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We discuss homogeneous and inhomogeneous Bell inequalities, following Santos’s classification. According
to it, homogeneous inequalities entail only coincidence probabilities, whereas inhomogeneous inequalities
entail coincidence probabilities together with single probabilities or with numbers. Because of technical limi-
tations, all performed tests of Bell inequalities have been based on homogeneous inequalities whose derivation
required additional assumptions besides realism and locality, thereby losing their genuine character. Here we
derive, starting from the Clauser-Horne inequality, a homogeneous inequality that was at the basis of an
experimental test performed some years ago by Torgerson et al. �Phys. Rev. A 51, 4400 �1995��. We show that
its derivation does not require anything but realism and locality, contrary to what has been previously assumed.
It can thus be considered a genuine Bell inequality, appropriate for testing local realism. Similar, homogeneous
inequalities can be analogously derived. They constitute a promising family that is likely to serve as a basis for
loophole-free tests of local realism. The existence of such a family proves false the assertion that all genuine
Bell inequalities must be inhomogeneous.
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I. INTRODUCTION

There is yet no conclusive experiment that favors quan-
tum mechanics against local realism. Several tests based on
Bell inequalities have been performed, but none of them is a
completely loophole free. Although there is a general con-
sensus about this last point, not all researches in the field
would attribute to it equal importance. Thus, according to
widespread opinion, local realism has been experimentally
disproved �see, e.g., �1�� modulo some loopholes stemming
from technical shortcomings that will be surely overcome,
sooner or later. To this end, efforts are continuously being
made either to close the remaining loopholes with the help of
improved experimental techniques, or else to conceive new
tests that are technically less demanding. On the other hand,
there are researches for whom the absence of loophole-free
tests would rather hint at a possible compatibility of quantum
mechanics �QM� with local realism �2�. The fact is that all
performed tests suffer from one or the other loophole,
thereby allowing the construction of local-realistic models
which are capable of explaining the reported results. Much
attention has been devoted to close two important loopholes:
the one stemming from low detector efficiency �3,4�, and the
other stemming from the difficulty of realizing a timelike
interval between detection events �5–9�. While for closing
the locality loophole there is a one-track approach, namely
the improvement of experimental techniques, for closing the
detection loophole there are at least two options: either to use
almost perfect detectors �10�, or to conceive new tests that
lower the required detection efficiency �11–16�. However, all
these efforts will remain useless, as long as the experimental
data, viz. the counting rates, are used to construct quantities
that are incorrectly identified with probabilities. This impor-
tant point was raised by Santos �17,18�, who emphasized that
true probabilities correspond to ratios of counting rates to

preparation rates. In all reported experiments, however, what
people do is to construct some ratios of two counting rates,
and these are incorrectly interpreted as probabilities instead
of what they are: ratios of probabilities. The following situ-
ation then arises: in order to experimentally test Bell in-
equalities we need to properly measure some probabilities
entering these inequalities. Such probabilities can be ap-
proximated by ratios of counting rates to preparation rates.
As the last ones are usually unmeasurable, the corresponding
test cannot be made. Alternatively, we can derive inequalities
involving only ratios of probabilities, i.e., quantities that can
be approximated by ratios of measurable counting rates. The
test becomes then realizable; but at the same time it becomes
useless. Indeed, it turns out that for this kind of test it is
possible to construct a local realistic model which accounts
for all experimental results, as Santos has proved �17,18�.

Santos claimed that all performed tests are invalid. His
claim rests upon the distinction between homogeneous and
inhomogeneous Bell inequalities, followed by the observa-
tion that all performed experimental tests have been con-
cerned with homogeneous inequalities. These are, allegedly,
not genuine Bell inequalities, because either their derivation
and/or the corresponding test would require additional as-
sumptions besides realism and locality. According to Santos,
all genuine Bell inequalities are inhomogeneous. They entail
coincidence probabilities together with single probabilities or
numbers. Homogeneous inequalities entail only coincidence
probabilities. Santos maintains that it is pointless to test ho-
mogeneous inequalities, for whenever such an inequality is
violated by QM, it is also violated by a local realistic model.
This assertion constitutes a theorem and Santos proves it by
explicit construction of a local hidden-variable �LHV� model
�17,18�. It is important to emphasize that Santos’s model
does not exploit the detection loophole, as other authors did
�see, e.g., �11,19��. Santos’s LHV model works even for per-
fect detectors.

We are thus confronted with the following state of affairs:
According to Santos’s theorem, any experiment that is de-
signed to test a homogeneous Bell inequality is, in principle,*fdezela@pucp.edu.pe
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incapable of discriminating between QM and LHV theories
that are based only upon realism and locality. On the other
hand, Bell’s theorem states that it is possible to discriminate
between QM and local realistic theories. This is so because
these competing theories predict different results for some
tests. But none of these tests can be based on a homogeneous
Bell inequality. Otherwise, only one of the two theorems
would hold true. We conclude that tests based on homoge-
neous Bell inequalities must entail some additional assump-
tions besides realism and locality. Therefore they are not
“genuine” tests.

The validity of Santos’s theorem makes Bell’s theorem
almost useless for the purpose of disproving local realism,
because in order to show the violation of a genuine—and
hence inhomogeneous—Bell inequality we should be able to
measure probabilities that are, in fact, experimentally unac-
cessible �20�. Such a situation provides strong support to
Santos’s conjecture that realism and QM might be compat-
ible. Is it then pointless to conceive new tests of local real-
ism? Are inhomogeneous, experimentally unaccessible, in-
equalities the only genuine ones? We will answer these
questions in the negative, by deriving homogeneous Bell in-
equalities that can be considered genuine, in the sense of
being appropriate to disprove local realism. The point of de-
parture from Santos’s approach resides in some requirements
that must be imposed on the probabilities entering LHV
models. The sole requirement that Santos imposed on these
probabilities was that they lie between zero and one. As we
shall see, the probabilities entering our inequalities must be
subjected to additional constraints, as long as they refer to a
specified class of physical events.

II. SANTOS’S THEOREM

Santos’s distinction between homogeneous and inhomo-
geneous inequalities is based upon Bell’s formulation of
LHV models. These consist of a set of hidden variables �
that serve to specify an otherwise “incomplete” description
of a quantum state, plus a normalized distribution function
�����0, �����d�=1, and probability functions 0� pi�� ,a�,
pj�� ,b��1, with i , j each having the values � that corre-
spond to dichotomic observables. Labels a and b denote
here—for the sake of concreteness—the angles to which two
polarization analyzers are set before detectors Da and Db,
respectively. These quantities are connected with the—in
principle—measurable coincidence probabilities Pij�a ,b�
and single probabilities Pi�a�, Pj�b�, through the following
relationships:

Pij�a,b� =� ����pi��,a�pj��,b�d� , �1�

Pi�a� =� ����pi��,a�d� , �2�

Pj�b� =� ����pj��,b�d� . �3�

It is within this framework that Santos defines homogeneous
Bell inequalities as those involving only the Pij�a ,b�, that is,

as those comparing coincidence probabilities among them-
selves. Inhomogeneous inequalities are instead inequalities
that contain the Pij�a ,b� together with the Pi�a� and Pj�b�, or
together with numbers. According to Santos �17�, all per-
formed experiments have tested homogeneous inequalities of
the form

�
i,j

cijP�ai,bj� � 0, �4�

with the cij being real numbers. Furthermore, Santos proved
the following theorem �17�: If inequality �4� is violated by
QM, then it is also violated by a LHV model. The proof of
this theorem was a constructive one, in which a LHV model
reproducing the predictions of QM for the Pij�a ,b� was
given. Hence we should conclude that none of the performed
experiments has disproved local realism, unless they have
also disproved QM. Santos argues that the performed experi-
ments in fact did not rule out local realism because all these
experiments tested inequalities like Eq. �4�. The homoge-
neous character of these inequalities allowed people to test
them by using only coincidence counting rates, thereby
avoiding the necessity of measuring the P�ai ,bj� as ratios
between coincidence rates to �unmeasurable� production
rates. However, by so doing people chose to make one of two
things. Either they introduced auxiliary assumptions besides
realism and locality, or else they “renormalized” probabilities
by dividing the P�ai ,bj� through a common factor like
�i,jP�ai ,bj�. The second option was the choice taken by
those who tested the celebrated Clauser-Horne-Shimony-
Holt �CHSH� inequality �21�, which is an inhomogeneous
Bell inequality of the form �i,jcijP�ai ,bj��2. What people
did in all these tests of the CHSH inequality was to replace
the true correlations entering it by “renormalized” correla-
tions. However, the resulting inequality cannot be derived
from local realism alone. This has been the case even with
the celebrated experiments of Aspect and co-workers �6� as
well as with other, more recent ones �3�. In spite of these
strong objections raised by Santos it seems that a great part
of the physics community preferred to ignore them, or at
least opted for not taking them as strong as they are.

It appears then that homogeneous inequalities are unsuit-
able for disproving local realism in favor of QM. Accord-
ingly, the only usefulness such inequalities might have is that
they could serve to disprove restricted classes of LHV mod-
els; that is, models incorporating additional assumptions be-
sides realism and locality. This would be the case with some
variants of two well known inhomogeneous Bell inequalities:
the Clauser-Horne �CH� �22� and the CHSH �21� inequali-
ties. Besides the already mentioned tests of the CHSH in-
equality, there have been other tests based on it. These tests
have used homogeneous versions of the CH and of the
CHSH inequalities, which were obtained by invoking
supplementary assumptions that restricted the class of LHV
models under test. These assumptions are violated by San-
tos’s model. The models in the restricted LHV class satisfy
inequalities that QM violates, and can thus be ruled out by
the corresponding experiments. But these experiments do not
rule out the unrestricted set of LHV models that could rep-
resent a “completion” of QM, in the sense of Einstein.
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Henceforth, we will focus our attention on two tests of the
homogeneous version of the CH inequality that were re-
ported some years ago, showing its clear violation: a test by
Ou and Mandel �23�, and a test by Torgerson et al. �24�.
Whereas the former has been often cited in the literature, the
last one is not. This might be somewhat surprising, because
the test by Torgerson et al. claimed to show a violation of the
CH inequality by about 40 standard deviations at each data
point. Moreover, as compared to the test of Ou and Mandel,
the test of Torgerson et al. seems to address a broader class
of hidden-variable models. Indeed, while Ou and Mandel
invoked the no-enhancement assumption �22�, Torgerson et
al. did not. It seems that the test reported by Torgerson et al.
has aroused more skepticism than other, often cited tests. As
we shall see, this skepticism is not totally surprising, in view
of an assumption made by Torgerson et al. in relation to
single probabilities. This assumption is highly questionable
and might be the reason why the test of Torgerson et al. has
been only rarely cited. Our purpose here is to analyze the
class of hidden-variable theories that the test of Torgerson et
al. does rule out. By so doing, we will endeavor to discuss
the tests of Bell inequalities in a way that transcends the
particular case reported by Torgerson et al., making it our
battle horse for reaching our principal aim: to prove that it is
possible to derive homogeneous Bell inequalities that are at
the same time genuine.

To talk about a homogeneous and genuine Bell inequality
seems to be a contradiction in terms, in view of the afore-
mentioned LHV model provided by Santos. The contradic-
tion is removed by strengthening and thereby modifying
somewhat the notion of a genuine Bell inequality: we require
from it to be derivable not only from realism—in a broad
sense—and from locality. Thus there is a further restriction
that we should impose, and this is that the underlying LHV
theories be theories of physical reality. The probabilities
pi�� ,a�, pj�� ,b� must then be constrained by whatever con-
ditions physical reality might impose upon them. Santos’s
proof of his theorem required from these probabilities to ful-
fill only the conditions 0� pi�� ,a�, pj�� ,b��1 that every
probability should satisfy, whenever it is assigned to the
elements—termed “events”—of an abstract set. As soon as
we require from pi�� ,a� and pj�� ,b� to be probabilities of
physical events—in contrast to baldly assigning them to
events of an abstract set—further restrictions can be called
for. We stress that we hereby refer to conditions that are
unavoidable, i.e., they should hold by necessity, as a conse-
quence of some general features that we ascribe to physical
reality. This should be distinguished from the form in which
different authors have restricted the class of LHV models
under study, namely by making supplementary assumptions
on the pi�� ,a�, pj�� ,b� that rest on plausibility arguments. In
our case, we are referring to a self-consistent picture of the
real world, a picture that nonetheless might very well entail
some idealizations. For example, consider an ideal polariza-
tion analyzer. Let p+�� ,a� be the probability that a photon—
characterized by a hidden variable �—passes this analyzer
when it has been set to the angle a, and let � be the polar-
ization angle for the photon. Then, we may safely require
that p+��=a ,a�=1, without considering this equation to be
an additional assumption alongside realism and locality. It is

an assumption that we should rather impose on any LHV
model that could be accepted as a self-consistent description
of physical reality. And the word “photon” does not need
here to be embodied with any naive meaning of a corpuscu-
lar entity; what is essential is the very concept of polarization
as a dichotomic quantity. It is in this abstract sense that we
refer to a self-consistent picture of physical reality, although
we will often use the word “photon” and the like, for
economy of language.

III. THE TESTS BY OU AND MANDEL
AND BY TORGERSON et al.

Ou and Mandel and Torgerson et al. tested, respectively,
two special forms of the CH inequality that were derived
from the original, inhomogeneous version of it. In order to
discuss the relationship among these different versions, let us
briefly recall how the CH inequality can be obtained: Con-
sider six real numbers, x, x�, y, y�, X, and Y, such that 0
�x ,x��X and 0�y ,y��Y. Then, it follows that �22�

xy − xy� + x�y + x�y� − x�Y − yX � 0. �5�

Let us now take i= j=+ in Eqs. �1�–�3� and set x
= p+�� ,a�� p�� ,a�, y= p�� ,b�, x�= p�� ,a��, y�= p�� ,b��, X
=Y =1 in Eq. �5�. After multiplying the resulting inequality
by ���� and integrating over �, one obtains the CH
inequality

P�a,b� − P�a,b�� + P�a�,b�� + P�a�,b� − P�a�� − P�b� � 0.

�6�

Following Santos �17�, we call Eq. �6� a “genuine” Bell
inequality, viz. one which does not involve supplementary
assumptions beyond realism and locality. We note that Eq.
�6� is inhomogeneous; it compares coincidence probabilities
against single probabilities. Another well-known inhomoge-
neous Bell inequality is the CHSH inequality �21�, in which
coincidence probabilities are compared against a pure num-
ber. It can be derived �22� as a corollary of Eq. �6�. As
already said, Santos pointed out �2,17� that so far only ho-
mogeneous Bell inequalities have been experimentally
tested. This has been so because in a proper test all probabili-
ties should have been interpreted as ratios of counting rates
to emission rates. However, emission rates are usually un-
known and hence should drop from the resulting expression.
This can be achieved by writing down all rates in terms of
the emission rate and other parameters like angular correla-
tions and detector efficiencies. But proceeding in this way,
these parameters enter with different weights if the inequality
in question is an inhomogeneous one, like Eq. �6�. In such a
case, the resulting inequality entails one or more detector
efficiencies, so that for the inequality to be violated there is
some minimum efficiency that must be required. Several au-
thors have analyzed both the CH and the CHSH inequalities
including detector efficiencies �12–16,22,25�. They con-
cluded that there is a threshold efficiency that should be
reached for a test to be loophole free. Of course, reaching a
threshold efficiency would be a necessary but not sufficient
condition, as other loopholes might persist which exploit lo-
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cality, background noise, depolarization, and so on. Experi-
ments based on optical photons are among the best candi-
dates to close all loopholes, but an overall detection
efficiency ���thresh=0.67 is required for a two-photon test
of the CH inequality �12,14�. Although such an �thresh does
represent an improvement with respect to the �thresh=0.83
that would be required for a loophole-free test of the CHSH
inequality �25�, it is still beyond reach for present day tech-
nology: the overall efficiency for experiments with optical
photons lies around 0.30 �15�. It is thus important, even for
reasons besides our main concern, to delimit the class of
local realistic theories that has been ruled out in experiments
like the ones reported by Ou and Mandel and by Torgerson et
al.

Let us first consider the experiments of Ou and Mandel
�23�. They tested the CH inequality transformed to the fol-
lowing, homogeneous form:

P12��1,�2� − P12��1,�2�� + P12��1�,�2�� + P12��1�,�2�

− P12��1�,	� − P12�	,�2� � 0. �7�

Here, P12��1 ,�2� means the joint probability of detecting a
particle at each one of two detectors, D1 and D2, with these
detectors having polarization analyzers �polarizers, for short�
set in front of them to angles �1 and �2, respectively.
P12��1 ,	� and P12�	 ,�2� are probabilities with one or the
other polarizer removed. Inequality �7� was proposed by
Clauser and Horne �22� to make only joint probabilities ap-
pear, thereby avoiding the appearance of single probabilities.
Now, in order to obtain inequality �7� the “no-enhancement
assumption” must be invoked. This assumption states that
the classical, single probabilities pi=1,2�� ,�� are bounded by
some other probabilities pi�� ,	�. Here, pi�� ,�� means the
probability to register a particle at detector Di when the po-
larizer is set to an angle �, the registered particle being emit-
ted in a state characterized by �. It is required that pi�� ,��
satisfies the conditions 0� pi�� ,��� pi�� ,	��1, with
pi�� ,	� meaning the probability of counting a photon at Di
when the polarizer in front of it is absent. One can then start
from Eq. �5�, setting x= p1�� ,�1�, y= p2�� ,�2�, x�= p1�� ,�1��,
y�= p2�� ,�2��, X= p1�� ,	�, Y = p2�� ,	�, and after multiplying
the resulting inequality by ���� and integrating over � one
obtains the CH inequality as given in Eq. �7�. Although the
above bounds assumed for pi=1,2�� ,�� are plausible, they
represent an additional assumption that further restricts the
class of hidden-variable models under test.

On the other hand, Torgerson et al. did not invoke the
no-enhancement assumption because they tested the follow-
ing inequality:

P12��1,�2� − P12��1,�2�� − P12��1� + 
/2,�2�

− P12��1�,�2� + 
/2� � 0. �8�

According to Torgerson et al., Eq. �8� follows from the origi-
nal form of the Clauser-Horne inequality:

P12��1,�2� − P12��1,�2�� + P12��1�,�2�� + P12��1�,�2�

− P1��1�� − P2��2� � 0, �9�

“whenever the single channel probabilities P1��1� and P2��2�

are equivalent to the joint probabilities P12��1 ,−� and
P12�−,�2�, respectively.” Here,

P12��1,− � = P12��1,�� + P12��1,� + 
/2�

and

P12�− ,�2� = P12��,�2� + P12�� + 
/2,�2� .

Indeed, one can easily check that by making the replace-
ments P1��1��→P12��1� ,−� and P2��2�→P12�−,�2� in Eq. �9�,
inequality �8� follows. That is, Torgerson et al. took for
granted that one can set

P1��1� = P12��1,�� + P12��1,� + 
/2� , �10�

P2��2� = P12��,�2� + P12�� + 
/2,�2� . �11�

They claimed that “this is certainly true for perfect detectors
and it is true more generally if the fair sampling assumption
is valid.” Now, excepting the ideal case of perfect detectors,
one should rather expect that Eqs. �10� and �11� are generally
not fulfilled. This is because the left hand sides of Eqs. �10�
and �11� generally depend on the efficiency of a single de-
tector, whereas the right hand sides generally depend on the
efficiencies of both detectors. How could the probability of a
count at one detector depend on the efficiency of the other
detector? Take, e.g., the case of D1 having almost 100%
efficiency and D2 having almost null efficiency. Then, Eq.
�10� would imply that the probability to detect a particle at
D1 is almost zero. And the fair sampling assumption does not
help out of this contradiction. That is, although Torgerson et
al. did not invoke the no-enhancement assumption, they
made instead the very strong and restrictive assumption that
is expressed through Eqs. �10� and �11�. To invoke condi-
tions �10� and �11� seems to make things far more restrictive
than to invoke the no-enhancement assumption. Hence at
first sight the test of Torgerson et al. seems to address a very
limited class of hidden-variable models, if any at all. In fact,
because Eqs. �10� and �11� seem to be meaningless for any
but ideal detectors, one should expect inequality �8� to be
violated in almost every measurement. From this viewpoint,
it is not surprising that the results reported by Torgerson et
al. do confirm this expectation.

Whenever Eq. �8� is violated, at least one of the assump-
tions used to derive it must be false. Togerson et al. based
their derivation of Eq. �8� on realism, locality, and conditions
�10� and �11� for the probabilities. Of course, the best candi-
dates for being taken as false are the last ones, thereby mak-
ing the violation of Eq. �8� useless for the scope of disprov-
ing local realism. However, as we shall see next, conditions
�10� and �11� are in fact unnecessary to derive Eq. �8�. We
can derive it from realism, locality, and the following condi-
tions for the pi�� ,�i� , i=1,2:

pi��,�i� � pi��,�� + pi��,� + 
/2�, ∀ � . �12�

Assuming the validity of Eq. �12� we can derive Eq. �8�
from Eq. �5� by setting X= p1�� ,�x�+ p1�� ,�x+
 /2�, Y
= p2�� ,�y�+ p2�� ,�y +
 /2�, x= p1�� ,�1�, y= p2�� ,�2�, x�
= p1�� ,�1��, y�= p2�� ,�2��. Multiplying the resulting inequal-
ity by ���� and integrating over � we obtain
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P12��1,�2� − P12��1,�2�� + P12��1�,�2� + P12��1�,�2��

− P12��1�,�y� − P12��1�,�y + 
/2�

− P12��x,�2� − P12��x + 
/2,�2� � 0. �13�

Choosing �x=�1�, �y =�2� we recover inequality �8�. Similar
forms could be derived by choosing �x and �y conveniently.

Having shown that inequality �8� is a particular case of
Eq. �13� and thus follows from realism and locality, together
with conditions �12�, we pass now to analyze the restrictions
that these last conditions might imply for the class of hidden-
variable theories we can test through inequality �13�. Note
first that conditions �12� are fulfilled by necessity whenever
pi�� ,��+ pi�� ,�+
 /2�=1, i=1,2. So, let us analyze in
which cases this last condition is satisfied. It is certainly
satisfied if we assume that for each photon the following
holds true: Each photon of the type � would be detected at
detector Di in one of two cases, namely, when a polarizer is
set to the angle � before the detector, or when the polarizer is
set to �+
 /2. We expect this to be true for the case of ideal
polarizers and perfect detectors. However, even assuming
this ideal case we cannot directly conclude that pi�� ,��
+ pi�� ,�+
 /2�=1, i=1,2, because this would imply a coun-
terfactual argument. Indeed, it would mean that if Di did not
detect the photon when the polarizer in front of it was set to
�, then it would have detected it in case the polarizer would
have been set to �+
 /2. In order to avoid counterfactual
assertions we consider instead the complementary probabili-
ties p̄i=1,2�� ,�� that refer to the lack of detection at Di when
the polarizer in front of it has been set to �. Then, we can
safely require that p̄i�� ,��+ p̄i�� ,�+
 /2�=1, i=1,2, without
resorting to counterfactual arguments. The last equation fol-
lows from assuming that a photon must be absorbed when-
ever it goes through two consecutive, ideal polarizers, one
being set to � and the other to �+
 /2. Note that we are
consistently assuming—by invoking noncontextuality—that
the value assigned to p̄i�� ,�� does not depend upon the set-
ting �to angle �+
 /2� of a second polarizer. Because
pi�� ,��+ p̄i�� ,��=1, it follows that pi�� ,��+ pi�� ,�+
 /2�
=1 must hold as well. Thus, up to this point, the validity of
conditions �12� could be limited only by the efficiency of the
polarizers, which we consider next.

Nonideal polarizers can have efficiencies larger than 99%.
Thus, in any case, restrictions derived from the inefficiency
of the polarizers are much less demanding than those stem-
ming from detector inefficiencies. Let us consider once more
a photon that is characterized by � and sent through two
consecutive, nonideal polarizers set to angles perpendicular
to each other, � and �+
 /2. Let us denote by �i�� ,�� the
�small� probability that the photon passes the two polarizers
and is eventually detected at detector Di. Then, it follows that
p̄i�� ,��+ p̄i�� ,�+
 /2�=1−�i�� ,��, i=1,2. Now, by replac-
ing pi�� ,��+ p̄i�� ,��=1 in the last equation we conclude that
pi�� ,��+ pi�� ,�+
 /2�=1+�i�� ,��. This equation expresses
the fact that with inefficient polarizers some of the photons
that are polarized along � could nevertheless pass a polarizer
set to �+
 /2 �or the other way around� so that pi�� ,��
+ pi�� ,�+
 /2��1. Anyhow, we conclude that conditions
�12� are fulfilled, either with ideal or imperfect polarizers. As

a consequence, the homogeneous inequality �13� follows
without further assumptions than realism, locality, and the
requirement that the pi�� ,�� be in accordance with a self-
consistent description of physical reality. It can thus be con-
sidered a genuine Bell inequality. Finally, let us remark that
while Eq. �13� is of the form �4�, the theorem proved by
Santos �17� does not apply to it, because its demonstration is
based upon a class of probability functions which do not
fulfill the conditions given in Eq. �12�.

IV. CONCLUSIONS

We have derived inequality �13� without invoking addi-
tional assumptions beyond realism and locality. We are thus
in possession of an inequality that, in spite of being homo-
geneous, may be considered a genuine Bell inequality. The
class of local realistic theories that should fulfill it is a very
broad class. Note that the underlying probabilities pi�� ,��
may incorporate inefficiencies of whatever sort. Hence in-
equality �13� should hold for actual experiments and its vio-
lation implies that either realism or locality, or both, must be
rejected. The problem with similar, homogeneous inequali-
ties that have been tested in the past was that they required to
invoke additional assumptions, like the no-enhancement as-
sumption, the fair sampling assumption, the free-will as-
sumption, and so on.

Turning to the violation of Eq. �8� reported by Torgerson
et al. we observe that these authors equated the probabilities
P12��1 ,�2� to coincidence ratios R12��1 ,�2� /R�−,−�, with

R�− ,− � = R12��1,�2� + R12��1, �̄2� + R12��̄1,�2� + R12��̄1, �̄2� ,

and �̄ � � + 
/2.

While setting P12��1 ,�2�=R12��1 ,�2� /R�−,−� could be ques-
tionable, this fact by itself does not invalidate the test. Indeed
the test did show that inequality �8� was violated: its left-
hand side was measured to be a positive number, and this is
all that matters. The unknown rate of emitted photons, which
should be the common denominator in all the P12��1 ,�2�,
drops from Eq. �8� anyway, as it also occurs with the detector
efficiencies. We conclude that the experiment reported by
Torgerson et al. may be taken as a valid test of local realism.
It thus represents an improvement with respect to the former
test of Ou and Mandel, in which the no-enhancement as-
sumption had to be invoked.

Strictly speaking, the class of LHV models that the test of
Torgerson et al. rules out is a class entailing models that are
realistic, local, and noncontextual. Noncontextuality has
been required when treating the p̄i�� ,�� as being fixed by �
and � alone, without regard to the context. This does not
follow from locality, because locality is compatible with both
contextuality and noncontextuality. It should be worth men-
tioning in this context that a test of realistic and noncontex-
tual models has been recently reported �26�. In a way, it is
complementary to the test of Torgerson et al., as it is also
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based on the CH inequality. However, it does not address
locality, because it was performed with single photons.

Finally, we have seen that the Clauser-Horne inequality
�6� can be brought without further assumptions into different

homogeneous forms that are embodied in Eq. �13�—and of
which Eq. �8� is just an example. Alternative forms could be
better suited to perform other tests, particularly those aiming
at closing the locality loophole.
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