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We have studied the decoherence properties of adiabatic quantum computation �AQC� in the presence of in
general non-Markovian, e.g., low-frequency, noise. The developed description of the incoherent Landau-Zener
transitions shows that the global AQC maintains its properties even for decoherence larger than the minimum
gap at the anticrossing of the two lowest-energy levels. The more efficient local AQC, however, does not
improve scaling of the computation time with the number of qubits n as in the decoherence-free case. The
scaling improvement requires phase coherence throughout the computation, limiting the computation time and
the problem size n.
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The adiabatic ground-state scheme of quantum computa-
tion �1,2� represents an important alternative to the gate-
model approach. In adiabatic quantum computation �AQC�
the Hamiltonian HS of the qubit register and its wave func-
tion ��� undergo adiabatic evolution in such a way that,
while the transformations of ��� represent some meaningful
computation, this state also remains close to the instanta-
neous ground state ��G� of HS throughout the process. This is
achieved by starting the evolution from a sufficiently simple
initial Hamiltonian Hi, the ground state of which can be
reached directly �e.g., by energy relaxation�, and evolving
into a final Hamiltonian Hf, whose ground state provides the
solution to some complex computational problem: HS= �1
−s�t��Hi+s�t�Hf, where s�t� changes from 0 to 1 between
some initial �ti=0� and final �tf� times.

The advantage of performing a computation this way, be-
sides its insensitivity to gate errors, is that the energy gap
between the ground and excited states of the Hamiltonian HS
ensures some measure of protection against decoherence.
This protection, as partly demonstrated in this work, is not
absolute. Nevertheless, it allows for the ground state to main-
tain its coherence properties in time far beyond what would
be the single-qubit decoherence time in the absence of the
ground-state protection. This feature of the AQC remains
intact �3� even if the decoherence strength and/or tempera-
ture is much larger than the minimum gap.

In general, the performance of an adiabatic algorithm de-
pends on the structure of the energy spectrum of its Hamil-
tonian HS. Here we consider a situation, which is typical for
complex search and optimization problems �3�, where the
performance is limited by the anticrossing of the two lowest-
energy states. The minimum gap gm between those states
shrinks with an increasing number n of qubits in the algo-
rithm, although the exact scaling relation is not known in
general. In an isolated system with no decoherence, the limi-
tation is due to the usual Landau-Zener tunneling at the an-
ticrossing, which drives the system out of the ground state
with the probability given by the “adiabatic theorem.” Dif-
ferent formulations of the theorem all give the computation
time as some power of the minimum gap: tf �gm

−� �4,5�.
The main assumption behind the adiabatic theorem is that

there exists a well-defined energy gap between the two

lowest-energy states of the system. In a more realistic case
with decoherence, however, the energy levels of the qubit
register are broadened by the coupling to environment, as
illustrated in Fig. 1. Even the simplest environment, e.g., a
two-state system, splits a single anticrossing of the two qubit
levels into four anticrossings with smaller gaps �Fig. 1�b��.
An environment with a continuous spectrum turns the anti-
crossing point into a continuous region of some width W
�Fig. 1�c�� within which incoherent tunneling between the
two qubit states can take place. Thus, for such typical models
of environment, the gap no longer exists in the “qubits
+environment” system. The broadening W is directly related
to the decoherence time of the qubit states. Any uncertainty
W in the energy of an energy eigenstate makes the accumu-
lated phase of this state also uncertain in time �decoh�1 /W.
Since the broadening W typically increases with the number
of qubits, while the minimum gap gm decreases, the realistic
large-scale system will eventually fall in the incoherent re-
gime W�gm. This means that studies of the adiabatic theo-
rem do not apply to such realistic situations and therefore

W
gm

W
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FIG. 1. �Color online� Broadening of the energy levels of a
closed system �a� due to coupling to an environment made of �b� a
single two-state system or �c� infinitely many degrees of freedom
with a continuous energy spectrum. In general, the coupling to an
environment splits a single anticrossing into M2 anticrossings,
where M is the number of environment energy eigenstates. For the
environment with a continuous spectrum, the anticrossing turns into
a continuous transition region of width W.
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new ways of understanding AQC performance become nec-
essary. One possible approach toward this goal is to general-
ize the adiabatic theorem to open quantum systems �6�.

In this paper, however, we study the evolution of an adia-
batic quantum computer in the “incoherent” regime by de-
veloping a corresponding description of Landau-Zener tran-
sitions for W�gm. We use the model of decoherence
appropriate for solid-state circuits, where the AQC approach
is particularly promising. One characteristic feature of such a
model is that it should allow for non-Markovian, in particu-
lar low-frequency environmental noise. Previous studies
have mainly considered Markovian environments �3,7–9�. A
correct description of the interaction with a low-frequency
environment, which has the strongest effect on the AQC al-
gorithms �10�, requires a nonperturbative or strong-coupling
theory of the environment-qubit interaction.

Another feature of our “solid-state” approach is the as-
sumption that the environment responsible for decoherence
is in equilibrium at some temperature T and is sufficiently
large to enforce �on some time scale� the equilibration
among the qubit states at the same temperature. Even the
low-frequency noise that dominates the decoherence of the
solid-state qubits �see, e.g., �11,12�� comes usually from
equilibrium sources �13�. Previous studies of the AQC deco-
herence used models that do not account directly for such
equilibration �6–8,14,15�. Since the environment tempera-
ture cannot be reduced indefinitely, for a sufficiently large
system, T will inevitably be larger than the minimum gap gm.
This means that in contrast to closed systems, Landau-Zener
transitions in the presence of decoherence are intrinsically
linked to thermal excitations out of the ground state, making
it necessary to consider the two types of the transitions si-
multaneously.

Quantitatively, we introduce the decoherence as usual by
adding the bath HB and the interaction Hamiltonian Hint to
the Hamiltonian HS of the qubit register: Htotal=HS+HB
+Hint. As discussed above, we use the two-state approxima-
tion near the anticrossing, assuming that gm is much smaller
than the energy gaps separating the first two from the other
levels �16�,

HS = − ���z + gm�x�/2, Hint = − Q�z/2, �1�

where �’s are the Pauli matrices, Q is an operator of the
environmental noise, and ��E�s−sm� with E�gm defining
the energy scale which characterizes the anticrossing at s
=sm. Independent couplings of individual qubits to their en-
vironments produce only the �z-coupled noise in the two-
state model �1� �3�. We assume that the noise is Gaussian so
that we do not need to specify HB explicitly. Then, all aver-
ages can be expressed in terms of the spectral density as
follows:

S��� = 	
−	

	

dt ei�t
Q�t�Q�0�� ,

where 
¯� denotes averaging over the environment. Gauss-
ian noise is expected if the environment consists of a large
number of degrees of freedom all weakly coupled to the
system �17�.

In the regime of incoherent Landau-Zener transitions con-
sidered in this work, both the environment-induced broaden-
ing W of the two basis states of the Hamiltonian �1� and
temperature T are taken to be much larger than gm. This
means that the time ��1 /W�, during which the two states
lose their relative phase coherence, is much smaller than the
typical tunneling time ��1 /gm� which implies that the tun-
neling between these states will be incoherent. In particular,
the off-diagonal elements of the density matrix 
 of system
�1� vanish within the time �decoh�1 /W so that 
 reduces to
diagonal elements, i.e., to 
z� p0− p1, which is governed by
the usual kinetic equation,


̇z = − ��
z − 
	� , �2�

where �=�01+�10 and 
	= ��10−�01� /�. Here we use the
following standard notations: �0� and �1� are the two eigen-
states of �z with eigenvalues −1 and +1, respectively, pj is
the occupation probability of state �j�, and �ij is the rate of
tunneling from state �i� to �j�.

The physics behind such an incoherent tunneling is the
same as for macroscopic resonant tunneling of flux in super-
conducting flux qubits which has been studied experimen-
tally �13� and theoretically �18�. In particular, the transition
rates have the structure of resonant peaks of width W in the
vicinity of the anticrossing point. These rates can be explic-
itly calculated by a perturbation expansion in gm and assum-
ing Gaussian noise �18�,

�01��� =
gm

2

4
	 dt ei�t exp�	 d�

2�
S���

e−i�t − 1

�2 � . �3�

The rate of the backward tunneling is determined by the
relation �10���=�01�−��. In the case of white noise, S���
=S�0�, Eq. �3� gives the tunneling peak in the form of a
Lorentzian line shape,

�01��� =
1

2

gm
2 W

�2 + W2 , W =
1

2
S�0� . �4�

On the other hand, in the situation characteristic for practical
solid-state qubits when the noise is dominated by the low-
frequency components, Eq. �3� reduces to a shifted Gaussian
�18�,

�01��� =�

8

gm
2

W
exp�−

�� − �p�2

2W2 � ,

W2 =	 d�

2�
S���, �p = P	 d�

2�

S���
�

. �5�

For the environment in thermal equilibrium, the width W and
the position �p of the Gaussian are related by �18�

W2 = 2T�p. �6�

These theoretical results have been experimentally confirmed
in flux qubits �13�.

Let us first study the kinetic equation �2� in two extreme
cases. In the small-T regime 
	�sgn � which implies, with
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the initial condition 
z�0�=1, that the right-hand side of Eq.
�2� is nonzero only for �0. This leads to the ground-state
probability

pG = 1 − e−�tf , �7�

� �
1

tf
	

0

	

����
d�

�̇
=

1

tf
	

−	

	

�01���
d�

�̇
. �8�

We shall see later that under relatively general conditions �̇
�1 / tf and therefore � is independent of tf. These equations
assume that the range of � is large enough to effectively
cover the whole peak of �01, therefore justifying infinite in-
tegration limits. In particular, the range of � should be larger
than �among other energies� the cutoff energy of the environ-
ment excitations. In the opposite large-T regime, one has
����T and hence 
	=0 in Eq. �2� for energy � within some
relevant interval around the anticrossing point �=0 �this con-
dition is made more precise below�. The ground-state prob-
ability is then

pG =
1

2
�1 − e−2�tf� . �9�

Because of the thermal excitations, pG approaches 1/2 in the
slow-evolution limit. For the intermediate-T regime, pG al-
ways falls between Eqs. �7� and �9�; therefore, these equa-
tions give, respectively, upper and lower bounds for the
probability of success �see Fig. 2 and discussion below�.

An important feature of Eq. �3� is that for uniform evolu-
tion, i.e., �̇=const��, it gives �tf =

1
��−	

	 �01���d�=�gm
2 /2�,

independent of S���, leading in the small-T regime to the
same Landau-Zener probability �7� as in the decoherence-
free case. This result extends the recent proofs �19–21� that
at T=0 the Landau-Zener probability is unaffected by deco-
herence. The physical reason for this is that the decoherence
changes only the profile of the transition region while keep-
ing the total transition probability the same. Therefore, in the

two extreme regimes, the ground-state probabilities �7� and
�9� are completely independent of the form of the noise spec-
trum S���.

At intermediate temperatures, on the other hand, the quan-
titative tf dependence of the probability pG is sensitive to the
specific form of S��� and therefore to the tunneling rates. For
Gaussian rates �5� and uniform evolution, pG calculated from
Eq. �2� is shown in Fig. 2. The curves characterize the tran-
sition between the low- �Eq. �7�� and high- �Eq. �9�� tempera-
ture limits. At small evolution times when tf ��−1 all curves
coincide, with pG=�tf in the linear approximation, indepen-
dently of temperature T. The temperature dependence of pG
appears only in the second-order terms in �tf. For slow evo-
lution, tf ��−1, pG varies from 1 to 1/2 with temperature T
�see inset in Fig. 2�. If the evolution is infinitely slow, the
occupation probabilities of the states �0� and �1� should al-
ways reach the local thermal equilibrium. This, however, is
not the relevant regime for the present discussion. In the
relevant case, the rate � is comparable to the maximum tun-
neling rates � and therefore becomes much larger than the
tunneling rates as the system moves away from the reso-
nance so that the local equilibrium is not maintained. This
means that, strictly speaking, the large-T result �9� is valid
for any tf only for T�E. Asymptotic analysis of the evolu-
tion equation for the case of the Gaussian rates �5� shows
that in the more interesting regime when T�W but T�E,
the ground-state probability is

pG =
1

2
+

W
2T

�ln �tf�1/2. �10�

This equation describes the increase in pG toward the local
equilibrium at sufficiently large evolution time tf and corre-
sponds to the large-T part of the two curves with larger �tf in
the inset in Fig. 2.

We now use the results presented above to discuss the
performance of AQC in the incoherent regime gm�W ,T. For
this, one needs to distinguish global and local adiabatic evo-
lutions. In the global scheme, the adiabatic evolution is uni-
form, �̇=const=E / tf, and Eqs. �7� and �9� show that the re-
quired computational time tf ��−1=2E /�gm

2 coincides with
the decoherence-free case independently of decoherence and
temperature T. Even if the large T reduces pG to �1 /2, to
find correct solution, one only needs to repeat the computa-
tion process on average two times.

Global adiabatic evolution, however, does not yield the
optimal performance in coherent AQC. Indeed, for the case
of adiabatic Grover search �14�, the global adiabatic scheme
yields the complexity of the classical exhaustive search, i.e.,
tf =O�N�, where N �=2n� is the size of data base. In the more
efficient local scheme �14�, one takes �̇�t�=�g�t�2 so that the
adiabatic condition is satisfied uniformly �the system slows
down in the region of small gap� and the computation time is
tf =� /�gm which for the case of adiabatic Grover search
yields the optimal O�N� performance. The local evolution
plays a crucial role for the scaling analysis of the AQC
�14,22,23�, although in some cases it is only assumed implic-
itly. In general, however, finding the gap g�s� is as hard as
solving the original problem, and only in some cases, e.g.,

FIG. 2. The occupation probability pG of the ground state as a
function of the dimensionless evolution time �tf for different tem-
peratures T in the case of the Gaussian tunneling rates �5�. The inset
shows the dependence of pG on T /W for �tf =1, 1.5, 2, 3, and 5
from lower to upper curves, respectively.
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the adiabatic Grover search, g�s� is independent of the final
solution and can be found a priori analytically.

The enhanced performance of the local scheme comes at a
price of its stronger sensitivity to decoherence. A qualitative
reason for sensitivity of local AQC is that although decoher-
ence does not change the total integral transition probability,
it distributes it over a much larger energy interval W�gm,
making it necessary to slow down the evolution for a longer
period of time. If one uses the same ��t� as in the
decoherence-free case, the average tunneling rate �8� is
dominated by the vicinity of the point �=0. Quantitatively,
�̇=�g2 and tf =� /�gm yield �tf�̇�−1=gm /�g2�����, which
together with Eqs. �3� and �8� give ���01�0��gm

2 . Therefore
the computation time is tf ��−1�gm

−2, which is similar to
the performance of the global scheme with the only possible
enhancement compared to the global case being a prefactor.
In the case of white noise, Eq. �4� leads to �=gm

2 /2W,
while for the low-frequency noise, Eq. �5� gives �

=� /8�gm
2 /W�e−W2/8T2

. Notice that in the latter case, lower-
ing T with constant width W �13� does not shorten the com-
putation time.

To summarize, we have studied the decoherence effects
on AQC due to general non-Markovian environments in the
strong-decoherence regime in which the broadening of the
energy levels completely smears out the anticrossing region.
Our strong-coupling treatment shows that global AQC re-

mains unaffected by strong decoherence Wgm and is inde-
pendent of the type of noise, while the local AQC provides
only a prefactor improvement of the algorithm running time
in this regime and does not change the scaling of this time
with gm as compared to the case without decoherence. Thus,
the local AQC can only maintain its properties if W�gm.
Since W�1 /�decoh and tf �1 /gm for the local scheme in the
weak-decoherence regime, the computation time is limited
by the decoherence tf ��decoh in the same way as in gate-
model QC. Therefore, the advantageous scaling of the local
AQC requires phase coherence throughout the evolution as
in the gate model. Insensitivity of AQC to decoherence only
holds for the global scheme and does not apply to local
AQC. It should be emphasized that in our treatment we have
assumed that the minimum gap is a result of a first-order
quantum phase transition for which two-state model holds
and the broadening of the energy levels and also thermal
excitation do not mix the lowest two states with other excited
states. For stronger noise or higher temperatures, one needs
to take higher states into consideration.
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