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We analyze the dynamics of a system qudit of dimension � sequentially interacting with the �-dimensional
qudits of a chain playing the role of an environment. Each pairwise collision has been modeled as a random
unitary transformation. The relaxation to equilibrium of the purity of the system qudit, averaged over random
collisions, is analytically computed by means of a Markov chain approach. In particular, we show that the
steady state is the one corresponding to the steady state for random collisions with a single environment qudit
of effective dimension �e=��. Finally, we numerically investigate aspects of the entanglement dynamics for
qubits ��=�=2� and show that random unitary collisions can create multipartite entanglement between the
system qudit and the qudits of the chain.
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I. INTRODUCTION

The repeated collision model is a simple yet instructive
model of irreversible quantum dynamics. First introduced in
�1� to analyze the process of thermalization and more gener-
ally of homogenization �2–4� in the limit of an environment
with a large number of degrees of freedom, it has been fur-
ther studied to elucidate various aspects of the irreversible
dynamics of quantum systems in the presence of environ-
ments with few degrees of freedom �5,6�. In most of the
literature cited above, the interaction between system and
environment is due to pairwise elastic collisions modeled by
partial SWAP operators. In the present paper we will instead
model such collisions by random unitary operators �7–12�.
This choice is due to several reasons. On the one hand, al-
though an exact modeling of the system-environment inter-
action is difficult, a good description of the relaxation pro-
cess can be obtained by a suitable average over random
interactions. Some examples of such an approach can be
found in �13,14�, where the irreversible dynamics of a single
and a pair of qubits is analyzed in terms of a random inter-
action with an environment which is itself modeled as a ran-
dom matrix, and in �6�, where the average dynamics of a
single qubit interacting with a very small reservoir is de-
scribed again by random collisions. On the other hand, ran-
dom and pseudorandom states and their efficient generation
by suitable sequences of random gates �15–24� have received
considerable attention due to possible applications in
quantum-information processing �25–28�.

In the present paper, we analyze the approach to equilib-
rium of a system qudit interacting with a very large ensemble
of qudits. The interaction is modeled by a sequence of two-
qudit random collisions. The paper is structured as follows.
In the following section we review the random collision
model and we specialize it to the case of collisions described
by random unitary operators. We then characterize the ap-
proach to equilibrium by analytically calculating the purity

of the system steady state and the rate of approach to such a
state for the specific case of colliding qubits. This analytical
analysis is then generalized to a system qudit of dimension �
colliding with an ensemble of qudits of size �. We then pro-
ceed with a numerical analysis of the entanglement dynamics
for colliding qubits.

II. THE RANDOM COLLISION MODEL AND
THE RELAXATION TO EQUILIBRIUM

In the random collisions model of irreversible dynamics a
system qudit interacts with an environment consisting of N
qudits. Such interaction is modeled by pairwise collisions
between the system qudit and a single environment qudit.
Each collision is described by a random unitary operator. The
environment, i.e., N, is assumed to be so large that the sys-
tem never collides twice with the same environment qudit. In
pictorial terms one can think of a single qudit colliding in
sequence with the individual qudits of a long chain. The
overall state of the system and environment, after t colli-
sions, is

�SE
�t� = U0t ¯ U02U01�SE

�0�U01
† U02

†
¯ U0t

† , �1�

where U0j is a random unitary operator acting on the pair of
qudits 0 , j; 0 labels the system qudit and j=1, . . . ,N labels
the environment qudits. Let us assume that the system and
environment are in an initial tensor product state �SE

�0�

=�S
�0��1�2¯�N. Since the collision operators are random

unitaries, the specific states �i are irrelevant, as long as they
have the same purity, as will be explained shortly, and we
can assume that all the environment qudits are in the same
initial state �.

In order to characterize the relaxation process we first
consider the decay of the system purity after t collisions. We
remind the reader that, given a density operator �, its purity
is defined as P=Tr��2�. The purity is a decreasing function
of the degree of statistical mixture of � and, for a qudit of
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dimension � takes values in the range 1 /�� P�1, where
P=1 corresponds to pure states and P=1 /� to the com-
pletely unpolarized mixed state. Since we are focusing our
attention on the purity of the system, our model is equivalent
to a system qudit colliding with a single environment qudit
whose state is refreshed to its initial state � after each colli-
sion. We will show that, after averaging over random unitary
collisions, P�t� can be analytically calculated �hence after we
will use the symbol P to mean the analytic ensemble average
value of P�.

A. Colliding qubits

Let us first consider the case in which both system and
environment consist of qubits. The density operator of the
system and environment qubits can be written as

�SE = �
�0,�E

c�0�E
�0

�0 � �E
�E, �2�

where �0
�0 ��E

�E� denotes a Pauli matrix acting on the system
�environment� qubit, with �i� �0,x ,y ,z� and �0= I. The pu-
rity of the overall system and environment after t collisions
then reads

PSE = 4 �
�0�1

c�0�E

2 �t� �3�

and the system’s purity is given by

P�t� = 8�
�0

c�00
2 �t� . �4�

Note that PSE is invariant under unitary evolution, i.e., the
overall system-environment purity is the same before and
after each collision �of course before the state of the envi-
ronment qubit is refreshed�. The constraints

Tr��SE� = 1, Tr��SE
2 � = PSE �5�

lead to

c00 =
1

4
, �

��0,�1���0,0�
c�0�1

2 =
4PSE − 1

16
. �6�

It has been shown �21� that when two qubits collide with
a sequence of random U�4� unitaries, the ensemble-averaged
coefficients c2�t� evolve according to a Markov chain as

c2�t + 1� = c2�t�M , �7�

where

c2 = �c00
2 ,c0x

2 , . . . ,czz
2 � �8�

and

M =�
1 0 ¯ 0

0
1

15
¯

1

15

] ] � ]

0
1

15
¯

1

15

	 �9�

is a Markov 16�16 matrix. The structure of M is clear: it
leaves c00

2 unchanged while all the other components of c2

are uniformly mixed. The equilibrium state of such a chain,
if the state of the environment qubit is not refreshed after
each collision, must lie in the subspace spanned by the eigen-
vectors of M with eigenvalue 1. A normalized basis corre-
sponding to the unit eigenvalue of M is given by

v0 = �1,0, . . . ,0�, v1 =
1


15
�0,1, . . . ,1� . �10�

The equilibrium state then reads

v = x0v0 + x1v1, �11�

where

x0 = �v0,v� = c00
2 =

1

16
,

x1 = �v1,v� =
1


15
�

��0,�1���0,0�
c�0�1

2 =
1


15

4PSE − 1

16
.

Therefore,

v = 
 1

16
,
4PSE − 1

240
, . . . ,

4PSE − 1

240
� . �12�

Finally, we obtain, for the ensemble-averaged purity

P = 8�
�0

c�00
2 =

1

2
+

1

10
�4PSE − 1� . �13�

For pure system-environment states �PSE=1�, we recover
Lubkin’s result �29�

P = PL =
4

5
. �14�

It is important to note that such �ensemble averaged� value of
purity is reached after a single random collision. In other
words, as it should be, the state of the system and of the first
environment qubit after a single collision is a two-qubit ran-
dom state.

We now consider the case in which the state of the envi-
ronment qubit is refreshed after each collision. After t colli-
sions Eq. �13� becomes

P�t� =
1

2
+

1

10
�4PSE�t − 1� − 1� �t = 1,2, . . . � . �15�

Note, however, that PSE changes when the environment qubit
is reset to its initial state �. Just before the tth collision we
have

PSE�t − 1� = P�t − 1�P�, �16�

where P� is the purity of the unperturbed environment qubit
state �.

We now solve the equation

P�t� =
1

2
+

1

10
�4P�t − 1�P� − 1� �t = 1,2,, . . . � . �17�

The equilibrium value
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P��� =
2

5 − 2P�

�18�

is obtained as the solution to the equation

P��� =
1

2
+

1

10
�4P���P� − 1� . �19�

If we define 	�t�=P�t�−P���, we obtain

	�t� =
2

5
P�	�t − 1� = 
2

5
P��t

	�0� . �20�

Note that P��� as well as the decay rate to equilibrium de-
pend on P�: the lowest the purity of the environment qubits
the fastest is the approach to equilibrium and the lowest the
equilibrium value of the system purity. Although this has
some analogies with the relaxation to thermal equilibrium it
is worth stressing that the two processes have some impor-
tant differences. In particular note that, contrary to the case
of thermalization, P����P�. Furthermore, the dependence
on P� of the decay rate is also not the one expected for the
relaxation to equilibrium. This is not surprising as collisions
modeled by random collisions are not elastic. Indeed it has
been shown in �1� that the only operator guaranteeing ther-
malization �and in general homogenization �2�� is the partial
swap.

When the chain qubits are initially in a pure state, we
have

P��� =
2

3
�21�

and Eq. �20� becomes

P�t� = 
2

5
�t
P�0� −

2

3
� +

2

3
= e−
t
P�0� −

2

3
� +

2

3
,

�22�

where 
=ln�5 /2�=0.916. . . is the rate of approach to equi-
librium. Starting from a pure state we obtain P�1�=4 /5,
P�2�=54 /75=0.72, P�3�=258 /375�0.688, . . ., in agree-
ment with our numerical data, as shown in Fig. 1.

B. Colliding qudits

The above Markov chain technique can be generalized to
analyze the more general case in which a system qudit of
dimension � collides with a large number of environment
qudits of dimension �. In this case system-environment in-
teractions are modeled by random unitaries drawn from the
U�L�-invariant Haar measure in the overall Hilbert space of
size L=��. The steps of the analysis previously carried on
for qubits can be straightforwardly followed to obtain the
equilibrium value and the decay rate of the purity of collid-
ing qudits. We use again representation �2�, where the �’s are
now generalized Pauli matrices �30,31�. The purity of the
overall system then reads

PSE = �� �
�0=0

�−1

�
�1=0

�−1

c�0�1

2 �t� �23�

and the system’s purity is given by

P�t� = ��2�
�0

c�00
2 �t� . �24�

The constraints

Tr��SE� = 1, Tr��SE
2 � = PSE �25�

lead to

c00�t� =
1

��
, �

��0,�1���0,0�
c�0�1

2 �t� =
��PSE − 1

����2 . �26�

Also in this case the vector

c2 = �c00
2 , ¯ ,c��

2 � �27�

evolves in time according to a Markov chain, as in Eq. �7�.
We extend Znidarič’s conjecture �21� about the form of the
Markov matrix by assuming again that M leaves c00

2 un-
changed while it uniformly mixes all other components. M
must therefore be a ����� ���� matrix of the form

M =�
1 0 ¯ 0

0
1

����2 − 1
¯

1

����2 − 1

] ] � ]

0
1

����2 − 1
¯

1

����2 − 1

	 . �28�

The two-dimenisonal eigenspace corresponding to the
unit eigenvalue of M is spanned by the vector basis

v0 = �1,0, . . . ,0�, v1 =
1


����2 − 1
�0,1, . . . ,1� . �29�

Following the same steps that lead to Eq. �12� we obtain the
equilibrium state as

v = 
 1

����2 ,
��PSE − 1

����2�����2 − 1�
, . . . ,

��PSE − 1

����2�����2 − 1�
� .

�30�

The system purity of this state is

0 20

2/3

1.0

t

P

FIG. 1. �Color online� Ensemble-averaged purity functional be-
havior for �=2, �=2. The limit value is P���=2 /3. The markers
are the ensemble-averaged values. The curve shows the analytic
result of Eq. �22�.
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P = ��2�
�0

c�00
2 =

1

�
+

�2 − 1

������2 − 1�
���PSE − 1� . �31�

If the initial system-environment state is pure �PSE=1�, we
recover Lubkin’s result �29�

P =
� + �

�� + 1
. �32�

This means again that after a single collision the state of
the system and of the first colliding qudit is a random state in
the Hilbert space of dimension � � �.

If the environment is refreshed after each collision, we
have

P�t + 1� =
1

�
+

�2 − 1

������2 − 1�
���P�t� − 1� �t = 0,1, . . . � .

�33�

This equation leads to the following steady value of the pu-
rity:

P��� =
� + ����

����� + 1
. �34�

If we define 	�t�=P�t�−P���, we obtain

	�t� = �	�t� = �t	�0� , �35�

where

� �
���2 − 1�
����2 − 1

. �36�

Therefore,

P�t� = e−
t�P�0� − P���� + P��� , �37�

with 
=−ln �. In Fig. 2, P��� is plotted for �=4, �=2.

C. Purity statistics

Equation �34� suggests that the average system purity is
the same one would obtain from a partition of a random state
of a Hilbert space of dimension �����, i.e., Eq. �34� coin-
cides with Lubkin’s result if we assume that the system qubit

has interacted with an environment of effective size �e=��.
To support this conjecture we have plotted in Fig. 3 the nu-
merically generated histograms of the statistical distributions
of the system purities for each of the first six collisions for
the case of colliding qubits. Indeed, as shown in Fig. 4, after
just six collisions the histogram basically coincides with the
purity distribution of a system qubit colliding with a single
qudit of dimension 4.

An intuitive explanation of such behavior can be given in
simple terms. After the first collision between system and
environment qudits the system becomes mixed—even if
originally it was in a pure state. Following a standard math-
ematical procedure however its state can be purified by in-
troducing a fictitious qudit of dimension � entangled with
the system qudit. Therefore the whole process can be seen as
a sequence of collisions among three qudits—the third one
being the fictitious purification qudit—in an overall pure
state. There is evidence �6� that in this case the overall sys-
tem will evolve into a pure random state in a Hilbert space of

0 20

12/33

1.0

P

t

FIG. 2. �Color online� Ensemble-averaged purity functional be-
havior for �=4, �=2. The limit value is P���=12 /33. The markers
are the ensemble-averaged values. The curve shows the analytic
result of Eq. �37�.

0.5 1
0

1

ε=0.802, δ=0.132
0.5 1
0

1

ε=0.720, δ=0.118

0.5 1
0

1

ε=0.689, δ=0.109
0.5 1
0

1

ε=0.675, δ=0.104

0.5 1
0

1

ε=0.669, δ=0.101
0.5 1
0

1

ε=0.669, δ=0.101

FIG. 3. Histograms showing the statistical distribution of the
purities of the qubit system for �=2, �=2. Each histogram is ob-
tained by considering a numerically generated large number of se-
quences of random collisions. From top to bottom, reading from left
to right, the statistical distribution of the system purity after the
first, the second,….,the sixth collision. In the lower side of each
histogram are reported the values of the average ��� and of the
standard deviation ��� of each distribution. Note the agreement be-
tween the numerical average values of the purities and their
ensemble-averaged values shown in Fig. 2.
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dimension �2�. This explains the purity statistics of the sys-
tem qudit.

We have further numerical evidence to support the above
analysis: in �34� Scott and Caves reported an analytical ex-
pression of the variance of the system purity distribution for
an overall random state of two subsystems of dimensions
respectively � and �. This variance turns out to be


SC
2 P =

2��2 − 1���2 − 1�
��� + 3���� + 2���� + 1�2 . �38�

In our case instead the numerically calculated variance of the
system purity distribution at equilibrium turns out to be well
described by the above formula if we make the substitution
�→�e=��, i.e.,


�
2 P =

2��2 − 1���e
2 − 1�

���e + 3����e + 2����e + 1�2 . �39�

In Table I we report the standard deviations for different
values of � and �. In the second column we report the value
of the Scott and Caves modified standard deviations of Eq.
�39�, while in the third column we report the corresponding
numerically computed standard deviation values. Indeed a
very good agreement between the two sets of values is
clearly seen.

III. ENTANGLEMENT DYNAMICS

To further characterize the approach to equilibrium, in this
section we illustrate some aspects of the entanglement dy-

namics for qubits, i.e., �=�=2. Since the overall state of the
system and chain remains pure, the entanglement dyanamics
is conveniently characterized in terms of the so-called
tangles �32,33�. We remind the reader that, given the density
operator �ij of a bipartite system of two qubits, the tangle �i�j
is defined as

�i�j��� = �max�0,�1 − �2 − �3 − �4��2, �40�

where ��k� �k=1, . . . ,4� are the square roots of the eigenval-
ues �in nonincreasing order� of the non-Hermitian operator
�̄ij =�ij��y � �y��ij

*��y � �y�, �y is the y Pauli operator, and
�

ij
* is the complex conjugate of �ij, in the eigenbasis of the

�z � �z operator. The concurrence C is defined simply as
Cij =
�i�j. The tangle �i�j, or equivalently the concurrence Cij,
can be used to quantify the entanglement between the pair of
qubits i , j for an arbitrary reduced density operator �ij. In our
case the overall state of the system and the chain is pure.
Therefore, the amount of entanglement between qubit i and
all the remaining qubits can be quantified by the tangle
�i�rest=4 det �i. After t collisions, the tangle �0�chain�t� between
the system qubit and the chain conveys the same information
as the purity P�t�. Indeed, it is easy to show that

�0�chain�t� = 2 − 2P�t� . �41�

The purely multipartite entanglement �M established between
the system qubit and the qubits of the chain can be quantified
as

�M�t� = �0�chain�t� − �
j=0

t

�0�j , �42�

i.e., as the amount of entanglement which cannot be ascribed
to purely bipartite entanglement between the system qubit
and each individual environment qubit. Due to the complex-
ity of the analytical expressions of the tangles, we resort to
numerical simulations. Note that, in order to evaluate the
tangle �0�chain we have to numerically find the pairwise tangle
between the system qubit and each qubit of the chain. This
implies that we have to retain the overall system-chain den-
sity matrix; i.e., in contrast to the computation of the system
purity P, we cannot trace over the chain after each collision.
In other words, as far as the entanglement dynamics is con-
cerned, the qubit-chain model is not equivalent to a model in
which the system qubit collides with a single environment
qubit whose state is refreshed after each collision.

The pairwise tangles �0�j are shown in Fig. 5, as a function
of the number of collisions. A nonzero tangle �0�t� between
the system qubit and the t�th qubit of the chain is generated
immediately after the t�th collision and then quickly decays
for t� t�. The dependence of �0�t�t� on the number t of col-
lisions is fitted satisfactorily by the exponential curve �0�t�t�
=0.166+0.512 exp�−0.921t�, suggesting the asymptotic
value �0�����=0.166 for the pairwise tangle generated be-
tween the system qubit and a qubit of the chain immediately
after their collision.

Our numerical data shown in Fig. 5 also suggest that the
weight of the terms �0�j�t� with j� t can be neglected with
respect to �0�t�t�. Under this approximation and using Eqs.
�42� and �41� we can estimate the asymptotic multipartite

0.5 1
0

1

ε
r
=0.666, δ

r
=0.100

FIG. 4. Histogram comparison. Gray shadow: system purity dis-
tribution after the sixth collision �after which the equilibrium distri-
bution is in practice already reached�. Black: purity distribution of a
system qubit colliding with a single qudit of dimension �=4, with
average �r=0.666 and variance �r=0.1000.

TABLE I. Comparison between the Scott and Caves modified
standard deviations �� ,�→� ,�e=��� and numerically calculated
standard deviations.

� ,� Scott and Caves Collision model

�=2, �=2 0.1005 0.1010

�=2, �=3 0.0769 0.0767

�=3, �=2 0.0608 0.0628

�=4, �=2 0.0382 0.0388

�=2, �=4 0.0618 0.0632

�=3, �=3 0.0433 0.0438
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entanglement established between the system qubit and the
qubits of the chain as

�M��� � �2 − 2P���� − �0����� �
1

2
. �43�

This expectation is confirmed by the numerical data shown
in Fig. 6: the convergence of �M�t� to its asymptotic value
�M��� is well fitted by the exponential decay �M�t�−�M���
=−1.491 exp�−0.849t�, with the fitting parameter �M���
=0.472� 1

2 .

IV. CONCLUSIONS

We have investigated the dynamics of a system qudit of
dimension � sequentially interacting with the qudits, of di-

mension �, of a chain. Each pairwise collision is modeled as
a random transformation drawn from the Haar measure on
U����. The relaxation to equilibrium, in terms of the en-
semble average over random collisions, is analytically inves-
tigated by means of a Markov chain approach. We have
shown that the steady state is the one corresponding to the
steady state for random collisions with a single environment
qudit of effective dimension �e=��. Furthermore, in contrast
to the case of the homogenization process induced by purely
elastic partial swap collisions �3�, random unitary collisions
can generate multipartite entanglement.
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