switching process the escape happens to occur
across a dynamical rather than an energy barrier, in a moving
frame picture rotating with the frequency of the external
driving force, the situation can be mapped on a time-
independent escape problem with a nonstandard Hamiltonian
[10].

Accordingly, a classical rate theory has been developed
already two decades ago [11]. It is founded on Kramers’
seminal approach [12] to calculate the decay rate from the
steady solution of a corresponding time evolution equation
for the probability density. This approach has been substan-
tially extended in the 1980s [2], in particular, to lower tem-
peratures where below a so-called crossover temperature
quantum tunneling prevails against thermal activation
[13,14]. In between there is a broad range where both quan-
tum and thermal fluctuations are strongly intermingled. The
details of this behavior depend very much on the friction
strength [15,16]. Qualitatively, two regimes must be distin-
guished [2], namely, the range of moderate to strong friction,
where classically the bottleneck for escape is spatial diffu-
sion, and the range of weak friction, where the escape is
controlled by energy diffusion. In the former one, typically
realized in condensed phase systems, quantum corrections
have been derived within dynamical formulations as well as
within thermodynamical approaches [17,18].

1050-2947/2009/79(2)/022115(10)

022115-1

PACS number(s): 03.65.Sq, 05.40.—a, 82.20.Xr, 74.50.+r

More involved is the situation in the energy diffusive re-
gime, found in gas phase systems such as, e.g., ensembles of
atoms or molecules, since at lower temperatures an appropri-
ate time evolution equation in energy space is not at hand a
priori. In some approaches the classical energy diffusion
equation has been extended ad hoc by adding a loss term
which captures the finite transmission through the potential
barrier near its top [19,20]. The continuum version of a quan-
tum mechanical master equation has been the starting point
for other studies [21-23], where transition matrix elements
have been treated classically, however, while finite transmis-
sion and reflection probabilities appear as quantum mechani-
cal input. It was shown that quantum fluctuations lead to an
intricate behavior for low friction and that in certain ranges
of parameter space the reflection near the barrier top may
even prevail so that the escape rate shrinks below its classical
value. Classical transition probabilities have also been used
in [24] and inserted in a discrete version of a master equa-
tion. In [10] a master equation strictly valid only for har-
monic systems has been applied to study quantum effects in
the switching between dynamical states as described above.
Hence, what is really missing, is a consistent semiclassical
derivation of an energy diffusion equation for escape out of a
metastable well in the regime of intermediate temperatures
(above crossover) from a general master equation. Note that
below the crossover the energy diffusive domain ceases to
exist quickly with decreasing temperature. The main differ-
ence to previous treatments is that quantum effects like tun-
neling and reflection are treated systematically and thus must
also be taken into account in transition matrix elements, at
least for energies near the barrier top. This way, we obtain a
semiclassical generalization of the classical energy diffusion
equation which will be used in this paper to analyze the
impact of quantum fluctuations on the escape for a standard
model of an energy barrier. In a subsequent presentation the
situation described above, namely, quantum effects in the
switching between dynamical states will be treated.

The paper is organized as follows: In Sec. II we recall the
classical results and introduce the basic notations. In Sec. III
it is shown how to rederive the classical energy diffusion
equation from a semiclassical limit to the quantum master
equation, where tunneling is neglected. The latter process is
taken into account systematically in Sec. IV, where the main
result, namely, a quantum version of the classical energy
diffusion equation is derived. Quantum corrections to the
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escape rate for a standard potential model are obtained in
Sec. V and discussed in Sec. VI.
II. CLASSICAL REGIME

In the standard description of dissipative systems the total
Hamiltonian is of the form [16,25]

H=HS+HB+HSB
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where Hg contains the system part with a metastable poten-
tial

Vig) = lmwéqz(l - i), (2)
2 qo0
with a well region around ¢g=0 separated from a continuum
by an energy barrier of height AV= %mwéq%. The heat bath
Hp consists of a large number of harmonic oscillators lin-
early coupled via Hgp to the system.

To setup the stage and for later purposes we first consider
the well-known classical realm. There, after integrating out
the bath degrees of freedom the associated equation of mo-
tion for the system coincides with a generalized Langevin
equation [26]

t

mi(t) + Z—V + mJ ds(t—s)q(s) = £1). 3)
q

0

Here the influence of the heat bath at temperature T
=1/kgp is described by a damping kernel 9(¢) which is re-
lated to the Gaussian noise force &(r) with vanishing mean
via the dissipation fluctuation relation

@mam=%%hwu (4)

In the sequel we will assume that the bath memory time is
much shorter than other relevant time scales so that a Mar-
kovian kernel of the form (¢)=2vyd(t) applies.

Thermally activated decay in the regime of weak dissipa-
tion requires that the energy lost by a classical particle during
one period of oscillation in the metastable well is sufficiently
smaller than the thermal energy. Specifically, as first shown
by Kramers [12] the condition reads

YI(E=AV) < 1/B (5)

with the action I(E) along a periodic orbit being almost con-
stant for energies close to the barrier top, which is the rel-
evant energy range for the escape process. A convenient pro-
cedure to derive the rate for this process converts the above
Langevin dynamics in an equivalent equation of motion for
the probability distribution W(E, ¢,¢) to find orbits with en-
ergy E and phase ¢ at time ¢ in the well. Since for low
friction energy is almost conserved, while the corresponding
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phase oscillates fast, the latter one can be adiabatically elimi-
nated and one arrives at the energy-diffusion equation for the
marginal probability P(E,r) [12],

1J ) w(E)

P(E,f) = aiEA(E)(l + BOE ?P(E,t). (6)

Here, A(E) is the energy relaxation coefficient
A(E) = yI(E). (7)

The escape rate is determined by the stationary nonequilib-
rium distribution Py (E) to Eq. (6) which is associated with a
finite flux across the barrier and obeys the boundary condi-
tions that Py =0 for E>AV and that Py (E) approaches a
Boltzmann distribution in the well region. Accordingly, one
obtains for high barriers SAV>1 the classical Kramers re-
sult

I1(AV
w072( )ﬁe_ﬂAV.

1_‘cl: fco dEPﬁt(E) = (8)

0

The above expression can also be derived by working in a
multidimensional space including the system degree of free-
dom and the bath oscillators. One introduces normal mode
coordinates in the parabolic range around the barrier top,
where the total system is separable, and then studies the dy-
namics of the unstable normal mode in the presence of the
coupling to the stable ones due to the potential anharmonic-
ity. This methodology allows us to capture the full turnover
from the regime of weak dissipation considered here to the
regime of spatial diffusion for higher friction [27,28]. For
weak dissipation one recovers to leading order Eq. (8), while
an improved result including higher-order corrections (but
still away from the turnover region) reads as I'imp
=(\,/ wp)l'. Here, finite recrossing at the barrier top is de-
scribed by the Grote-Hynes frequency [29]

Y, 2

A= —+%—§ )

which describes the effective barrier frequency of the un-
stable normal mode, while w,, is the bare barrier frequency.
For the model (2) one has w,=w,.

III. SEMICLASSICAL DERIVATION OF THE
KRAMERS EQUATION

In a first step and as test-bed for the semiclassical ap-
proximation we derive here the classical Kramers equation
(6) from the Pauli-master equation. For this we follow the
approach developed in [30] for potentials with stable bound
states. Thus, we assume a number of N discrete energy levels
in the well E<AV and at this point neglect quantum tunnel-
ing through the barrier completely (cf. Fig. 1). At the end, N
will be taken to be very large so that one can work with a
quasicontinuum of states. Accordingly, we have

Hgny=E,|n), n=1,2,....N (10)

with the normalization
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FIG. 1. (Color online) Typical metastable well potential dis-
cussed in the text with quasistationary states deep in the well and a
continuum of states near the barrier top, around which a parabolic
barrier approximation applies.

(nlmy= 6, . (11)

Now, let p,(7) be the probability to find the system in discrete
state n at time ¢. Then, one can derive from the exact path
integral expression of the reduced density matrix for weak
coupling to the heat bath and not too low temperatures Pau-
li’s master equation, i.e.,

N
Bu() = 2 Wy up) = Wy up (0] (12)
m=0

The transition rates from state m to n are given by [31]

1 ee)
Wom= ;'f dt Tr3[<n|HSB(t)|m><m|HSB|n>PZq] (13)

with Trp denoting the trace over the bath, the coupling in the
interaction picture Hgp(r)=e st ¢ o=iHstHBIR - and
i =eP!8/ Try[ ePH5] the equilibrium bath density matrix. The
above expression can be evaluated explicitly in case of the
linear system-bath coupling and one arrives at the golden
rule type of formula

1
W, = ﬁ|<nlqlm>lzD(En—Em) (14)

with the bath absorption and emission captured by

D(E,-E) =2my(E,- E)n(E,-E}), (15)
where
_ 1
n(En—Ek)zm. (16)

The probability p, () is related to the probability P(E, 1) to
find the system in a state with energy between E and E
+dE at time ¢ via
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N

P(E,1) = X, 8(E - E,)p,(1) (17)
n=0

which allows us to reformulate the above master equation
(12) as

N
P(E’t) = 2 5(E - En)[Wn,mpm(t) - Wm,npn(t)]
m,n=0
N N-n
=2 X [SE=Ey) = NE=E)IW,p,p,(0).
n=0 lI=—n

(18)

A. Semiclassical wave function

To calculate the transition matrix elements in system
space we now apply the semiclassical WKB approximation
[30]. Up to second order in A one obtains for the wave func-
tions

(nlg) = (E,|q) = 5(E,|q) +(E,|q)*] (19)
with
N NE) . .
Elg)*: = *(ilh)So(E,q) (im/4) 20
(Elg) b (E’q)e (20)

and the action SO(E,q)=fZIp(E,q’)dq’ of an orbit starting at
¢, and running in time ¢ towards ¢ with momentum p(E,q")
at energy E [32]. The normalization is determined from

Eq. (11),
N(E) = \2mw(E)/m (21)

with w(E) being the frequency of the classical oscillation at
energy E. Note that forward and backward wave contribu-
tions in Eq. (20) are related by

[(E|q)*T* = (E|q)". (22)

The energy E,=FE of the discrete spectrum is given by the
quantization condition

1 1
Py jg dgp(E.q) =n+ 2 (23)

containing the action over periodic orbits in the well.

B. Semiclassical matrix elements

With the semiclassical wave function at hand we can now
calculate the transition matrix elements which enter the tran-
sition rates in Eq. (14). According to the restricted interfer-
ence approximation [33] we only keep the diagonal contri-
butions of forward and/or backward waves to obtain

q2
(E,lqlE,) = i f dqq((E,lq)(E,|q)” + (E,|lg)(E,|q)*)

q1

1
K fﬁ dg(E, ) q(E g = QL™ (24)

where ¢,,q, denote the left and the right turning points, re-
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spectively, of the periodic orbit with energy E. To calculate
QS”I'”) we exploit that due to [Hg,ql=%p/(im) the matrix
elements Q""" =(E, |q|E,) and P"" =(E,|p|E,) are related
via

P(n m) _ (E - E )Q(n m) (25)

This way one finds together with Eq. (20)

Q(n m)_ § w(E )w(E )
“‘ 2m(E —E) ] “IN p(E)p(E,)

h 1 dp
2ip(E,) dq

X ( p(E,) + ) ()So(Eypsq)=So )]

(26)

The exponential is further simplified by applying the semi-
classical expansion of energy differences based on Eq. (23),
i.e.,

h2
RA(E) = E,yy =~ E, = filo(E,) + Ilz[w(En)z]’ +o(h?),

27)

where here and in the sequel the prime at energy-dependent
functlons denotes the derivative with respect to energy.
Now, QSCI(E )=Q"™ m—n=1 can be systematically ex-

panded in powers of 7 based on So(E,,q)=So(E,,»q)
~—Hilw(E)E,,q)+ 5 Po(E,) [ w(E)I(E,.q)] with (E.q)
being the time a segment of a periodic orbit with energy
E needs to reach position ¢ from its turning point. The
expansion for the squared matrix element is thus found from
Eq. (26) to read [30] as

whl

002 = 0% + [QWJ', (28)

with
(l)(E _ % dqe—llw(E)t(E ,q) (29)

describing the classical transition amplitude. From this find-
ing the semiclassical expansion of the transition rates (14)
between states with energy E, and energy E,, such that E,
—E,=lhw(E,) is given by

2my 2 Ilmoy
Q(l)

sy [01)-

(30)

W= W(E,) = 22X poW +

C. Semiclassical expansion of the master equation

The above results are now used to determine the semiclas-
sical expansion of the master equation (18), which in turn
means to treat a large number of quasistationary energy
eigenstates in the well as a quasicontinuum. After some
straightforward manipulations (see Appendix A) one arrives
at
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(- m)*

P(E = E(&E) k!

N

X 2 [W(E)ANE) + W_(E)A* (E)]P(E,1).
=1

31)

In case of a harmonic system in the second sum only terms
with /=1 contribute and together with the energy indepen-
dence of its frequency w, the first sum gives rise to differ-
ential operators of the form exp(*fiwyd/JE). For anhar-
monic systems we proceed in the spirit of the semiclassical
expansion and take into account only terms up to k=2, i.e.,

P(E, t)—é( D, + aEDz)P(E 1) (32)

with

E W,(E)A"(E) (33)

D\(E) =
= k!

Combining this result with Eq. (30) provides the energy dif-
fusion equation in leading order in 7, namely,

. 14
P(E,t)=0—EA(1 ,Eo”_E>_P(E 1), (34)
where
N
A(E) = 2mw(E)ym 2, POY(E)?. (35)
I=—N

In the limit of a quasicontinuum of states (N> 1) this sum
can be recast with the help of Eq. (29) as

A(E) = 745 dgp(E,q) = yI(E) (36)
with the action of a periodic orbit with energy FE,

I(E) = jgdqp(E,q). (37)

Accordingly, we recover from Eq. (34) the classical Kramers
equation (6), i.e., P(E,t):E(CI)P(E) with

Ly = —yI(E)( ) wlE)

JoE B JE
The main result of this derivation is that up to second order
in the 7i-expansion (31) quantum effects in the energy diffu-
sion do not appear. Of course, the above procedure can be
elaborated to systematically include higher-order # correc-
tion. We will see in the sequel though, that for the barrier
crossing problem, finite reflection and transmission ampli-
tudes provide much larger contributions, which are formally
of order 1.

(38)

IV. ENERGY DIFFUSION FOR FINITE TRANSMISSION

In the preceding section the semiclassical wave functions
(19) and (20) were taken as stationary eigenstates in the well
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potential for all energies below the barrier top. The underly-
ing reasoning that finite barrier transmission does not play a
role, however, fails as the temperature is lowered. Namely,
for energies E<<AV the finite probability T(E) to tunnel
through the barrier and for energies £> AV the finite prob-
ability R(E) to be reflected from the barrier can only be
neglected as long as near the barrier top the thermal energy
scale kT by far exceeds the quantum scale fiw,. When this
does no longer apply the consequences are twofold: On the
one hand, in a range somewhat below AV discrete energy
levels are strongly broadened due to tunneling so that one
has a continuum of states in the well strongly coupled to the
continuum on the right-hand side of the barrier (see Fig. 1);
on the other hand, continuum eigenstates with £> AV gain a
longer lifetime in the well region due a finite reflection and
may thus influence the escape process as well. Note that
corresponding quantum effects are substantial since R(AV)
=T(AV)=1/2, and thus dominate against higher-order # cor-
rections (associated with higher- than second-order deriva-
tives in E) in the expansion (31) [30]. However, it is well
known that in the limit #—0 the functions R and T are
nonanalytical in A [see Eq. (58)] so that an expansion in
powers of # is not feasible. In a semiclassical approach we
thus proceed to work in a continuum representation right
from the beginning and treat low-lying states and higher-
lying states on equal footing. This approach is justified as
long as temperature is not too low and tunneling prevails
near the top of the barrier. Hence, instead of Eq. (17) we now
start with

P(E,1) = J pp () SE—E')dE'. (39)

Then, R(E)pg(t)dE is the probability to find the system at
time ¢ in a state with an energy between E and E+dFE inside
the well and T(E)pg(t) with T(E)=1-R(E) the probability
for tunneling out of the well. In case of finite barrier trans-
mission apart from transitions for states inside the well in-
duced by the heat bath, there is also a loss of population due
to tunneling through the barrier. Hence, the variation in the
probability pg(¢) to find the system in a state with energy E
in the well is equal to the probability that the system arrives
in the well from another energy £’ minus the probability that
the system leaves the state with energy E to another state in
the well region and minus the probability of tunneling out of
the well, i.e.,

R(E")pg: (1) ~

R(E)pEm)
n(E")

pe(t) = f dE,(WE,E’ E'.E n(E)

o(E)

- T(E) ZPE(I)» (40)

where n(E) is the density of states. Now, in generalization of
Eq. (18) we have
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P(E’f)=de’dE"<WE,,,E,%
= Wgr gr I’L(E”) 6(E - F ) — T(E) . PE(I)

(41)

with Wg g being the transition rate from the state with en-
ergy E to the state with energy E’, namely,

1 oo
Wep = ﬁf dt TrB[<E|HSB(t)|E,><E,|HSB|E>p§3q

1
= ﬁqum(E’,EﬂzD(E—E'), (42)

where Q,,(E’,E)=(E'|q|E). Here, the bath spectral function
D(E) is defined according to Eq. (15). The semiclassical
wave functions entering the transition matrix elements for
the system degree of freedom, however, must now include
the finite transmission and/or reflection probability. In the
energy range close to the barrier top, where tunneling domi-
nates in the temperature range considered, the WKB approxi-
mation is not applicable because the classical turning points
to the left and to the right of the barrier are not sufficiently
separated. In this situation, one exploits that the Schrodinger
equation for a parabolic barrier with barrier frequency w; can
be solved exactly. The proper eigenfunctions are then
matched asymptotically (sufficiently away from the barrier
top) onto WKB wave functions to determine phases and am-
plitudes of the latter ones. This way, one obtains

(Elg) = sN(E)[(Elq)™ + r(E)E|q)*] (43)

with the matrix elements (20) and the complex valued reflec-
tion amplitude r(E) of a parabolic barrier [34] related to the
reflection probability R(E)=|r(E)|>. The normalization fol-
lows from (E|E'Y=8(E-E') as

N e 2
( )_V% 1+R(E)

In case of vanishing transmission, E<AV and R— 1, one

(44)

recovers the previous result N(E) — 1/\hw so that it is pos-
sible to use Eq. (43) for all energies provided the length scale
where a parabolic approximation for the barrier applies is
much larger than the quantum mechanical length scale
i/ may,. This in turn requires a high barrier and thus follows
directly from the condition for metastability.

A. Semiclassical matrix elements

In a similar way as in Sec. III B we now calculate in the
semiclassical limit the transition matrix elements Q,,(E’,E)
for finite transmission through the barrier. One has
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dq[(E'|q)*q(Elq)”

Qqu(E'E) = J%N(E) f‘lz

+r(E)r(E")E'|q) q(E|g)"]
= N(E"N(E)[Q", + H(E)r(E")*Qqy], (45)

scl

where in generalization of Eq. (24)

1 q2
Ou(E'E) = n f dq(E'|q) ¢{E|q)*. (46)

a1

Note that in contrast to Qgﬁl’m), which is real, the transition
element O, is complex for finite tunneling amplitudes |7]
>0. Hence, Qg cannot be written as a loop integral as in

Eq. (24). To proceed, one introduces

E' -E=4. (47)
Now, exploiting again Eq. (25) one has
0l =0 + (3107 + k'), (48)
where
0(E) = %(f; ® dgeiteasn (49)
and

hao(E) y r'(q)
KO(E iEqan| _ P\
KB = is lf dge™ ( p(q)

h 817(61)) -
+- + z(qf _ q!e—m’&/hw(E)) )
ip(q)*8 q >

(50)

This latter contribution is a boundary term which vanishes
for the closed integral in Eq. (29). The A expansion of the
squared matrix element thus reads as

|Qqul* = N*Aqn + 8By + N'Com) (51)
with coefficients qu, Eqm, and E'qm specified in Appendix B.

B. Expansion of the master equation

We now proceed along the same way as done for a dis-
crete spectrum in Sec. III C with the substitutions #A;— &
and 2;6— [d&. Thus, we obtain from Eq. (41) the expansion

k
P(E,1) = E( )% f dSW(E)(- 5)k%
- T(E)= (E )P(E ) (52)

with Ws(E)=Wp g/ for E' —E= 6. The leading order terms in
the sum above with k=1 and k=2 are kept to get the energy
diffusion equation for finite transmission in the semiclassical

limit, i.e., P(E,T):ESCI)P(E,I), where
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( )

£ = <<a>+—<62>)R(E) TE)= = (53)

oE

Here, the moments of the energy fluctuations read as

o0

{ >‘<—E> .

Apparently, when comparing this expression with Eq. (33)
one observes that drift and diffusion coefficients D, corre-
spond, as expected, to (§)=((E'-E)*) for k=1,2, respec-
tively. Now, combining the expansion for the density of
states

d(SW&(E)g. (54)

n(E) = +O0(h) (55)

ho (E)
with Egs. (48)—(52) one finds upon evaluating the moments
(54) the first main result, namely, the semiclassical expres-
sion (for details see Appendix C) of the evolution operator in

the energy diffusive regime P(E ,t):ESCl)P(E ,0), i.e.,

e _ 0. 19 )w(E)R(E)_ w(E)
L _aEC(E)yI(E)<1+ﬂaE - T(E)Z
(56)
with
1+ R(E)?
C(E)=2m. (57)

Some remarks are in order here: First, for vanishing trans-
mission (R=1, T=0) one recovers from the above expression
the classical diffusion operator (38). This in turn proves what
we have said above, namely, that on this level of semiclassi-
cal expansion an energy diffusion operator can be derived
starting either from a discrete or a continuous spectrum in
the well. The difference is though, that the latter procedure
conveniently accounts for barrier tunneling near the barrier
top with the property that £S5V — £ in the range E<AV,
where R(E)— 1. Second, hlgher order A corrections in the
expansion (52) can now be calculated accordingly, where,
however, in case of a barrier crossing problem corresponding
contributions are much smaller than those originating from
quantum transmission and reflection. Third, in various previ-
ous works an operator similar to the above one but with the
factor C(E)=1 has been used to study quantum effects in
thermal activation in the low damping regime [20-22,35].
The important difference is that here we derived this operator
including its transition matrix elements within a consistent
semiclassical expansion of the underlying wave functions,
while in the former cases in Eq. (41) the corresponding clas-
sical expressions were adopted. Hence, the above equation is
the systematic generalization of the classical Kramers’ equa-
tion in energy space to lower temperatures.

V. QUANTUM ESCAPE RATE

The escape rate in the quantum regime can now be evalu-
ated similar as in the classical case by searching for the qua-
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sistationary energy distribution Py(E). For this purpose, we
start by specifying the known transmission and reflection
probabilities in a uniform semiclassical approximation, i.e.,

1
1 +exp[-S,(E)/h]’

T(E) = |«(E)|* =

1
HE))? = ———————, (58)

R(E) = 1+ exp[S,(E)/#]

where S,(E) denotes the Euclidian action of a periodic orbit
with energy E oscillating in the inverted barrier potential
—V(q). In the energy range near the barrier top, where tun-
neling dominates in the temperatures range considered here,
the action reduces to its value for a parabolic barrier, namely,
Sepp(E)=27m(E~AV)/w,. The above expressions thus
smoothly connect the energy range near the top with the
low-energy range, where T(E) drops exponentially. Hence,
deep inside the well the only quantum effects are zero-point
fluctuations. The reflection-dependent factor C(E) is always
larger than 1 which means that leaking out of the wave func-
tion by tunneling appears effectively as an increase in energy
loss C(E)yI(E)> yI(E) during one cycle of a classical orbit
in the well.

Now, in order to explicitly find the steady-state distribu-
tion Py(E) it is convenient to work with a dimensionless
energy measured from the barrier top, e=(E—AV)g, and to
introduce a dimensionless inverse temperature

0="hPBw,/2m. (59)
Then, one writes f(€)=[w(e)/2m|R(e)Py(e) so that from
P,=0 one arrives with Eq. (56) at
T(e)
R(e)

The boundary conditions here are such that f(e)—0 for €
>1 and that inside the well (¢ some 6 below AV) f(e)
— f(€) with the equilibrium distribution

Bﬁic(e)yl(e)(Hi)f(e)— B9 v (60
€ e

fgle)= PR, (61)

27ThZO
Here, the quantum partition function in the harmonic well
reads as
1 4 v

Zy= 2 , 62
0 woﬁﬁg Vi+wé+vn7 62)

with Matsubara frequencies v,=2mn/Aif. For vanishing

friction this reduces to the known result Zg,
=1/[2 sinh(wy#B/2)]. With
fle)=fple)g(e) (63)
Eq. (60) becomes
et + (e TCle) - Clell= 1 Te(e). (6

where we also exploited that the action varies smoothly in
the relevant energy range around €=0 (i.e., in an interval of
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some kgT, hiw, below the top) so that with I(e€) =I(e=0) one
defines p=ByI(0).

Analytical progress can now only be made by approxi-
mating the coefficient C(¢€). For this purpose we assume self-
consistently that g(e) becomes exponentially small in the
semiclassical sense for energies € of order 6 above the bar-
rier top. Then, Eq. (64) needs only to be considered in a
relevant range €< #- k with some constant k> 1 of order 1.
A very accurate approximation in this energy range is given
by

Cle<O-k)=1+ éeem (65)

for k<1.5. Since the final rate does not depend on the pre-
cise value of k, we choose k=1In(4) which ensures that C(¢)’
is very well approximated for all energies up to its maximum
located at e=1n(4) . The solution of Eq. (64) is then found in
terms of hypergeometric functions as

(O=.F 6 1 6 " e?
- ~—-——-a,;——-+a,1l—-0,—
1=, Ty Ty Ty 9
1 0 ef/ﬂ
+BeSF | -+ - —a,-+<-+a,1+6,— ,
2 2 2 9
(66)
with the coefficients
1 6 1 6 4
|l -z -a,---+al-0-—
1 2 2 2 2 9
B=-— (67)
4 1 9 1.6 4
oF a,-+-+al+6,——
2 2 T2 9

and

)2
_ [p(1 62;3662' (68)

A straightforward analysis now verifies our assumption that
g(€)—0 for € of order 6 above the barrier top.

The semiclassical approximation to the quantum escape
rate

Tym= f ’ dET(E)%?Pst(E) (69)
0

is obtained by exploiting £5VP =0 with Egs. (56) and (63)
as

dg(e)

Fe = - (70)

bjg(G)C(E)P

—e>1

Here, the lower limit lies in an energy interval some 6 below
the barrier top where the nonequilibrium distribution
matches onto the Boltzmann distribution in the well. In this
range C(€) =1, while still I(e) =I(e=0)=I(E=AV). To lead-
ing order in the friction strength we thus find the second
main result, i.e.,
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B sinh(wyh B/2)

scl — (woh,B/Z) |B|Fcl (71)

with the classical result specified in Eq. (8). The first factor
captures quantum effects (zero-point fluctuations) in the well
distribution, while the second one describes the impact of
finite barrier transmission close to the top. More details will
be discussed in the next section.

VI. DISCUSSION

Of particular interest are the leading quantum corrections
to the classical rate expression when either of the parameters
p or 6 becomes small. For somewhat larger friction (but still
sufficiently away from the turnover range) higher-order cor-
rections can also be accounted for along the lines described
in [22].

A. Quantum effects

To further analyze quantum effects in Eq. (71) we expand
the prefactor Y=I"i;/I' =)0, p) in the inverse temperature
0 as well as in the friction strength p. From Eq. (64) one
observes, however, that the limits p—0 and #— 0 are not
interchangeable: In the classical range and for energies be-
low the barrier top the right-hand side vanishes according to
T(€)/R(e)=exp(e/ §) — 0, while for any finite 6 it diverges
for p—0. This behavior reflects the fact that quantum me-
chanically a steady state with a finite flux out of the well
exists even in the absence of dissipation. Hence, we consider
first for fixed p quantum corrections to the classical high
temperature limit 6— 0 and gain

YV=1-0b,+ (by+ 7/6)+ O(&Ip). (72)

Here, the coefficient b; = 1.04 originates merely from the
expansion of B and describes the impact of finite barrier
transmission, while b, =0.20 is determined also by the well
partition function. An inverse friction dependence appears in
third-order terms, which in turn means that the above expan-
sion is only valid provided p remains finite and that its range
of validity shrinks with decreasing p. Interestingly, there ex-
ists a temperature range with an upper bound given by
by/(b,+m*/6)=0.56, where quantum effects reduce the es-
cape rate below its classical value and only for lower tem-
peratures, i.e., larger 6, does the quantum result exceed the
classical one (see Fig. 2). This finding has already been pre-
dicted in [21,22] with a quadratic temperature dependence in
leading order though, which relates directly to the fact that
classical transition matrix elements have been used in these
previous works. Apparently, the impact of quantum fluctua-
tions in Eq. (71) is enhanced and the suppression of the
escape due to a finite reflection at the barrier top is dimin-
ished. It is only for lower temperatures that the quadratic
dependence on the inverse temperature dominates and al-
ways leads to a rate increase compared to the classical result.

The leading quantum correction for p—0 at fixed tem-
perature can already be read off Eq. (64). Namely, the energy
range below the barrier top where the flux solution matches
onto the thermal equilibrium grows for p—0 according to
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2.0

0.0 0.1 0.2 0.3

FIG. 2. Escape rate normalized to the classical rate (8) versus
the dimensionless inverse temperature =7%w,B. Thin lines refer to
the result from [21] where C(E)=1 [cf. Eq. (56)], thick lines to the
new expression (71) for y/ wy=0.0015 (solid), 0.005 (dashed), 0.01
(dotted).

e~ 01n(p). To leading order one then obtains in this domain
d.g <—exp(€)/ p’, where the proportionality constant is deter-
mined by the boundary conditions and must be obtained
from the full solution (66). The leading order quantum cor-
rection to the rate prefactor scales thus like ) p“’, which is
nonanalytical in p [22]. The detailed calculation using large
parameter expansions of the hypergeometric functions [36]
gives

inh(wy8/2) T(1 - 0
- Snzafoaf;oﬂ/g; )le - 0;02%‘“ O(p™"1?). (73)

This behavior is illustrated in Fig. 3, where the rate becomes
extremely sensitive to € for weaker friction and lower tem-
peratures. It is interesting to note that for p—0 and suffi-
ciently high temperatures our result (73) coincides with the
result obtained previously in [21] since in this limit the

1
~ 0 F
=
%]
A
~
=
Sl
80 [ e
3
| =0
-——=. 0=127
2 0=2.527 —
. 1 . L
4 -3 -2 -1
log;o(v/wo)

FIG. 3. Escape rate normalized to the classical TST rate (I'pgp
=wy/2me ") as a function of the dimensionless friction strength
for various values of the dimensionless inverse temperature 6
=haw,B/27 (A=0 denotes the classical rate).
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matching happens for energies below the barrier top where
C=1 in Eq. (64).

B. Higher-order friction corrections

As already mentioned at the end of Sec. II the energy
diffusive limit can also be described by a normal mode
analysis in full configuration space. In [22] this approach has
been applied to include quantum effects due to a finite barrier
transmission, while transition matrix elements have been
treated purely classical. Based on the above analysis the gen-
eralization of the latter ones to the semiclassical domain is
straightforward. Of course, to leading order in the dissipation
strength one recovers Eq. (71). Higher-order corrections (still
above turnover though) appear on the one hand through w,
— N\, [see Eq. (9)] in the factor B, thus capturing the impact
of friction in the tunneling process. On the other hand, the
full partition function (62) of the damped harmonic oscillator
must be used in the well together with a factor describing the
influence of the stable normal modes around the barrier top.
This way, one gets

(1)2

.
B N —. 74
oﬁ,320| (= b)q_ll: v — @, + 1,y ()

V=
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APPENDIX A: MOMENTS OF ENERGY FLUCTUATIONS

In this Appendix, we specify how to write the master
equation (18) in a way, which is amenable to a systematic
semiclassical expansion. Therefore, we can use the
fi-expansion of the & function

5(E - E -hA (En))f(En)
( ﬁAl(En))

[5(15 E)+E(aE> k!

and rearrange the sum in Eq. (18) in the following way:

N N-n
> > fn) = E (2 [f(n.D) + f(n,~ D)]
n=0 l=-n =1 \n=0

1#0

-1
—Ef(n—z)— E fnl)) (A1)

n=N-I+1
In Eq. (18), there is f(n,l)=W(E,)P, and

W_(E,) =(E,_|q|lE,)=0 if n<I-1,

WUE,) ={E,.|qlE)=0 if n=N-I+1.

Therefore, the last two sums in Eq. (A1) vanish. Equation
(A1) may be inserted in Eq. (18) to give the final result given
in Eq. (31).
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APPENDIX B: COEFFICIENTS FOR TRANSITION
MATRIX ELEMENTS
Here we collect the coefficients appearing in the 7 expan-
sion of |Qyu|* in Eq. (51). One has
2
Agn=10(R*+ 1)+ R(Q% + Q)

and

By = 2NN [|QuP(R? + 1) + R4+ 05)]

as well as
= LR+ D]0ul + RI0Y) +(05)']

2p1 st 2 %' N2
+R|Qul’R" +r*r' Q7 +rr* Qg

+ (R + 1)(QuK* + Q5 K) + 2R(QuK + Q1 K*).

APPENDIX C: EXPANSION OF THE DIFFUSION
OPERATOR

In this Appendix we will expand the moments of the en-
ergy fluctuations (8) and (&%) in order to be able to write a
semiclassical expression for /:§§°1>.

In the first step we write (5) with Egs. (15), (42), (54), and
(55) as

=220 [ 435510

With the expansion of the Bose occupation function

1 1 1

5(5)=ﬁ5—_1zﬂ—5—5,

with Eq. (51) and the results of B we obtain the % expansion

2wmy 2(N“A N‘A (§+N4E))
(&= f_mdéﬁ 26 5 +—B .

The integration leads to

Yo

(="

[%(RZ + )l + é((RZ + N3N

2 4
LR +1N4( 21)’+RR’%wzl>} (C1)

where I denotes the action (37). In the same way one arrives
at

(&) = AEmY f oo VA _ e N

2 2
% Bs 2 ,3( Dol
(C2)

Now we are able to combine Egs. (C1) and (C2) with Eq.
(53) to get the evolution operator in the energy diffusive
regime (56).
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