
Numerical strategies for quantum tomography: Alternatives to full optimization

Max S. Kaznady* and Daniel F. V. James†

Department of Physics and Centre of Quantum Information and Quantum Control, University of Toronto, 60 St. George Street, Toronto,
Ontario, M5S 1A7, Canada

�Received 12 September 2008; published 9 February 2009�

We examine a variety of strategies for numerical quantum-state estimation from data of the sort commonly
measured in experiments involving quantum-state tomography. We find that, in some important circumstances,
an elaborate and time-consuming numerical optimization to obtain the optimum density matrix corresponding
to a given data set is not necessary and that cruder, faster numerical techniques may well be sufficient; in other
words, “the best” is the enemy of “good enough.”
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I. INTRODUCTION

The goal of quantum-state tomography �1–3� is to esti-
mate, from a series of projective measurements performed on
identically prepared quantum systems, the density matrix of
the underlying ensemble of which these quantum systems are
realizations. This process is necessarily nondeterministic in
nature, relying on the frequency of experimental outcomes to
estimate probabilities—a process that converges to the actual
probabilities only in the infinite limit. Thus the reconstruc-
tion of the quantum state cannot be exact in any realistic
experiment. Furthermore, these measurements can only yield
estimates of the on-diagonal elements of the density matrix,
but not directly any data about the off-diagonal elements. It
is necessary to perform various unitary operations on the
system �or, equivalently, to perform projective measurements
in a variety of bases� in order to obtain such information
about the complete state. Indeed, for a system with a discrete
spectrum of n levels, the density matrix is specified by n2

−1 independent real parameters, and each parameter will re-
quire a separate measurement. Even after the required mea-
surements have been performed, the experimenter faces the
problem of estimating the density matrix from incomplete
and noisy data. The problem is aggravated by the constraints
that quantum physics places on the density matrix: It must be
a non-negative, unit-trace Hermitian matrix. Today, the ap-
proach that is usually taken is to determine computationally
what is the “best” such positive, unit-trace Hermitian matrix
which corresponds to a particular data set and what confi-
dence can we place on such an estimate. The most compli-
cated such tomographic measurement performed to date �4�,
on an 8-qubit �256-state� system, realized in a trapped ion
experiment, was limited not by the experimental capabilities
of the system, but rather by the complexity of the numerical-
state recovery problem �5�. This computational complexity,
while underscoring the awesome computational potential in-
herent in quantum information, nevertheless presents an ex-
perimenter, intent on exploring larger and larger Hilbert
spaces, with considerable tribulation when characterizing the
performance of his or her apparatus.

In this paper we examine the problem from an entirely
computational perspective. Specifically, we address the con-
cern that maybe we are being too fastidious in approaching
the state reconstruction problem. One can obtain a positive,
unit-trace Hermitian matrix from tomographic data in a va-
riety of ways. First, and most simply, one could generate a
linear reconstruction of the noisy data �which tends to give a
nonpositive matrix� and ensure positivity by setting the nega-
tive eigenvalues to zero, then renormalizing to ensure a unit
trace. This we call the “quick and dirty” �QD� approach. A
second strategy is to assume that the state must be nearly
pure—after all, quantum technologies are usually in the busi-
ness of trying to create pure states—and to simplify the com-
putation by finding the pure state most compatible with the
data. We call this the “forced purity” �FP� approach. A third
approach is full optimization—i.e., the application of some
constrained optimization routine—with a specific metric to
define the “distance” between our data set and a positive
density matrix, and search parameter space until the absolute
best �i.e., global minimum� density matrix is obtained. Our
goal is specifically to address the following questions: when
is the rigorous optimization required, and when will some
shortcut technique be good enough? This is a question that
can only be addressed by simulation: since we need to know
a priori the underlying density matrix of the ensemble to
compare the recovered estimates. Starting with assumed den-
sity matrix, we employ a pseudorandom number generator to
create some “pseudoexperimental data” with appropriate
probability distribution. The various approaches to density
matrix recovery are applied to it, and the result is compared
with the initial density matrix to assess the accuracy of the
recovery techniques. Our analysis concerns solely multiple
correlated two-level systems—e.g., the qubits of a small-
scale quantum computer; however, many of the techniques
and results we present are readily adaptable to more general
systems.

The paper is organized as follows: In Sec. II we discuss
the generic tomography problem for a single qubit, which is
generalized to the n-qubit case in Sec. III, describing specifi-
cally a number of memory management techniques required
for scalability of the code, and our approach to the optimi-
zation routine �using gradient-based algorithms and employ-
ing the matrix differential calculus�. The code itself is de-
scribed in detail in Sec. IV and our results in Sec. V.
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II. ONE QUBIT

In this section, we will review the basic concept of
quantum-state tomography by considering the estimation of a
state of a single two-level system, or qubit.

A. Parametrizing the density matrix

The density operator describing the state of a system �6� is
a Hermitian, non-negative definite operator of unit trace. The
set of Pauli matrices �7� ��̂0 , �̂1 , �̂2 , �̂3� form, for a two-
dimensional space, a complete orthonormal set of matrices,
so that �̂ can be expanded as a linear combination of �̂� as

�̂ = �
�=0

3

r��̂�, �1�

where

r� = Tr��̂��̂�/2. �2�

Since Tr��̂�=1, r0=1 /2; further, since �̂†= �̂, the r� are all
real parameters.

The r� may be determined experimentally as follows:
Suppose we perform a measurement, specified by the projec-

tor �̂0, on the system; the probability of obtaining a positive

outcome is Tr��̂�̂0�. Repeating this measurement N times on
identically prepared systems, the expected number of times
we obtain this outcome will be

n0 = NTr��̂�̂0� = N�
�=0

3

Tr��̂��̂0�r�. �3�

If one repeated this procedure of multiple measurements

for a set of four different measurement operators, ��̂��
��=0,1 ,2 ,3�, one obtains a set of linear equations

n� = N�
�=0

3

B�,�r�, �4�

where

B�,� = Tr��̂��̂�� . �5�

By choosing the measurement operators ��̂�� judiciously,
one can ensure that B�,� is nonsingular, and hence that the
desired parameters r� can be obtained from the observed
quantities n�: viz.,

r� = �N�−1�
�=0

3

�B−1��,�n�. �6�

Substituting r� into Eq. �1�, we obtain the density matrix as a
function of measurement outcomes, provided the measure-
ments have no noise or errors in them.

Following the precedent of Ref. �8�, we use the standard
Stokes measurement basis for our numerical experiments.
These measurement operators are given by

�̂0 =
1

2
��0	
0� + �1	
1��, �̂1 = �0	
0� ,

�̂2 = �D̄	
D̄�, �̂3 = �R	
R� , �7�

where �0	 and �1	 represent the two states of our qubits and

�R	 =
1
�2

��0	 − i�1	� , �8�

�D̄	 =
1
�2

��0	 − �1	� . �9�

A natural metric to compare the recovered density matrix
�̂meas with the actual density matrix �̂true is the fidelity �9�,
defined as

F��̂meas, �̂true� = �Tr����̂meas�̂true
��̂meas�1/2��2. �10�

However, when we invert the measurement data linearly, our
recovered “density matrix” �̂linear is not non-negative definite
and hence we have the specific problem that fidelity turns out
to be complex �not to mention the more general problem that
�̂linear cannot be interpreted as a density matrix of a physical
state�. We have to correct the matrix obtained by linear re-
construction to obtain a proper density matrix.

B. Quick and dirty reconstruction

As a simple initial approach to this problem, we can de-
compose �̂linear into its spectral representation—i.e.,

�̂linear = ÛD̂Û†, �11�

where D̂ is the diagonal matrix of eigenvalues �which are

real, but not necessarily positive� and Û is a unitary matrix.

We then set all negative eigenvalues in D̂ to zero, call this

matrix D̂�, and obtain

�̂QD =
ÛD̂�Û†

Tr�D̂��
.

This provides a rough initial estimate of the state; one of the
goals of our analysis in this paper is to assess how good an
estimate it is.

C. Forced purity

An alternative approach to the problem of obtaining a
non-negative definite density matrix from measured data is
to assume that the state is pure. Recall that for a pure state
��	 the density matrix can be described by a single ket as
�̂pure= ��	
��. Such a density matrix for n qubits has eigen-
value 0 with degeneracy 2n−1 and eigenvalue 1 with degen-
eracy 1.

Because �̂pure is also Hermitian, it can be written in its
spectral decomposition as

�̂pure = V̂D̂pureV̂
†,

where D̂pure is the diagonal matrix with a single element

equal to 1, all other elements being zero; V̂ is a unitary
matrix.
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During linear inversion of a pure state, the eigenvalues of
�̂linear may be negative, but sufficiently close to eigenvalues
of �̂pure. The idea of forcing purity on such a state is to obtain

�̂FP =
V̂linearD̂�V̂linear

†

Tr�D̂��
,

where D̂� is the diagonal matrix obtained from D̂ by setting
the largest eigenvalue equal to 1, all others being equal to 0.

D. Maximum likelihood

Any Hermitian 2�2 non-negative unit-trace matrix can
be uniquely parametrized using the Cholesky decomposition
as

�̂ideal�t1,t2,t3,t4� =
T†T

Tr�T†T�
, �12�

where

T�t1,t2,t3,t4� = � t1 0

t3 + it4 t2

 . �13�

Thus a “physical” density matrix can be specified by the four
parameters t�= �t1 , t2 , t3 , t4�. The ideal of the maximum-
likelihood method is to perform a search of the t� parameter
space until we find a �̂ideal�t�� which is most likely to have
generated the observed data �n0 ,n1 ,n2 ,n3�. To assess this
likelihood, suppose that each datum n� is a statistically in-
dependent, Poisson-distributed random variable with expec-
tation value n̄�. Further, if n̄� is a large number, the Poisson
distribution is well approximated by the Gaussian
distribution—i.e.,

P�n0,n1,n2,n3� =
1

Nnorm
�
�=0

3

exp�−
�n� − n̄��2

2n̄�
� , �14�

where Nnorm is the normalization constant. If each datum n�

is garnered from N repetitions of a measurement carried out
on a system in state �̂ideal�t��, it is reasonable to make the
identification n̄��t1 , t2 , t3 , t4�=N
	���̂ideal�t1 , t2 , t3 , t4��	�	, and
the likelihood of a given parameter vector t� generating the
data �n0 ,n1 ,n2 ,n3� can be obtained by substituting this iden-
tity into Eq. �14�. We are then in a position to determine the
parameter vector for which this probability is maximized,
and hence the most likely density matrix. Instead of maxi-
mizing Eq. �14�, it is equivalent, and mathematically more
convenient, to minimize the following function:

L�t�� =
1

2�
�=0

3 �n� − NTr��̂��̂ideal�t����2

NTr��̂��̂ideal�t���
. �15�

In order to optimize this function efficiently, we need to
compute its gradient. This is not an easy feat, as the closed
analytic form does not simplify well and finite differencing is
too inefficient. The situation becomes exponentially worse as
we increase the number of qubits.

III. GENERALIZATION TO N-QUBITS

In the previous section, we outlined the possible routines
for performing tomography of a single qubit. We now extend
these routines to a higher number of qubits and see how the
quick and dirty and forced purity methods compare to the
elaborate and time-consuming maximum likelihood estima-
tion �MLE� routine.

At first, the problem looks very simple—any state of each
qubit is completely characterized by only four measure-
ments. Hence, numerically the MLE procedure is rather easy
to implement—we just need to optimize a function of four
variables, which is achieved by the simplex or Powell opti-
mization algorithm in a fairly short amount of time �10�,
without computing the gradient. However, 2 qubits, when
correlated, are not characterized by 8 measurements, but by
4�4=16 measurements, because we are looking at a system
of 2 qubits. If n is the number of qubits, then we would need
to obtain 4n measurement outcomes in some fixed
4n-dimensional basis. Due to wave function collapse, we can
only perform one projection measurement at a time �an out-
come is an average over multiple identical projection mea-
surements�, and for each projection measurement on one qu-
bit, we have to cycle through all possible combinations of
projection measurements for the other qubits.

Let us introduce the following set of operators which gen-
eralize the Pauli matrices for n-qubit systems:


̂� =
1

�2n
�̂�1

� �̂�2
� ¯ � �̂�n

, �16�

where 0����3 for all 1���n are the digits of the index
� in base 4. For example, if �=33 for a 4-qubit system,


̂33= �̂0 � �̂2 � �̂0 � �̂1, since 33 is equal to 0201 in base 4.
For convenience, we have included a normalization constant,

so that Tr�
̂�
̂��=
�,� �in keeping with the convention used
in Ref. �8��. Similarly, we write the projection operators for
our measurement states as

�̂� = �̂�1
� �̂�2

� ¯ � �̂�n
. �17�

The Cholesky decomposition of �̂ remains the same, except
that T�t�� is a 2n�2n matrix specified by 4n parameters t�
= �t1 , t2 , . . . t4n�; i.e.,

T�t�� = �
t1 0 0 0

t2n+1 + it2n+2 t2 0 0

] � ]

t4n−1 + it4n ¯ t2n+1−4 + it2n+1−3 t2n

� . �18�

A. Computational constraints and memory-efficient linear
reconstruction

In order to perform computational numerical tomography
in practice, we need to take the following into consideration.

�i� Computational efficiency: what is the upper bound on
the number of floating point operations of a certain tomog-
raphy algorithm?
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�ii� Amount of memory available: what is the upper bound
on the size in computer memory of the largest data structure
used by the tomography algorithm?

Kronecker tensor products increase the size of resultant
matrices exponentially. The goal is to obtain the density ma-
trix which has 2n�2n elements. So we cannot have any other
data structure in memory which would be larger; otherwise,
the problem of increasing the number of qubits becomes con-
strained by that particular data structure.

For example, consider the approach described in Ref. �8�,
in which a 4n�4n complex matrix B�,� �n-qubit generaliza-
tion of the matrix defined by Eq. �5�� was stored in memory.
Table I outlines how much memory is needed to store a 4n

�4n complex floating point matrix using 32 bits to store the
real or imaginary part.

It must also be noted that any type of storage media has to
be able to perform read and write operations quite fast be-
cause this data structure would be accessed quite frequently.
This is simply not the case for most conventional hard
drives: Using standard personal computers of the type typi-
cally integrated into quantum optics laboratories, one is in
practice limited to about 7 qubits, without resorting to more
powerful computer hardware. However, a data structure of
maximum size of 2n�2n would allow to go as high as 15–16
qubits, at which point the density matrix itself would become
a storage problem. Thus our goal is to avoid storing matrix
B�,� into memory. Instead, we can obtain its inverse element
by element. This can be achieved as follows: The matrix B�,�
for an n-qubit system is defined by the equation

B�,� = Tr���̂�1
� ¯ � �̂�n

���̂�1
� ¯ � �̂�n

��

= Tr��̂�1
�̂�1

�Tr��̂�2
�̂�2

� ¯ Tr��̂�n
�̂�n

� . �19�

Defining the 4�4 matrix ���,��
=Tr��̂��

�̂��
� for all 1��

�n, which can be easily inverted �provided a suitable set of

measurements ��̂�� ��=0,1 ,2 ,3� has been chosen�, we find

B�,�
−1 = ��1,�1

−1 ��2,�2

−1
¯ ��n,�n

−1 , �20�

where, as before, ��1 ,�2 , . . . ,�n� are the base-4 digits of the
index � �and similarly for ��.

This allows us to calculate the initial linear reconstruction
of the density matrix from the observed data
�n0 ,n1 , . . . ,n4n−1�: viz,

�̂linear = �
�=0

4n−1


̂�r�, �21�

where

r� = �N�−1 �
�=0

4n−1

�B−1��,�n�, �22�

in a computationally efficient manner. Now the only size
constraint on linear reconstruction is the density matrix itself.

Of course, storing the projection measurement matrices �̂� is
also problematic—a quick solution is to generate these ma-
trices when they become needed—one can store certain ten-

sor combinations which make up �̂� into memory and only

tensor on additional combinations to obtain the desired �̂�.

B. Maximum likelihood

Extending the maximum-likelihood function �MLF� from
Eq. �15� to n qubits, we obtain

L�t�� =
1

2 �
�=0

4n−1 �NTr��̂��̂ideal�t��� − n��2

n�

, �23�

where to simplify calculations we assumed that we can ap-
proximate variance by the measurement outcome average in
the denominator. Minimizing this function becomes a severe
computational problem. Most gradient-free optimization rou-
tines are rather slow and only work well for a low number of
dimensions, whereas here we have a number of dimensions
which grows exponentially with the number of qubits. We
have to use a numerical routine that is more efficient; this
usually involves calculating the gradient and/or the Jacobian.
The finite-differencing approach is too slow for computing
the gradient �a fact which we verified computationally� be-
cause evaluating the MLF is exponentially inefficient.
Hence, we require an analytic closed form for the gradient
and/or the Jacobian matrix.

It should also be noted that if the region of optimization is
convex, we are looking at a nonlinear convex optimization
problem, for which a number of algorithmic approaches
should work. We decided to take the simplest approach pos-
sible: Optimize the MLF with built-in constraints using an
algorithm which works on both convex and nonconvex sets.
We reduce the computation time by deriving an analytic
form for the gradient. An alternative approach is to derive a
different MLF with an external set of constraints and launch
another convex optimization algorithm similar to linear pro-
gramming �11,12�.

TABLE I. Amount of memory required to store a 4n�4n com-
plex floating-point matrix using 32 bits to store the real or imagi-
nary part.

Qubits Bytes Gigabytes

1 1.28�102 1.28�10−7

2 2.05�103 2.05�10−6

3 3.28�104 3.28�10−5

4 5.24�105 5.24�10−4

5 8.39�106 8.39�10−3

6 1.34�109 1.34

7 2.15�109 2.15

8 3.44�1010 3.44�101

9 5.50�1011 5.50�102

10 8.80�1012 8.80�103

11 1.41�1014 1.41�105
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1. Initial algorithmic attempts

The following algorithms were considered to optimize L
�10,13�, mostly because they are available in libraries such as
GNU Scientific Library �GSL� �14�:

�1� Simplex method.
�2� Powell’s quadratically convergent method.
�3� Levenberg-Marquardt nonlinear least squares.
�4� Conjugate-gradient method.
�5� BFGS algorithm.
Routines 4 and 5 need to be able to perform gradient

computation and line search in an efficient manner and have
to converge to the desired minimum, even if started far away
from it.

Let us start with the line search routines—the following
algorithms can be implemented for a line search.

�1� Successive parabolic interpolation.
�2� Newton’s method.
�3� Golden section search �GSS�.
In order to pick one algorithm out of these three, we need

to first know if the region of optimization is convex or not,
and if so, then how closely does it resemble a quadratic
function.

2. Matrix calculus derivation

Regardless of the method chosen for the line search in
Sec. III B 1, we still need an efficient way of computing the
gradient. As established earlier, finite differencing requires
too many function evaluations and does not satisfy our com-
putational efficiency constraints.

The goal of this section is to find the gradient of L in
closed form. This procedure can then be extended to finding
second-order partial derivatives for the Hessian matrix and
differentiation with respect to a constant for the line search
routine.

We begin with the gradient derivation. This reduces to
finding

�L
�t�

=
�L
�T

�T

�t�

. �24�

Using matrix calculus, it suffices to find �L
�T , which would be

a matrix of size 2n�2n in our case. Certain elements of this
matrix would represent the values of �L

�t�
:

�L�t��
�T

=
N

Tr�T†�t��T�t���2 �
�=0

4n−1 �NTr��̂��̂ideal�t��� − n�

n�

�
� �Tr�T†�t��T�t���

�Tr��̂�T†�t��T�t���
�T

− Tr��̂�T†�t��T�t���
�Tr�T†�t��T�t���

�T
� . �25�

Defining the real quantities

A�t�� = Tr�T†�t��T�t��� �26�

and

B��t�� = Tr��̂�T†�t��T�t��� , �27�

we find

Tr��̂��̂ideal�t��� =
B�

A
. �28�

Further, we will denote the matrix derivatives of these quan-
tities with respect to the Cholesky matrix T as follows:

B���t�� =
�Tr��̂�T†�t��T�t���

�T
, �29�

A��t�� =
�Tr�T†�t��T�t���

�T
. �30�

Because matrix calculus is only well defined for real-valued
matrices, let us write

T = T�t�� = X + iY, �̂� = K� + i��. �31�

Then, using the matrix calculus theorems in Sec. III A, we
find

A� = 2X + i2Y , �32�

B�� = 2XK� − 2Y�� + i�2X�� + 2YK�� . �33�

Denoting

C� = �NB� − An�

An�
�, D� = �AB�� − B�A�

A2 � , �34�

we find that the matrix derivative of L can be written in the
compact form

�L
�T

= L��t�� = N �
�=0

4n−1

C�D�, �35�

where C� is a scalar and D� is a 2n�2n matrix. In fact, the
upper diagonal of L��t�� and imaginary part of the diagonal
are of no use to us—values of the gradient are seeded in the
original locations of t�, so L��t�� has to be disassembled into
real and imaginary parts and then the gradient vector has to
be filled from the resulting matrices.

IV. DESCRIPTION OF THE CODE

The goal is to scale tomography routines up to a higher
number of qubits on a standard single-processor workstation
by refining the tomography algorithms to remove the nu-
merical complexity bottleneck from experimental post-
processing. In this section, we describe how the codes were
implemented.

A. State tomography routine

Four routines provide tomography and run in the follow-
ing order.

�1� Linear reconstruction—provides the linear reconstruc-
tion of the data by inverting the measurements into a matrix
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�̂linear, outlined in Sec. III A, which has all the characteristics
of a density matrix, except positive semidefiniteness.

�2� Quick and dirty—quickly fixes �̂linear into �̂QD by set-
ting all negative eigenvalues to zero and renormalizing.

�3� Forced purity—for pure states, eigenvalues are
known. This routine forces eigenvalues of �̂linear or �̂QD �does
not matter which one� into those of a pure state, also ensur-
ing a unit-trace condition.

�4� MLE—we use the elements of the quick and dirty
density matrix as a starting point for our optimization rou-
tine. We then launch the BFGS2 algorithm supplied with
GSL.

Our progress while developing these routines is as fol-
lows:

�1� Started with our own simplex method code in MAT-

LAB, which only optimized 4 qubits—a gradient-based algo-
rithm was needed.

�2� Wrote the conjugate-gradient routine in MATLAB using
a GSS line search routine and using a finite-difference gra-
dient, which allowed for 5–6-qubit tomography.

�3� Applied matrix differential calculus to the gradient and
obtained a closed-form expression, which severely improved
MATLAB routines for up to 7 qubits.

�4� Experimented with Newton’s method and successive
parabolic interpolation line searches, which did not work in
the end. This led us to suspect that the region of optimization
is not convex.

�5� Rewrote everything in C using GSL and employed
GSL’s BFGS2 algorithm and its collection of line searches—
this pushed our routines to 9 qubits �MLE limits to 9 qubits,
but not forced purity�.

All codes are currently implemented in C using GSL, with
prototype routines also available in MATLAB.

B. Creating pseudo-experimental data

Generally, if one wants to simulate a physical state char-
acterized by �̂physical with 100�% experimental-state error,
then

�̂physical = �1 − ���̂theoretical + ��̂random,

where �̂theoretical is a density matrix of some desired state and
� is a real-valued constant, which simulates experimental
“state error”—the physical state always differs from the in-
tended state by some small amount; a random density matrix
is created as follows

R = 2rand�2n� − 1 + i�2rand�2n� − 1� , �36�

�̂random =
R†R

Tr�R†R�
, �37�

where the rand function creates a 2n�2n matrix of pseudo-
random values, sampled from a Uniform �0,1� distribution
�15�.

For instance, the following results in a noisy
Greenbengen-Horne-Zeilinger �GHZ� state:

�̂GHZ = �1 − ��
1

2
�100 . . . 01	
100 . . . 01� + ��̂random.

The simulation routine creates a physical density matrix,
simulates experimental measurement outcomes, and then at-
tempts to reconstruct this density matrix. Knowing what the
reconstructed density matrix should be enables us to com-
pare how well each reconstruction routine works for a certain
number of qubits.

The expected number of positive outcomes is obtained
using Eq. �3�: viz.,

n̄� = NTr��̂�1
� �̂�2

� ¯ � �̂�n
�̂physical� ,

where N is a constant which is equivalent to the number of
times repeated projective measurements were taken.1 We
then add experimental noise to the measurements2 using

n� = Poisson�n̄�� ,

where Poisson��� generates a random number from a Pois-
son distribution with mean � using a probability integral
transformation.

V. RESULTS

In this section, we discuss the conclusions to be drawn
from the numerical trials described in the previous sections.
In particular, we address the question posed in the title of this
paper: Do we always need an expensive MLE routine to
perform tomography or would quick and dirty or forced pu-
rity methods suffice?

We compare the quick and dirty and forced purity routines
to the MLE routine for states with wide variations of entropy
and entanglement. We also show how well these routines
scale in run-time and how experimental errors affect the re-
constructed states as the number of qubits increases.

The linear entropy, which specifies the degree of purity of
the state, is defined as

Slinear��̂� =
2n

2n − 1
�1 − Tr��̂��

for n qubits.
The tangle �i.e., the square of the concurrence �18�� is

defined for 2 qubits as

� = �max��4 − �1 − �2 − �3,0��2,

where �’s are the square roots of the eigenvalues of the ma-
trix ��̂��̂y � �̂y��̂*��̂y � �̂y���̂, which is guaranteed to be
Hermitian �16�, �̂y � �̂y is the spin-flip matrix, and �̂* is the
complex conjugate of density matrix �̂. For larger numbers
of qubits, it can be used as a lower bound on the degree of
entanglement �17�.

1N was set to 104 in our tomographic routine, but it can be any
positive integer as long as n� values resemble realistic photon
counts, and not fractions less than 1.

2Note that if the measurements are performed with zero noise,
then the linear reconstruction routine performs tomography of the
density matrix with fidelity value of 1.
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A. Linear entropy vs tangle plane

We observed that for 2 qubits, certain states produce fi-
delities of over 90% using the quick and dirty routine and
consistently high fidelities using MLE �see Figs. 1–3�. We
generated 2�106 pseudorandom density matrices, which
filled the entire entropy-tangle plane. Random density matri-
ces had to be biased in order to evenly cover the entire plane.
For example, to fill the plane below the Werner state line, we
used

�̂� = �
1 − 
2 0 0 
�1 − 
2

0 0 0 0

0 0 0 0


�1 − 
2 0 0 
2
� , �38�

which biased the tangle in

�̂trial = �2�̂random + �1 − �2��̂�,

where

0 � � � 1, 0 � 
 � 1/�2.

Varying 
 changes tangle and varying � changes entropy.
We cycled through 100�100 different combinations of 

and � and for each setting performed 100 trials, sampling
�̂random from Uniform �−1,1� probability distribution for each
trial. We can also move along the maximally entangled
mixed state �MEMS� line by varying �:

�̂MEMS = �
g��� 0 0 �/2

0 1 − 2g��� 0 0

0 0 0 0

�/2 0 0 g���
� ,

where

g��� = ��/2, � � 2/3,

1/3, � � 2/3,
�

and

�̂trial = �2�̂random + �1 − �2��̂MEMS.

We further sampled 1000�1000 different settings of � and �
to fill the area around the MEMS line: In this case increasing
� increases the distance from the MEMS line.

This suggests that for states with low entropies �pure
states�, the quick and dirty routine should work in theory.

FIG. 1. �Color online� On the Slinear and � plane one can see that
the 2�106 generated states covered the entire plane; above each
point is the corresponding fidelity of the recovered state using maxi-
mum likelihood. Notice that most fidelity values lie between 90%
and 99%. The fidelity values create a thin plane, which suggests that
the standard deviation is low for various states. However, some
high-entropy states cannot be recovered well even with the expen-
sive MLE procedure.

FIG. 2. �Color online� The same 2�106 states as in the previous
figure and the projection on Slinear and � plane is identical. Notice
how the quick and dirty routine also fails to reach high fidelity
values as the states become more mixed. However, for pure states
quick and dirty is comparable to MLE in fidelity values.

FIG. 3. �Color online� Again, same 2�106 states, but this time
with forced purity performed. Notice that for 2 qubits forced purity
appears to be worse than quick and dirty even for pure states—this
is not the case when the number of qubits increases, as we explore
in the next section.
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This is not surprising, as from the spectral decomposition,
we can see that all states with the Slinear=0 property, regard-
less of the value of �, share one thing in common: eigenval-
ues. More precisely, for n qubits, eigenvalue 0 occurs with
degeneracy 2n−1 and eigenvalue 1 occurs with degeneracy
1. So setting negative eigenvalues to zero adjusts the eigen-
values closer to the eigenvalues of a pure state. If we know
that the state is pure ahead of time, we can just reset the
eigenvalues to the known values after the linear inversion
procedure and obtain the density matrix—this is further ex-
plored in Sec. V C.

B. Performance for n qubits

In order to extend this assessment to larger numbers of
qubits, while still varying the amount of entanglement and
disorder, we considered a generalized version of the Werner
state for n qubits. Since this state slices through the entire
plane presented in Sec. V A, we can see how well tomogra-
phy operates on states with various tangle and entropy values
by varying the location along the Werner-state line. An ad-
justed Werner-state density matrix is given by
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FIG. 4. �Color online� MLE works well for 2 qubits, but for a
higher number of qubits there is a significant drop in fidelity. A 10%
state error is quite large, but even at this error pure states are recon-
structed better than mixed states as one can see around �=1 �highly
entangled pure state�.
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FIG. 5. �Color online� The quick and dirty routine does not
perform very well even for pure states, although for a certain num-
ber of qubits it appears to work. On the contrary, it appears to
improve as the number of qubits is increased.
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FIG. 6. �Color online� For “forced purity” we can confidently
say that the routine improves significantly, as the number of qubits
is increased. And for pure entangled states, this routine is almost as
good as MLE, but runs in a fraction of the time.
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FIG. 7. �Color online� For each number of qubits, this plot
shows the number of times each projection measurement has to be
repeated for a state, in order to obtain an accurate estimate of the
measurement outcome. With a 5% state error, this number of mea-
surements will allow the forced purity routine to estimate the state
with 90% fidelity. There is an exponential increase in how many
times the experiment has to be repeated. Due to time constraints,
only a few samples were obtained for 7 qubits.
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�̂Werner = �GHZ	
GHZ�� +
�1 − ��

2n Î ,

where

�GHZ	 =
1
�2

��00 . . . 0	 + �11 . . . 1	�

and Î is the 2n�2n identity operator, representing a maxi-
mally mixed state. When �=1 we obtain a state located at
Slinear=0 and �=1, and when �=0 we obtain Slinear=1 and �
=0. We then vary � from 0 to 1 in 101 increments and for
each value of � perform tomography 100 times, for a fixed
number of qubits, with a 10% state error �see Figs. 4–6�.

C. Forced purity tomography for pure states

In order for forced purity to work, the measurement out-
comes have to be sufficiently close to their true values. To
address the issue of “how close,” we simulated pure states,
with 11 distinct tangle values evenly spaced between 0 and 1,

and then started with N=10—i.e., N repeated projective
measurements for each measurement outcome. We then in-
creased N by 1 at each iteration and repeated forced purity
tomography for some number of qubits. As soon as N al-
lowed forced purity to perform tomography at 90% fidelity,
the routine was terminated and the value for N recorded; see
Fig. 7.

One of the possible reasons why MLE tomography did
not yield high fidelity values for a larger number of qubits is
that it also required more accurate estimates of the measure-
ment outcomes. Because MLE produced almost equal fideli-
ties to forced purity for pure states, we would expect the
same number of N to work for MLE tomography.

D. Run time and fidelity analysis

Section V C suggests that pure states do not require ex-
pensive MLE techniques for tomography. Nonetheless, it is
interesting to see how MLE scales in run time compared to
quick and dirty and forced purity routines. Here we present
run times and fidelity estimates for a pure state with ��0.5
and a slightly mixed state with the same tangle value which
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FIG. 8. �Color online� This graph shows the average fidelities of
estimated pure states recovered using the quick and dirty approach
for different numbers of qubits at 5% state error. In total 11 tangle
values equally spaced between 0 and 1 were used and 10 recoveries
performed for each tangle value. This shows that while quick and
dirty appears to work for 2 qubits, in the long run it linearly wors-
ens and cannot be used as a suitable tomography algorithm.
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FIG. 9. �Color online� Using the same procedure as in Fig. 8, we
then performed forced purity on each state. We said that for the
Werner-state line the forced purity routine improves overall as the
number of qubits increases. This is not the case for pure states, and
as we can clearly see, forced purity slightly degrades, but overall
still remains at over 90% fidelity even for 7 qubits.

TABLE II. Run times in milliseconds for a state at ��0.5 and Slinear=0. “Iteration time” indicates how
long the line search routine runs for each iteration of the BFGS routine. Abbreviations: MLE: complete
maximum-likelihood reconstruction. QD: quick and dirty method. FP: forced purity.

n MLE Iteration time QD FP

2 �4.0�1.0��101 1.0�0.5 �1.9�0.5��10−1 �1.7�0.4��10−1

3 �1.0�0.3��103 �1.2�0.8��101 �2.9�0.3��10−1 �2.6�0.2��10−1

4 �1.6�0.3��104 �1.8�0.7��102 1.1�0.1 1.1�0.2

5 �3.5�0.6��105 �0.4�0.1��104 9.4�4.0 �1.2�0.4��101

6 �6.0�0.3��106 �6.0�1.6��104 �5.8�0.3��101 �6.0�0.5��101

NUMERICAL STRATEGIES FOR QUANTUM TOMOGRAPHY: … PHYSICAL REVIEW A 79, 022109 �2009�

022109-9



lies on the Werner-state line �see Tables II and III�. We also
show that even the expensive MLE routine decreases in fi-
delity as we increase the number of qubits. For this analysis
we assume that an experiment can be performed a suffi-
ciently large number of times, 106 to be exact.

In conclusion, forced purity results in lower fidelity val-
ues for 2 qubits than quick and dirty, but then increases in
fidelity and converges to MLE’s fidelity for a higher number
of qubits �see Figs. 8 and 9�.

VI. CONCLUSION

We have demonstrated that if the experiments can be per-
formed a sufficient number of times, then using the forced
purity routine, tomography can be performed in a quick and
robust manner. However, as the entropy of a state increases,
a much more expensive MLE routine has to be used to per-
form tomography, which does not scale well as the number
of qubits increases. Quantum computing requires only pure-
state tomography, for which we have obtained a scalable and
efficient routine.3
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APPENDIX: MATRIX DIFFERENTIAL CALCULUS
THEOREMS

The following theorems were used to derive an analytic
expression to the gradient of the MLE function, which is
more computationally efficient than the finite-difference gra-
dient computation as the MLE function itself is expensive to
evaluate.

If M is a real-valued matrix and T=X+ iY, T�C, then
�18–20�

�M

�T
=

�M

�X
+ i

�M

�Y
. �A1�

The following are defined for real square matrices �20�:

�Tr�XTY�
�X

= Y , �A2�

�Tr�XTX�
�X

= 2X , �A3�

�Tr�KXTY�
�X

= YK , �A4�

�Tr�KXTX�
�X

= XK + XKT. �A5�

We begin by observing that

Tr�T†�t��T�t��� = �
�=0

4n−1

t�
2, �A6�

which immediately implies that

�Tr�T†�t��T�t���
�t�

= 2t�.

Hence, using matrix calculus, we have the result

�Tr�T†�t��T�t���
�T

= 2X + i2Y . �A7�

Equation �A7� is a compact means of stating the result of Eq.
�A6� using a 2n�2n matrix, where the value of the derivative
is stored in the original position of t� in the Cholesky-
decomposed matrix T�t��. This is the general idea behind all
matrix calculus results we have used. We could have also
obtained the same result by applying matrix calculus directly.
For example, denote

� = T†�t��T�t�� .

Then, using Eqs. �A2� and �A3�,

�Tr���
�X

= 2X + iY − iY = 2X

and

3The run times of the routines mentioned in this paper can be
improved linearly using parallel computation. However, because the
complexity increases exponentially with the number of qubits, an
efficient routine to performing tomography is crucial.

TABLE III. Run times in milliseconds for a state at ��0.5 and Slinear to that along the Werner state line;
abbreviations are the same as in Table II.

n MLE Iteration time QD FP

2 �4.1�1.0��101 �7.7�4.0��10−1 �6.0�0.5��10−2 �3.8�0.6��10−2

3 �1.2�0.2��103 �1.2�2.0��101 �17�0.3��10−2 �3.6�6.0��10−1

4 �1.9�0.1��104 �2.0�1.0��102 1.3�0.4 1.1�0.1

5 �2.9�0.2��105 �2.9�0.9��103 7.6�0.6 8.8�2.0

6 �6.7�0.4��106 �7.0�2.0��104 �6.5�0.5��101 �6.7�0.5��101
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�Tr���
�Y

= iX − iX + 2Y = 2Y .

This is consistent with our result in Eq. �A7�.
Next, we set out to compute

�Tr��̂���
�T . Recall that �̂�=K�

+ i��; hence,

�̂�� = �K� + i����XTX + iXTY − iYTX + YTY�

= K�XTX + K�YTY + ��YTX − ��XTY + i�K�XTY

+ ��XTX + ��YTY − K�YTX� . �A8�

Applying Eqs. �A4� and �A5� to the real part of Eq. �A8�, we
obtain

�Tr��̂���
�X

= XK� + XK�
T − Y�� + Y��

T �A9�

and

�Tr��̂���
�Y

= X�� − X��
T + YK� + YK�

T. �A10�

Observe that ∀�, �̂�=�̂�
† yields ��=−��

T and K�=K�
T; there-

fore,

�Tr��̂���
�X

= 2XK� − 2Y��, �A11�

�Tr��̂���
�Y

= 2X�� + 2YK�. �A12�

Substituting the above two equations into Eq. �A1�, we ob-
tain the result described in Sec. III B 2.
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