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I. INTRODUCTION

Heisenberg’s position-momentum uncertainty relation led
to Bohr’s introduction of the complementarity principle,
which limits the joint measurability, or knowability, of dif-
ferent properties of a physical system. Complementarity is
profoundly linked with the Copenhagen interpretation of
quantum theory, according to which it poses limitations on
a physical system’s ability to manifest certain physical
properties and, hence, on the meaning of physical reality
of these properties. At a more quantitative level, the non-
existence of a basis for a Hilbert space whose basis states
are simultaneous eigenstates of two noncommuting observ-
ables leads to a formal relationship between statistical pre-
dictions possible for measurement outcomes of such observ-
ables on a quantum system. The standard deviations of any
two Hermitian operators �1 and �2 on a finite-dimensional
system Hilbert space, defined as ��i=���i

2�− ��i�2, obey
the Robertson-Schrödinger uncertainty inequality ��1��2

�
1
2
�����1 ,�2��	2+ 	�
��1− ��1�� , ��2− ��2�����2	. The in-

equality with only the commutator term is due to Robertson
�1�, while the tighter bound with the anticommutator term
included was given by Schrödinger �2�. Quantum theory is
applied to provide theoretical predictions in the form of ex-
pectation values, and quantum-mechanical uncertainties play
an important role both in the comparison between theory and
experiments and in the assessment of the possible use of
simpler, e.g., semiclassical, theoretical methods.

In quantum information theory, complementarity and
quantum-mechanical uncertainty are central concepts be-
cause they provide the ultimate limits on how much informa-
tion can be extracted by measurements on a physical system.
Thus, on the one hand, the uncertainty relation quantitatively
limits the achievements of computing and communication
systems, and on the other hand, it provides security against
adversary attacks on a secret communication system. In
quantum information theory it is not the magnitude of physi-
cal observables that is of interest, but to a much larger extent
binary values corresponding to the identification of a state
being occupied with zero or unit occupancy. When projective
measurements are carried out to determine if a quantum sys-
tem is in a particular basis state, the resulting average popu-
lation is identified as a weighted sum of the measurement
outcomes zero and unity, and since the projection operators

on nonorthogonal states are noncommuting observables, the
population of such states obeys uncertainty relations. It is in
this context particularly relevant to consider the so-called
mutually unbiased bases �MUBs� �3–6�, which are defined
by the property that the squared overlaps between a basis
state in one basis and all basis states in the other bases are
identical, and hence the detection of a particular basis state
does not give away any information about the state if it
was prepared in another basis. The original quantum cryp-
tography protocol by Bennett and Brassard �7�, with photons
polarized along different sets of directions, and the later six-
state protocol �8,9� exactly make use of the indistinguishabil-
ity of states within MUBs.

In connection with information theory, the uncertainty re-
lations may, as originally proposed by Deutsch �10�, be re-
formulated in terms of entropies, and it is the purpose of the
present article to derive uncertainty relations obeyed by en-
tropies for mutually unbiased bases.

In Sec. II, we review some recently derived entropic un-
certainty relations for mutually unbiased bases. In Sec. III,
we present two mathematical results for the probabilities to
measure certain basis vector states on a qudit �d-level� quan-
tum system. In Sec. IV, we present a number of entropic
uncertainty relations following from our mathematical re-
sults, and in Sec. V we conclude with a brief outlook.

II. MUTUALLY UNBIASED BASES AND ENTROPIC
UNCERTAINTY RELATIONS

In a Hilbert space of finite dimension d, it is possible to
identify mutually unbiased bases, but except for special
cases, it is currently not known how many such bases exist.
If d is a power of a prime d= pk, there exist d+1 mutually
unbiased bases, as exemplified by the three bases corre-
sponding to the three orthogonal coordinate axes in the
Bloch sphere representation of the qubit. For higher values
of d it is only generally known that at last three mutually
unbiased bases can always be identified, and it is a topic of
ongoing research to search for more bases in, e.g., the lowest
dimension, d=6, which is not a power of a prime �11�.

In this section we will briefly summarize the results
known about entropic uncertainty relations for MUBs.

For two incompatible observables, defined to have eigen-
states which constitute a pair of MUBs, an entropic uncer-
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tainty relation was conjectured by Kraus �12� and was soon
thereafter proved by Maassen and Uffink �13�. This relation
can be expressed as follows:

H
pi1
;i� + H
pi2

;i� � log2 d , �1�

where d is the dimension of the system and the Shannon
entropy H
pim

; i��i=1
d − pim

log2 pim
, with pim

= �im	�	im� be-
ing the probability of obtaining the ith result when the state �
of a d-dimensional system is projected onto the mth basis
�m=1,2�. Equation �1� constitutes an information exclusion
principle with application in quantum communication, which
may be readily adapted to take into account inexact measure-
ments and added noise �14,15�.

If we assume the existence of M MUBs, we can show that


m=1

M

H
pim
;i� �

M

2
log2 d . �2�

If M is even, the result follows from �1� by grouping the
MUBs in pairs. If M is odd, we can write the contribution
from all basis states twice and make a new grouping of all
bases and use �1� on the resulting pairs of different MUBs.

If the Hilbert space dimension is a square d=r2, Ballester
and Wehner �16� have shown that inequality �2� is tight when
M does not exceed the maximal number of MUBs that exist
for an r-dimensional system. By tight it is meant that a quan-
tum state exists and is explicitly given by Ballester and We-
hner, in which the equality sign holds in �2�.

When the dimension of the system d is a power of a
prime, d+1 MUBs exist and the entropic uncertainty relation
for all MUBs,


m=1

d+1

H
pim
;i�

� ��d + 1�log2�d + 1

2
� when d is odd,

d

2
log2�d

2
� + �d

2
+ 1�log2�d

2
+ 1� when d is even,�

�3�

was obtained by Ivanović �17� and Sanchez-Ruiz �18,19�.
We shall now proceed to confirm, generalize, and extend

the domain of validity of some of the results summarized
above.

III. TWO NEW INEQUALITIES

The derivation of the best entropic uncertainty relation �3�
for d+1 MUBs when d is a power of a prime is based on the
equality m=1

d+1 i=1
d pim

2 =Tr��2�+1, which was obtained by
Larsen �20� and Ivanović �17�; here, pim

= �im	� 	 im� denotes
the probability of obtaining the ith result when projecting the
state onto the mth MUB.

We shall first extend this equality to an inequality valid in
the case of a number M of MUBs on a Hilbert space of
arbitrary dimension.

Theorem 1. Suppose � is the state of a d-dimensional
qudit, and let pim

= �im	�	im� denote the probability of obtain-
ing the ith result when projecting the state onto the mth
MUB. If M such MUBs exist, we have


m=1

M


i=1

d

pim
2 � Tr��2� +

M − 1

d
. �4�

Proof. For the sake of the proof, consider two qudits a and
b and a basis of the composite system ab that contains the
following M�d−1�+1 orthonormal basis states:

	��ab =
1
�d


i=1

d

	i1�a � 	i1�
b
*, �5�

	�m,k�ab =
1

�d

i=1

d

�k�i−1�	im�a � 	im�
b
*,

with �=e2	i/d, k=1, . . . ,d−1, and m=1,2 , . . . ,M and with
the remaining basis states denoted as 	
l�ab �l=1,2 , . . . ,L
=d2−M�d−1�−1�. Here 	im�* denotes the “time-reversed”
state of 	im�; i.e., for a definite basis—say, the first one

	i1��—the basis vectors coincide, 	i1�= 	i1�*, while all other
bases differ by a complex conjugation of their expansion
coefficients on the first basis.

Given any density matrix � of our single qudit, we define
a two-qudit pure state �a � Ib	��ab and expand it under the
basis defined above:

�a � Ib	��ab =
1

d
	��ab + 

m=1

M


k=1

d−1

�mk	�m,k�ab + 
l=1

L

cl	
l�ab, �6�

where �mk= 1
di=1

d �−k�i−1�pim
with pim

= �im 	� 	 im�. A straight-
forward calculation yields


m=1

M


k=1

d−1

	�mk	2 =
1

d2 
m=1

M


k=1

d−1


i,j=1

d

�−k�j−i�pim
pjm

=
1

d2 
m=1

M


i,j=1

d

�d�ij − 1�pim
pjm

=
1

d

m=1

M


i=1

d

pim
2 −

M

d2 . �7�

Thus

ab��	�2
� I	��ab =

1

d
Tr��2� �

1

d2 + 
m=1

M


k=1

d−1

	�mk	2

=
1

d

m=1

M


i=1

d

pim
2 −

M − 1

d2 , �8�

i.e.,


m=1

M


i=1

d

pim
2 � Tr��2� +

M − 1

d
. �9�

This completes the proof.
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Note that our construction of the two-qudit states re-
sembles the Jamiolkowski isomorphism �21�, and the expan-
sion of �� � I�	��ab in �6� can indeed be viewed as an expan-
sion of the operator � in terms of a set of orthonormal unitary
operators in the Hilbert-Schmidt space of operators,
including 
I, Um,k= 	i=1

d �k�i−1�	im��im		k=1, . . . ,d−1, and m
=1, . . . ,M�.

Theorem 2. Following the same notation as above, we
have the following entropic uncertainty relation for M MUBs
of a qudit system in the state �,


m=1

M

H
pim
;i� � aC�K + 1�log2�K + 1� + �1 − a�CK log2 K ,

�10�

where K= � M
C �, a= M

C −K, and C has to be an upper bound for
m=1

M i=1
d pim

2 . We can, for example, use �4� to choose C

=Tr��2�+ M−1
d .

Proof. Our proof uses a result by Harremoës and Topsøe
�22�, which is conveniently formulated as the following.

Harremoës-Topsøe theorem. For any given probability
distribution p= �p1 , p2 , . . . , pd�, the Shannon entropy H
pi ; i�
and the so-called index of coincidence, C
pi ; i�=ipi

2, obey
the following inequality for arbitrary values of the integer
1�k�d−1:

H
pi;i� � ��k + 1�log2�k + 1� − k log2 k�

− k�k + 1��log2�k + 1� − log2 k�C
pi;i� . �11�

As a result


m=1

M

H
pim
;i� � M��k + 1�log2�k + 1� − k log2 k�

− k�k + 1��log2�k + 1� − log2 k�
m=1

M

C
pim
;i� ,

�12�

Since m=1
M C
pim

; i��C, the upper bound for m=1
M i=1

d pim
2 ,

we immediately get


m=1

M

H
pim
;i� � M��k + 1�log2�k + 1� − k log2 k� − k�k + 1�

��log2�k + 1� − log2 k�C

= �M − kC��k + 1�log2�k + 1�

− �M − �k + 1�C�k log2 k �13�

for any integer k with 1�k�d−1.
The right-hand side of the above inequality can be viewed

as a function of the integer k, which reaches its maximal
value at k= �M /C� when M /C is not an integer and which
reaches the maximal value at both k= �M /C� and k= �M /C�
−1 when M /C is an integer �see the Appendix�. Therefore, if
we let k=K= �M /C�, we immediately get �10�, which is the
strongest inequality we can get from �13�. This completes the
proof of Theorem 2.

IV. ENTROPIC UNCERTAINTY RELATIONS

The uncertainty relations, cited in Sec. II, were all valid
independently of the state occupied by the physical system.
Using our propositions, we can derive state-dependent uncer-
tainty relations, which must be obeyed for any MUBs for a
given state �, and we can use our results to derive also gen-
eral state independent uncertainty relations.

Proposition 3. For M MUBs of a qudit prepared in the
state �, we have the following simple state-dependent en-
tropic uncertainty inequality:


m=1

M

H
pim
;i� � M log2

M

C
, �14�

with C=Tr��2�+ M−1
d . Using that Tr��2��1, we obtain from

�14� the following state-independent entropic uncertainty in-
equality:


m=1

M

H
pim
;i� � M log2

Md

d + M − 1
. �15�

Proof. By denoting the right-hand side of �10� as f�K�,
from the convexity of the function xlog2 x we immediately
have

f�K� � C�a�K + 1� + �1 − a�K�log2�a�K + 1� + �1 − a�K�

= M log2
M

C
, �16�

which implies �14�. Furthermore, �15� follows from �14�
since Tr��2��1. Relation �14� also follows directly from �4�
by the convexity of the function −log2 x.

When the number of MUBs is large compared with �d
+1, or more precisely, when M  �Tr��2�− 1

d � d
�d−1

, our rela-
tion �14� is stronger than �2�. Also, when M is small com-
pared with �d+1, relation �14� provides a stronger relation
than �2� when the state � is sufficiently mixed.

Going back to the inequality �10� and making use of
Tr��2��1 to choose C=1+ M−1

d here, we get a state-
independent inequality which is in fact stronger than �15� as
follows.

Proposition 4.


m=1

M

H
pim
;i� � �a�K + 1�log2�K + 1�

+ �1 − a�K log2 K�
d + M − 1

d
, �17�

with K= � Md
d+M−1 � and a= Md

d+M−1 −K. Inequality �17� can also be
rewritten as
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m=1

M

H
pim
;i� � M log2 K + �K + 1�

��M − K
d + M − 1

d
�log2�1 +

1

K
� ,

�18�

which is dominated by the first term when M is much larger
than unity.

As any system with d�2 has at least three MUBs, we
will consider that case as an example, and note from �17� that


m=1

3

H
pim
;i� ��

2 for d = 2,

8

3
for d = 3,

3�1 −
4

d
�log2 3 +

12

d
for d � 4.�

�19�

Unlike the restrictions on previously derived inequalities,
the entropic uncertainty inequalities, derived here, work for
any dimension d of the system and any number M of MUBs
�assuming they exist�. When d is a power of a prime, we
know that there exist d+1 MUBs, and choosing M =d+1 in
�17�, we obtain the result in �19�:


m=1

d+1

H
pim
;i�

� ��d + 1�log2�d + 1

2
� when d is odd,

d

2
log2�d

2
� + �d

2
+ 1�log2�d

2
+ 1� when d is even.�

�20�

Unlike the proof in �19�, which works only when d is a
power of a prime and M =d+1, our result �17� works for any
d and any allowed number of MUBs M.

The state-dependent inequality with C=Tr��2�+ M−1
d in

�10� provides stronger bounds than �14� and �17�. Consider,
for example, the qubit case d=2, and suppose M =3, with
C=Tr��2�+1; from �10�, we have


m=1

3

H
pim
;i� � 4 − 2 Tr��2� . �21�

This entropic uncertainty relation �21� is stronger than the
result m=1

3 H
pim
; i��2 in �18,19�, and it is also stronger

than m=1
3 H
pim

; i��3 log2
3

1+Tr��2� that follows from �14�.
Remark. Inequality �4� itself can be viewed as an entropic

uncertainty relation in terms of the Tsallis entropy, which is
defined as Sq

T
pi ; i���1−ipi
q� / �q−1� �q1� �23�, with q

=2 for our case. Similarly we can obtain inequalities obeyed
by the q=2 Rényi entropy, defined by Sq

R
pi ; i�
� log2�ipi

q� / �1−q� �q1� �24�. Using the concavity prop-

erty of the Rényi entropy and setting q=2, we get from �4�
the inequality


m=1

M

S2
R
pim

;i� � − M log2� 1

M
�Tr �2 +

M − 1

d
��

� M log2
Md

d + M − 1
. �22�

Let us finally consider the application of entropic uncer-
tainty to composite systems. Let A and B denote subsystems
with Hilbert space dimensions dA and dB, and let

	imA� 	 i=1, . . . ,dA� and 
	snB� 	s=1, . . . ,dB� denote the mth
and nth mutually unbiased bases of systems A and B. We
now consider local measurements on a bipartite state �AB of
the joint system. When system A is projected onto the mth
MUB and system B is projected onto the nth MUB, the joint
probability of outcomes in these bases is denoted by pis

�m,n�

= �imA	�snB	�AB	imA�	snB�. The entropic uncertainty inequalities
we have derived above can now be applied to the composite
system, and in particular we can derive the following.

If �AB is a separable state, then for M MUBs of each
subsystem we have


m=1

M

H
pis
�m,m�;is�

� M log2 KA + �KA + 1��M − KA
dA + M − 1

dA
�log2

��1 +
1

KA
� + M log2 KB + �KB + 1�

��M − KB
dB + M − 1

dB
�log2�1 +

1

KB
� , �23�

with KA�B�= � MdA�B�

dA�B�+M−1 �.
Proof. If �AB is separable, it can be written as a convex

sum of product states: �AB= jqj� j
A

� � j
B. Therefore we have


m=1

M

H
pis
�m,m�;is�� � 

j

qj 
m=1

M

H
pis
�m,m�;is��j

A
��j

B

= 
j

qj 
m=1

M

H
pi
�m�;i��j

A

+ 
j

qj 
m=1

M

H
ps
�m�;s��j

B. �24�

The proposition immediately follows from the above
inequality and �18�.

As an example, when dA=dB=2 and M =3, for a separable
state �AB we have


m=1

3

H
pis
�m,m�;is� � 4. �25�

It should be noted that this separability criterion is not a
strong one, and replacing the inequality sign by an equality it
does not even for qubits provide the actual boundary be-
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tween separable and entangled states. The result, however, is
an example of how the concavity of entropy functions to-
gether with entropic uncertainty relations can provide in-
sights into the topic of entanglement.

V. CONCLUSION

In this paper we have presented a number of inequalities
obeyed by the probability distributions for measurements on
quantum systems in mutually unbiased bases. We have ob-
tained tighter and more general entropic uncertainty relations
than the ones presented in the literature, and we have given
less tight, but more compact, expressions in simple cases. In
the Introduction we motivated the work by the application of
complementarity and uncertainty relations in quantum infor-
mation theory. Entropy is used to quantify information, and
hence entropic uncertainty relations provide bounds on the
information obtainable by measurements of different observ-
ables of a quantum system. The more general inequalities
derived and proven in this article thus form the basis for
more quantitative results on this topic.
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APPENDIX

Denoting

f�x� = �M − Cx��x + 1�ln�x + 1� − �M − C�x + 1��x ln x

and K= � M
C �, we shall prove maxkf�k�� f�K�. Here k is any

integer and 1�k�d−1. g�x�= x ln x− �1+x�ln�1+x� is a de-
creasing function of x�0 since g��x�=ln x

1+x �0. Thus g�k
+1��g�k�—i.e.,

2 ln�k + 1�k+1 − ln kk�k + 2�k+2 � 0.

Denote ��x�= f�x�− f�x+1�, which reads

��k� = �M − C�k + 1���2 ln�k + 1�k+1 − ln kk�k + 2�k+2� .

If � M
C � is not an integer, then M

C −1�K�
M
C and ��K−1�

�0, so f�K−1�� f�K�, and ��K�0, so f�K� f�K+1�. So
the maximal value of f�k� over integer k is obtained at k
=K. If � M

C � is an integer, then K= M
C and ��K−1�=0, so f�K

−1�= f�K�; similarly, we can show f�K−2�� f�K−1� and
f�K+1�� f�K�. So the maximal value of f�k� over integer k
is obtained at both k=K and k=K−1. Therefore maxkf�k�
� f�K�.
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