
Kinetic energy contribution to the exchange-correlation energy functional
of the extended constrained-search theory

Katsuhiko Higuchi
Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Masahiko Higuchi
Department of Physics, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

�Received 30 May 2008; revised manuscript received 5 August 2008; published 13 February 2009�

We present the kinetic energy contribution to the exchange-correlation energy functional of the extended
constrained-search �ECS� theory by means of the generalized Bauer’s relation. Due to the nature of the
exchange-correlation energy functional being a function of the Bohr radius and e2, three kinds of expressions
for the kinetic energy contribution are obtained. These can be utilized as constraints in developing and/or
evaluating the approximate form of the exchange-correlation energy functional of the ECS theory. Further-
more, by combining three expressions with the virial relation, we derive other useful relations that include not
the kinetic energy contribution but only the exchange-correlation energy functional.
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I. INTRODUCTION

In the framework of the density-functional theory �DFT�
�1,2�, the constrained-search formulation �3–5� was origi-
nally proposed by Levy, and was extended to specific cases
by several workers. For instance, the electron density and
off-diagonal elements of the first-order reduced density ma-
trix were treated as basic variables in Levy’s original paper
�3�. Also, the extensions of the constrained search formula to
the spin-density-functional theory �SDFT� �6�, the
current-density-functional theory �CDFT� �7�, the pair
density-functional theory �PDFT� �8,9�, and the symmetry-
adopted version �10,11� have been done so far. Thus, the
constrained-search formulation has been pursued in specific
cases.

We have previously proposed the generalized framework
of the constrained-search formulation, in which arbitrary
physical quantities can be chosen as basic variables in addi-
tion to the electron density �12–14�. In this framework, the
extended version of the constrained-search formula is uti-
lized in defining the universal functional and the kinetic en-
ergy functional. Therefore, we call the framework the ex-
tended constrained-search �ECS� theory. The validity of the
ECS theory has been confirmed by revisiting various kinds
of previous theories �12,13� such as the SDFT �15,16�,
CDFT �17–24�, the Hartree-Fock-Kohn-Sham scheme
�25,26�, and the LDA+U method �27–30�. The ECS theory
has the possibility to provide a specially made theory for
each individual system, because quantities that characterize
the ground state of the system can be chosen as basic vari-
ables. Indeed, various kinds of quantities, for example the
pair density �31–36�, the local density of state at the Fermi
level �13�, and the spin current density �37� have been cho-
sen as basic variables so far.

In order to perform electronic structure calculations by
means of the ECS theory, we have to develop the approxi-
mate form of the exchange-correlation energy functional. For
this aim, the discussion on how to develop the exchange-
correlation energy functional of the conventional DFT is a

good reference. There are, in general, two strategies for de-
veloping the approximate form of the exchange-correlation
energy functional �14,38�. One is to utilize the coupling-
constant integration expression for the exchange-correlation
energy functional. Various kinds of approximations have
been proposed on the basis of the coupling-constant expres-
sion in previous theories �2,17,18,38–44�. These include the
local-density approximation �2,17,18,38�, the weighted-
density approximation �38,40–44�, and the average-density
approximation �38–44�. Along this strategy, we have already
derived the coupling-constant integration expression in the
ECS theory �14�. This expression is one of the good starting
points toward the development of the approximate form.

Another strategy is to employ as constraints exact rela-
tions that are fulfilled by the exchange-correlation energy
functional. In accordance with this strategy, approximate
forms of the exchange and correlation energy functionals
have been developed in the previous theories. For example,
the generalized gradient approximation �GGA� �45–47�, the
density-moment expansion method �48–52�, the local and
variable-separation approximation �53�, and the vorticity ex-
pansion approximation �VEA� �21–24� have been developed
in the DFT, SDFT, and/or CDFT. Concerning the exchange-
correlation energy functional of the ECS theory, some exact
relations have already been obtained �14,54�. We have pre-
sented the virial relation in the ECS theory �14�. Further-
more, by using the coordinate scaling of electrons and adia-
batic connection, Nagy has derived exact relations and
equations of hierarchy in the ECS theory �54�, similarly to
the case of the DFT �55,56�.

Along the latter strategy, exact relations that are associ-
ated with the kinetic energy contribution to the exchange-
correlation energy functional have also been derived in the
conventional DFT �26,57–61�. Since it is on the same order
of magnitude as the correlation energy for atomic and mo-
lecular systems �26,57�, the kinetic energy contribution is
one of the important issues in the conventional DFT. Bass
�58� has derived its useful formula within the conventional
DFT by using Bauer’s relation �59�. Also, Görling, Levy, and
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Perdew have revisited both Bauer’s relation and Bass’s ex-
pression within the constrained-search formulation of the
DFT �61�. An alternative expression for this kinetic energy
contribution can be obtained from the virial theorem �60�.

In this paper, the kinetic energy contribution to the
exchange-correlation energy functional is derived in the
framework of the ECS theory by generalizing Bauer’s rela-
tion. Furthermore, we shall derive the set of exact relations
that will be useful in developing and/or evaluating the ap-
proximate form of the exchange-correlation energy func-
tional of the ECS theory.

The organization of this paper is as follows. In Sec. II, a
generalized version of Bauer’s relation is derived in the
framework of the ECS theory. In Secs. III and IV, the relation
is utilized to present the kinetic energy contribution to the
exchange-correlation energy functional of the ECS theory.
Three kinds of expressions are presented. Furthermore, some
exact relations that can be used as constraints to the
exchange-correlation energy functional of the ECS theory
are derived in combination with the virial relation. Finally, in
Sec. V, we summarize the results and give some comments
on them.

II. GENERALIZATION OF BAUER’S RELATION
TO THE ECS THEORY

With reference to the derivation procedure of Bauer’s re-
lation �59,61�, let us start with the Hamiltonian that is aug-

mented by an arbitrary operator Ô via a scalar field �,

Ĥ = T̂ + gŴ +� vext�r��̂�r�dr + �Ô , �1�

where T̂, Ŵ, and �̂�r� are operators of the kinetic energy,
electron-electron interaction, and electron density, respec-
tively, and where g denotes the coupling constant for the
electron-electron interaction. It should be mentioned that if �
and g are equal to 0 and 1, respectively, then Eq. �1� becomes
the actual Hamiltonian of a many-electron system in an ex-
ternal potential vext�r�.

In the ECS theory �12–14�, arbitrary physical quantities
can be chosen as basic variables in addition to the electron
density ��r�. Here, suppose that the basic variable chosen is
denoted by X�r�. Using the ECS formula, the universal func-
tional is defined as

F��,X���,g� = Min
�→��,X�

���T̂ + gŴ + �Ô��� , �2�

where �→ �� ,X� indicates that the minimization is per-
formed among all antisymmetric wave functions which yield
the prescribed ��r� and X�r�. Of course, Eq. �2� becomes the
usual universal functional F�� ,X� in the case of �� ,g�
= �0,1�, i.e., F�� ,X��0,1�=F�� ,X�. It should be noted that
since the necessary and sufficient conditions for
N-representability of (��r� ,X�r�) are unknown except for in
specific cases, there may not exist some � that is associated
with (��r� ,X�r�) of interest. One possible way to avoid this
difficulty was recently proposed by Levy and Ayers �62�.

Here we shall give a comment on the existence and
uniqueness of the minimum on the right-hand side of Eq. �2�.

It is shown that the minimum exists for v-representable
(��r� ,X�r�), but it is an open question whether the minimum
exists or not for (��r� ,X�r�) that is both non-v-representable
and N-representable. Also, whether the minimum is unique
or not is the remaining issue that should be discussed. Al-
though such problems are pointed out and discussed in spe-
cific cases �4,5,10,11,15,63–72�, we shall proceed to a dis-
cussion under the assumption that the minimum uniquely
exists on the right-hand side of Eq. �2�, i.e., (��r� ,X�r�) is
supposed to be of that type.

If we assume the differentiability of Eq. �2� and denote
the minimizing wave function in Eq. �2� as ��� ,X��g, then
��� ,X��g obeys the following equation:

	T̂ + gŴ + �Ô +� v�g�r��̂�r�dr +� a�g�r� · X̂�r�dr

�����,X��g� = E�g����,X��g� , �3�

where E�g, v�g�r�, and a�g�r� are the Lagrange multipliers
that correspond to constraints on ��� ,X��g, i.e., ��� ,X��g is
normalized to unity, and yields both ��r� and X�r�. From Eq.
�3�, E�g is given by

E�g = ����,X��g�T̂ + gŴ + �Ô +� v�g�r��̂�r�dr

+� a�g�r� · X̂�r�dr����,X��g . �4�

Differentiating both sides of Eq. �4� with respect to � or g,
we get

�E�g

��
= ����,X��g�Ô����,X��g� +� �v�g�r�

��
��r�dr

+� �a�g�r�
��

· X�r�dr , �5�

�E�g

�g
= ����,X��g�Ŵ����,X��g� +� �v�g�r�

�g
��r�dr

+� �a�g�r�
�g

· X�r�dr . �6�

Here, the Hellmann-Feynman theorem has been used. On the
other hand, using Eq. �2�, we can rewrite Eq. �4� as

E�g = F��,X���,g� +� v�g�r���r�dr +� a�g�r� · X�r�dr .

�7�

Differentiating both sides of Eq. �7� with respect to � or g,
we also get

�E�g

��
=

�F��,X���,g�
��

+� �v�g�r�
��

��r�dr

+� �a�g�r�
��

· X�r�dr , �8�
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�E�g

�g
=

�F��,X���,g�
�g

+� �v�g�r�
�g

��r�dr

+� �a�g�r�
�g

· X�r�dr . �9�

Comparison of Eq. �5� with Eq. �8�, and that of Eq. �6� with
Eq. �9�, leads to

�F��,X���,g�
��

= ����,X��g�Ô����,X��g� , �10�

�F��,X���,g�
�g

= ����,X��g�Ŵ����,X��g� , �11�

respectively.
By utilizing Eq. �10�, we obtain

�

��
�F��,X���,1� − F��,X���,0���=0

= ����,X�01�Ô����,X�01� − ����,X�00�Ô����,X�00� .

�12�

Here, we shall suppose that ��r� and X�r� are noninteracting
v-representable, and that X�r� is a single-particle property
such as the spin density or paramagnetic current density.
Under these assumptions, ��� ,X�00 is equal to the minimiz-
ing Slater determinant in the definition of the kinetic

energy functional Ts�� ,X�=Min�→��,X����T̂���, where �
denotes the Slater determinant. This is because these

assumptions lead to the equation Min�→��,X����T̂���
=Min�→��,X����T̂���, i.e., F�� ,X��0,0�=Ts�� ,X� �14�. If we
denote the minimizing Slater determinant as ��� ,X�, then
we get ��� ,X�00=��� ,X�. Under this assumption, Eq. �12�
is rewritten as

�

��
�F��,X���,1� − F��,X���,0���=0

= ����,X��Ô����,X�� − ����,X��Ô����,X�� , �13�

where we have used the fact that ��� ,X�01 is identical with
the minimizing wave function ��� ,X� in the definition of

F�� ,X� �=Min�→��,X����T̂+Ŵ����. The left-hand side of
Eq. �13� can also be obtained by integrating the left-hand
side of Eq. �11� with respect to g from 0 to 1 and by differ-
entiating the result with respect to �. We have

�

��
�F��,X���,1� − F��,X���,0���=0

=
�

��	�0

1

����,X��g�Ŵ����,X��g�dg

�=0

. �14�

Substitution of Eq. �14� into Eq. �13� leads to

����,X��Ô����,X�� − ����,X��Ô����,X��

=
�

��	�0

1

����,X��g�Ŵ����,X��g�dg

�=0

. �15�

Next, we shall associate the right-hand side of Eq. �15�
with the exchange-correlation energy functional of the ECS
theory. For this purpose, we define the functional
Exc�� ,X���� by

Exc��,X���� = F��,X���,1� − F��,X���,0� − U��� ,

�16�

with

U��� =
e2

2
� � ��r���r��

�r − r��
drdr�. �17�

As mentioned above, since F�� ,X��0,1� and F�� ,X��0,0�
are equal to F�� ,X� and Ts�� ,X�, respectively, Exc�� ,X����
becomes the exchange-correlation energy functional
Exc�� ,X� of the ECS theory in the case of �=0. Namely, we
have

Exc��,X��0� = Exc��,X� . �18�

Using Eq. �11�, Eq. �16� is rewritten as

Exc��,X���� = �
0

1 dF��,X���,g�
dg

dg − U���

= �
0

1

����,X��g�Ŵ����,X��g�dg − U��� .

�19�

Since U��� is independent of �, substitution of Eq. �19� into
Eq. �15� leads to

����,X��Ô����,X�� − ����,X��Ô����,X��

= 	 �Exc��,X����
��



�=0

. �20�

If the ground-state values of basic variables are denoted by
�0�r� and X0�r�, then the ECS theory ensures that ���0 ,X0�
is the ground-state wave function �0. In addition, ���0 ,X0�
is the Slater determinant that is constructed from the solu-
tions for the single-particle equation of the ECS theory.
When ��r�=�0�r� and X�r�=X0�r�, Eq. �20� becomes

��0�Ô��0� − ����0,X0��Ô����0,X0��

= 	 �Exc��0,X0����
��



�=0

. �21�

This is the generalization of Bauer’s relation. The original
Bauer’s relation �59� has been successfully used for the deri-
vation of the kinetic energy contribution to the exchange and
correlation energy functional of the conventional DFT �58�.
In the following section, we shall utilize Eqs. �20� and �21�
in order to derive the kinetic energy contribution to the ex-
change and correlation energy functional of the ECS theory.

III. KINETIC ENERGY CONTRIBUTION TO Exc[� ,X]

In the ECS theory, the kinetic energy contribution to
Exc�� ,X� is expressed as T�� ,X�−Ts�� ,X� �12–14�, where
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T�� ,X� and Ts�� ,X� are given by ���� ,X��T̂���� ,X�� and

���� ,X��T̂���� ,X��, respectively. In order to derive the ki-

netic energy contribution, let us choose T̂ as Ô in Eq. �20�.
We have

T��,X� − Ts��,X� = 	 �Exc��,X����
��



�=0

. �22�

This is an expression for the kinetic energy contribution to
Exc�� ,X� �73�. It should be noticed that the right-hand side
of Eq. �22� is an incalculable expression. In the DFT, the
right-hand side of Eq. �22� is rewritten in a calculable ex-
pression by Bass �58�. Namely, it is rewritten in terms of the
Bohr radius �aB� dependence by treating aB as a variable
parameter �58�. The calculable expression by Bass is called a
useful formula �74�, and is applied to the homogeneous elec-
tron gas �58,74� and inhomogeneous systems �58,61� in
evaluating the kinetic energy contribution to the exchange-
correlation energy functional. Therefore, it is undoubtedly
meaningful to replace the incalculable expression �Eq. �22��
with a calculable one. In order to rewrite the right-hand side
of Eq. �22� by a calculable expression, we shall formally
treat e2, m, and �2 as variable parameters, although they are
fundamental physical constants. As shown below, this en-
ables us to rewrite the right-hand side of Eq. �22� in terms of
the e2, m, or �2 dependence.

In order to get the �, e2, m, and �2 dependences of
Exc�� ,X����, it is necessary to know those of ��� ,X��g.
Since ��� ,X��g is the minimizing wave function defined in

Min�→��,X�����1+��T̂+gŴ���, the equation

Min�→��,X�����1 + ��T̂ + gŴ���

= ����,X��g��1 + ��T̂ + gŴ����,X��g�

holds. Dividing both sides of this equation by e2, we notice
that ��� ,X��g is also the minimizing wave function in

Min�→��,X�����1+����2 /me2�T�̂+gW�ˆ ���, where T�̂ and W�ˆ

are defined as T�̂= �m /�2�T̂ and W�ˆ = �1 /e2�Ŵ, respectively.
Applying the Lagrange multiplier method, we get the equa-
tion for ��� ,X��g,

	�1 + ��
�2

me2 T̂� + gŴ� +� v�r��̂�r�dr +� a�r� · X̂�r�dr

�����,X��g� = �����,X��g� , �23�

where �, v�r�, and a�r� stand for the Lagrange multipliers. In
order to discuss the �, e2, m, and �2 dependences of

��� ,X��g, we assume that X̂�r� is normalized by a factor
f�e2 ,m ,�2� so that it is independent of e2, m, and �2, i.e.,

X̂�r� is given by x̂�r� / f�e2 ,m ,�2� if x̂�r� is the usual physi-
cal operator. For example, instead of the paramagnetic cur-
rent density ĵp�r�, the normalized quantity �m /��ĵp�r� is sup-

posed to be chosen as X̂�r�. In Sec. IV, we will discuss this
assumption again from a practical point of view.

Under the above-mentioned assumption, we shall first
consider the �, e2, m, and �2 dependences of the Lagrange
multipliers v�r� and a�r�. Since these Lagrange multipliers

are determined by requiring that ��� ,X��g yields the pre-
scribed basic variables, they can be denoted as v�� ,X��r�
and a�� ,X��r�, respectively. For the present purpose, let us
suppose that the Lagrange multipliers are determined for the
prescribed ��r� and X�r�, and consider the case in which �,
e2, m, and �2 are changed such that �1+���2me2 is left in-
variant. In this case, the first and second terms of Eq. �23� are
unchanged. If we tentatively substitute v�� ,X��r� and
a�� ,X��r� into Eq. �23�, then the left-hand side of Eq. �23� is

exactly the same as before due to the assumption on X̂�r�.
Then, we again obtain ��� ,X��g as the solution. Since
��� ,X��g yields the prescribed ��r� and X�r�, v�� ,X��r�
and a�� ,X��r� are just Lagrange multipliers that are needed
in this case. Thus, both v�� ,X��r� and a�� ,X��r� are left
invariant under the changes such that �1+���2me2 is left
invariant. Namely, we can say that both v�� ,X��r� and
a�� ,X��r� depend on �, e2, m, and �2 only through the factor
�1+���2me2. This leads to the important fact that ��� ,X��g
depends on �, e2, m, and �2 only through the factor
�1+���2me2.

In order to express this dependency explicitly, we shall

rewrite ��� ,X��g as �̃�� ,X�(�1+����2 /me2� ,g). By using
this expression, Eq. �19� is rewritten as

Exc��,X����
e2 = �

0

1 ��̃��,X���1 + ��
�2

me2 ,g��
�Ŵ���̃��,X���1 + ��

�2

me2 ,g�dg

−
1

2
� � ��r���r��

�r − r��
drdr�. �24�

The right-hand side of Eq. �24� can be regarded as a function

of �1+���2me2. If Ẽxc�� ,X�(�1+����2 /me2�) is defined as
the right-hand side of Eq. �24�, then we get

Exc��,X���� = e2Ẽxc��,X���1 + ��
�2

me2� . �25�

Since Exc�� ,X��0� is equal to Exc�� ,X� as shown in Eq. �18�,
substitution of �=0 into Eq. �25� leads to

Exc��,X� = e2Ẽxc��,X�� �2

me2� . �26�

This relation means that Exc�� ,X� is a function of the Bohr
radius aB�=�2me2� and e2. Differentiating Eq. �25� with re-
spect to �, and changing e2, m, and �2 as variables, we obtain
three kinds of expressions for ��Exc�� ,X���� /����=0,

	 �Exc��,X����
��



�=0

= Exc��,X� − e2	 �Exc��,X�
��e2� 


�2,m
�27a�

=− m	 �Exc��,X�
�m



�2,e2

�27b�
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=�2	 �Exc��,X�
���2� 


e2,m
. �27c�

The reason why three different expressions are obtained is
due to the fact that Exc�� ,X� is a function of aB and e2 �see
Eq. �26��. By substituting Eqs. �27� into Eq. �22�, the kinetic
energy contribution to Exc�� ,X� can be obtained as follows:

T��,X� − Ts��,X� = Exc��,X� − e2	 �Exc��,X�
��e2� 


�2,m

�28a�

=− m	 �Exc��,X�
�m



�2,e2

�28b�

=�2	 �Exc��,X�
���2� 


e2,m
. �28c�

The right-hand sides of Eqs. �28� contain the derivatives of
Exc�� ,X� that are calculable enough. Thus, the right-hand
side of Eq. �22� is rewritten by three kinds of calculable
expressions �Eqs. �28��.

Equations �28� show the exact relations between Exc�� ,X�
and T�� ,X�−Ts�� ,X�. If we get one of the two functionals,
then each of Eqs. �28� can be utilized as a constraint to
another functional. Also, focusing only on the right-hand
sides of Eqs. �28a�–�28c�, these equalities can be utilized as
constraints in developing the approximate form of Exc�� ,X�.
It should be noted that the kinetic energy contribution to
Exc��� of the conventional DFT is given in terms of the de-
rivative with respect to not e2, m, or �2 but the Bohr radius
alone �58�. The above-mentioned relations that include
Exc�� ,X� alone can be obtained only by expressing the ki-
netic energy contribution in terms of multiple kinds of
derivatives.

The difference T�� ,X�−Ts�� ,X� is alternatively estimated
by using the virial relation �14�. The virial relation in the
ECS theory has been derived under the assumption that
X0�r� is transformed into �dX0��r� by the coordinate scaling
of electrons, where � is the scale factor. Under this assump-
tion, the virial relation for isolated systems is given by �14�

T��0,X0� − Ts��,X� + Exc��0,X0�

+� �0�r�r · �	�	Exc��,X�
	��r�

�
�=�0
X=X0


dr

+� X0�r� ·	�r · �− d + 3��	Exc��,X�
	X�r�

�
�=�0
X=X0


dr = 0.

�29�

Combining Eqs. �28� with Eq. �29�, we can eliminate
T�� ,X�−Ts�� ,X� and obtain the exact relations that include
only Exc�� ,X�,

− Exc��0,X0� −� �0�r�r · �	�	Exc��,X�
	��r�

�
�=�0
X=X0


dr

−� X0�r� ·	�r · �− d + 3��	Exc��,X�
	X�r�

�
�=�0
X=X0


dr

= Exc��0,X0� − e2	 �Exc��0,X0�
��e2� 


�2,m
�30a�

=− m	 �Exc��0,X0�
�m



�2,e2

�30b�

=�2	 �Exc��0,X0�
���2� 


e2,m
. �30c�

Equations �30� can also be utilized as constraints in develop-
ing the approximate form of Exc�� ,X�. In addition, we may
employ Eqs. �30� as sum rules in the so-called virial method
�75,76�, in which the virial relation �29� is used in calculat-
ing the orbital-dependent exchange-correlation potential. It is
preferable to use Eqs. �30� in place of Eq. �29�, because we
do not need T�� ,X�−Ts�� ,X� in Eqs. �30�.

Next, we shall divide Eqs. �28� into two parts, i.e., ex-
change and correlation parts, because the exchange and cor-
relation energy functionals, Ex�� ,X� and Ec�� ,X�, are often
developed in parts as in the case of the GGA �45–47� and
VEA �21–24�. Similarly to the DFT, Ex�� ,X� of the ECS
theory is defined by

Ex��,X� = ����,X��Ŵ����,X�� − U��� . �31�

Since it is the minimizing Slater determinant in the
definition of Ts�� ,X�, ��� ,X� satisfies the equation

Min�→��,X����T̂����= ���� ,X��T̂����� ,X��. By applying the
Lagrange multiplier method, the equation for ��� ,X� can be
obtained as follows:

	T̂ +� vs�r��̂�r�dr +� as�r� · X̂�r�dr
����,X��

= �s����,X�� , �32�

where vs�r�, as�r�, and �s are the Lagrange multipliers. In the
same way as the discussion below Eq. �23�, we can show that
both vs�� ,X��r� and as�� ,X��r� are independent of e2, m,
and �2. Therefore, it is concluded that ��� ,X� is also inde-
pendent of them.

Differentiating Eq. �31� with respect to e2, m, or �2 with
the aid of the above-mentioned fact, we get

Ex��,X� − e2	 �Ex��,X�
��e2� 


�2,m
= 0, �33a�

	 �Ex��,X�
�m



e2,�2

= 0, �33b�

	 �Ex��,X�
���2� 


e2,m
= 0. �33c�
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Concerning the correlation energy functional, it is given
by Ec�� ,X�=Exc�� ,X�−Ex�� ,X�. By using Eqs. �33�, Eqs.
�28� can therefore be rewritten as

T��,X� − Ts��,X� = Ec��,X� − e2	 �Ec��,X�
��e2� 


�2,m

�34a�

=− m	 �Ec��,X�
�m



�2,e2

�34b�

=�2	 �Ec��X�
���2� 


e2,m
. �34c�

These exact relations Eqs. �33� and �34� can be employed as
constraints in devising the approximate form of Ex�� ,X� and
Ec�� ,X� as well as in the virial method �75,76�.

IV. DISCUSSION

In this section, we shall discuss the assumption that X̂�r�
is independent of e2, m, and �2. Let us consider the case in

which x̂�r� is chosen as the basic variable instead of X̂�r�.
Here recall that x̂�r� is the operator of the usual physical

quantity and is related to X̂�r� as X̂�r�= x̂�r� / f�e2 ,m ,�2�.
The universal functional of this case is defined by f�� ,x�
=Min�→��,x����T̂+Ŵ���. The search area in this definition
is the set of antisymmetric wave functions that yield both
��r� and x�r�. It should be noticed that antisymmetric wave
functions in this set simultaneously yield both ��r� and X�r�.
Therefore, the set of antisymmetric wave functions yielding
both ��r� and x�r� coincide with that of antisymmetric wave
functions yielding both ��r� and X�r�. Consequently, it can

be concluded that Min�→��,x����T̂+Ŵ���=Min�→��,X����T̂
+Ŵ���. This equation leads to

���,x� = ���,X� , �35�

where ��� ,x� is the minimizing wave function in the defi-
nition of f�� ,x�. The same discussion holds for the minimiz-
ing Slater determinant in the kinetic energy functional.
Namely, we have

���,x� = ���,X� , �36�

where ��� ,x� is the minimizing Slater determinant in

Min�→��,x����T̂��� �=ts�� ,x��. Using Eqs. �35� and �36�, we
can conclude the following equations:

�xc��,x� = Exc��,X� , �37�

�x��,x� = Ex��,X� , �38�

�c��,x� = Ec��,X� , �39�

where �xc�� ,x� is the exchange-correlation energy functional
of the ECS theory including x�r� as a basic variable.

On the other hand, by means of the relation x�r�
= f�e2 ,m ,�2�X�r�, the functional of ��r� and X�r� is for-
mally obtained from that of ��r� and x�r�. For example, we
have

�xc��,x� = �xc��, f�e2,m,�2�X� ¬ �̄xc��,X� , �40�

where �̄xc�� ,X� is the functional of ��r� and X�r�. From Eqs.
�37� and �40�, we can immediately construct �̄xc�� ,X�
�=Exc�� ,X�� and evaluate it by means of exact relations that
are derived in the previous section.

These discussions give the conditions that indicate which
type of quantities can be included in the formula of the ki-
netic energy contribution. For example, if we choose the
paramagnetic current density as X�r�, then the present results
are applicable as mentioned above. However, that is not the
case if the sum of the paramagnetic current density and spin-
current density is chosen as X�r�. Thus, the assumption in-
troduced is not a restriction in usual cases.

V. CONCLUDING REMARKS

In the framework of the ECS theory, we have derived the
generalized version of Bauer’s relation �59�. The relation
represents the difference between expectation values of an
arbitrary quantity with respect to the ground-state wave func-
tion and that with respect to the Kohn-Sham determinant of
the ECS theory. This expression is similar to that of the
conventional DFT, except that the arbitrary physical quantity
X�r� is added to it as the basic variable.

The generalized Bauer’s relation is successfully used to
derive the kinetic energy contribution to the exchange-
correlation energy functional. Since the exchange-correlation
energy functional of the ECS theory can be expressed as a
function of the Bohr radius and e2, three kinds of expressions
for the kinetic energy contribution are derived. That is, the
kinetic energy contribution is expressed in terms of three
kinds of derivatives with respect to e2, m, or �2, while it is in
terms of the derivative with respect to the Bohr radius alone
in Bass’s expression of the conventional DFT �58�.

Here, we shall give a comment on the importance of this
type of work. As mentioned in Sec. I, exact relations have
been effectively used in developing the approximate form of
the exchange-correlation energy functional in the DFT,
SDFT, CDFT, and so on. For example, the GGA is also de-
veloped with the aid of many kinds of exact relations. It is
one of the established methods to utilize as constraints exact
relations that are fulfilled by the exchange-correlation energy
functional. Many works concerning exact relations have
been done so far. We derive exact relations in this paper.
Their exact relations will be utilized as constraints in devel-
oping and/or evaluating the approximate form of the
exchange-correlation energy functional of the ECS theory.

Furthermore, by means of these expressions, we can
eliminate the kinetic energy contribution term in the virial
relation of the ECS theory. The resultant relations �Eqs. �30��
include not the kinetic energy contribution but the exchange-
correlation energy functional alone, which also could be
strong sum rules not only for the ECS theory �12–14� but
also for the virial method �75,76�. Let us go into details. In
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the virial method, the virial relation �Eq. �29�� is utilized in
calculating the exchange-correlation potential. Since the
virial relation includes the kinetic energy contribution, we
need it in order to obtain the exchange-correlation potential.
As mentioned in the paper, we can eliminate the kinetic en-
ergy contribution term in the virial relation by using exact
relations obtained here. Consequently, we may calculate the
exchange-correlation potential without the kinetic energy

contribution. This is an example of an effective application
of exact relations obtained in this paper.
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