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Optimizing number squeezing when splitting a mesoscopic condensate
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We optimize number squeezing when splitting a mesoscopic Bose-Einstein condensate. Applying optimal
control theory to a realistic description of the condensate allowed us to identify a form of the splitting ramp,
which drastically outperforms the adiabatic splitting. The results can be interpreted in terms of a generic
two-mode model mapped onto a parametric harmonic oscillator. This optimal route to squeezing paves the way
to a much longer phase coherence and atom interferometry close to the Heisenberg limit.
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Confined atom interferometers using Bose-Einstein con-
densates (BECs) offer new prospects for matter-wave inter-
ferometry [1] and precision measurements. Optical dipole
traps [2], atom chips [3], and radio-frequency (rf) potentials
[4,5] provide powerful tools, which enable coherent manipu-
lation and interference as demonstrated in a series of recent
experiments [6-11].

Atom interferometers based on BECs usually suffer from
the nonlinearity originating from atom-atom interactions,
which leads to phase diffusion [12]. A possible way out is to
seek for narrow number distributions of the split
condensate—i.e., squeezed states, which are very powerful
in precision measurements [13-16]. This can be achieved by
adiabatic splitting, where the nonlinear interaction favors
narrow number distributions [8,11,17]. The disadvantage of
this scheme is the long time needed for the splitting process,
within which technical noise and additional phase diffusion
might threaten the interferometer performance [18-20].

In this paper, we show that splitting protocols, based on
optimal control theory (OCT), allow efficient number
squeezing on a much shorter time scale and drastically out-
perform adiabatic splitting. We first investigate the OCT
problem in the framework of a simple two-mode model,
leading us to an intuitive interpretation of the control strat-
egy. The predictions of the simple model are verified for a
realistic experimental setting by applying OCT to the many-
body problem within the framework of multiconfigurational
time-dependent Hartree equations for bosons [MCTDHB(2)]
[21]. The fringe visibility is significantly enhanced in the
case of optimized splitting, which renders this scheme ideal
for atom interferometry.

Splitting a Bose-Einstein condensate is achieved by
changing the confinement potential smoothly from a single
well to a double well, as schematically shown in the inset of
Fig. 1. We will assume that the condensate wave function is
modified only along a single spatial direction x. To describe
properly the fragmentation of the BEC into two spatially
separated condensates, we need at least two wave functions
¢ (x), which we will refer to as left and right orbitals,
together with an additional part that describes how the atoms
are distributed among these two orbitals. Close to the split-
ting point, where the two orbitals become spatially separated,
the system can be approximately described by a generic two-
mode model, characterized by the Hamiltonian [17,22]
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Here, the Josephson energy Ej, which is proportional to the
energy overlap of the orbitals, accounts for tunneling,
whereas the charging energy E. accounts for the nonlinear

A

coupling of the atoms. J, and J, are pseudospin operators
associated with these couplings [17,22]: J, promotes an atom
from the left to the right well, or vice versa, and J, measures
the atom number difference between the two wells.

In experiments, E; is controlled indirectly by variation of
the confinement potential. Here we use E; itself as a control

ponential
0.8F e N=100 1
A N=1000
5°0_6, = N=100, MCTDHB| |
= ¢ N =500, MCTDHB
3

Time (arb. units)

FIG. 1. (Color online) Time evolution of atom number fluctua-
tions for £ j(z)=E j(O)exp[—iT] and for different decay constants 7, as
computed within the generic two-mode model [17,22]. With in-
creasing 7, the splitting process is more adiabatic and the fluctua-
tions in the final state are lowered. The symbols report results of our
OCT calculations for different numbers of atoms and splitting times
T, and show that OCT can significantly outperform the more intui-
tive quasiadiabatic scheme for the exponential turning off. The
square (diamond) symbols correspond to solutions obtained within
MCTDHB for N=100 (N=500) (see Fig. 3). In the case of
MCTDHB we take the E,. value after splitting for comparison. In-
set: schematics of the BEC splitting process. By ramping up a
double-well potential, the initial ground-state wave function of a
single well becomes nonadiabatically split into two parts, denoted
as left and right orbitals.
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parameter, in order to grasp the essential features of the con-
trol strategy, and will lift this assumption later.

When tunneling dominates over the nonlinear interaction,
E;>E_N, all atoms reside in the bonding orbital ¢g=%(¢L
+ ), resulting in a binomial atom number distribution with
fluctuation An,. When the tunnel coupling is reduced, the
nonlinear coupling favors localization of the atoms in one of
the wells. The state of lowest energy is a superposition of
different atom number states with smaller than binomial
number fluctuations. In the limit of very small tunnel cou-
pling, £;,—0, the ground state is such that half of the atoms
reside i m the left well and the other half in the right well, and
there are no atom number fluctuations, An=0.

To split the condensate, one starts from a state with E;
>FE_ N and then turns off the tunnel coupling. A quasiadia-
batic splitting corresponds to an exponential decrease of Ej,
as shown in Fig. 1 for different decay constants 7 and 100—
1000 atoms, corresponding to realistic experimental condi-
tions. One observes that for slowly varying E; the system
evolves almost adiabatically and finally ends up in a state
with small atom number fluctuations. For faster splitting, the
system can no longer follow adiabatically and becomes fro-
zen in a state with substantially larger number fluctuations
(less number squeezing). By increasing 7 by a factor of 10,
the number fluctuations in the final state drop by a factor of
approximately 2. Thus, efficient atom number squeezing
comes at the price of very slow splitting.

To improve this we are seeking an optimal time variation
of E;(#) that brings the system to a number squeezed state
with reduced atom number fluctuations in much shorter time.
To this end, we employ OCT [23-25] with the goal to mini-
mize the atom number fluctuations (An)?,

J=(An)?* = () = (J.)?, (2)

in the state at the final time 7. Within the framework of OCT,
J is called the cost function, which is minimized under the
constraint that the system’s time evolution be governed by
the Schrodinger equation. This is done by using Lagrange
multipliers to turn the constrained minimization problem into
an unconstrained one, as discussed in some length in Refs.
[24,25].

Our OCT calculations within the two-mode model are
summarized by the circular (for N=100) and triangular (for
N=1000) symbols in Fig. 1. One clearly sees that the opti-
mization of number squeezing works within a wide range of
splitting times, and E;(f) sequences found in OCT perform
approximately an order of magnitude faster in comparison to
the standard exponential one.

Figure 2 shows details to one of the E,(#) time sequences
of our squeezing optimization for N=100. OCT comes up
with an oscillating tunnel control, which leads to a drastic
reduction of the number fluctuations in comparison with the
exponential turning off.

We next investigate why the oscillating OCT tunnel cou-
pling drastically outperforms the more intuitive exponential
decay. We show how to qualitatively understand the mecha-
nism of the control.
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FIG. 2. (Color online) Results of OCT calculations for the ge-
neric two-mode model and for an atom number N=100. In (upper
panel), we plot the tunneling control E(¢), in (middle panel) the
time evolution of the atom number fluctuations, and in (lower
panel) a density plot of the absolute square modulus of the atom
number wave function. The bright lines show estimates based on
the parametric oscillator of Eq. (4). The time interval has been
chosen somewhat larger as in Fig. 3 to make the oscillating control
mechanism more visible.

For large atom numbers N, the time evolution of the ge-
neric two-mode model can be approximately described by a

harmonic oscillator [17]
E; & (2E; E,
—+ ( o )kz} C(k), 3)

i€k = { 2 >

where C(k) is the atom-number wave function and k is the
number difference between the left and right wells, which is
treated as a continuous variable. Introducing the annihilation
and creation operators d and a' for the harmonic oscillator
[26], we can cast the Hamiltonian of Eq. (3) in the form

_ 1\ EN?
=2Ej/Nl<& d+—)+ — (d2+d”)}. (4)
2/ 16E;

Here E i/N=E;/N+E.N/38 is the renormalized oscillator fre-
quency. Equation (4) is the Hamiltonian for a parametric
harmonic oscillator [27] with resonance frequency w,
~2E;/N+E.N/4.

When the oscillator is driven with approximately twice
the resonance frequency, which is approximately the period
of the OCT control in Fig. 2, the width of the initial ground-
state wave packet starts to oscillate and becomes strongly
squeezed. The predictions of the parametric oscillator model
are plotted in Fig. 2 for the oscillating control field indicated
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FIG. 3. (Color online) Optimized versus unoptimized splitting,
as computed within MCTDHB(2). For the trap we use splitting by
rf potentials [4], with wy=(27)2 kHz transversal frequency, and the
control field N\ relates to the amplitude of the rf field B=(0.5
+0.3\) G. For an interaction strength [21] (chemical potential) of
g~ 1.16 Hz (.~ 2 kHz for the unsplit trap), OCT improves squeez-
ing considerably as compared to the exponential case. In the calcu-
lations we use gerade and ungerade orbitals ¢, ,, rather than ¢y g,
as they allow one to fully exploit the symmetry of the confinement
potential. The scheme is quite robust to typical experimental noise
of 30 uG (black lines, indistinguishable from OCT results). Panel
(a) reports the control fields and atom number fluctuations for N
=100 for the exponential (dashed lines) and optimal control (solid
lines), and panels (b) and (c) the time evolution of the gerade and
ungerade orbitals.
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control the number fluctuations decay in a fashion similar to
the generic two-mode model and the number squeezing in

the final state is rather low.

Squeezing optimization is again performed within the
framework of OCT [28]. Figure 3 shows the details of our
OCT calculations. The density plot of the orbitals clearly
shows that, as in the two-mode model calculation, the con-
densate is first brought to oscillations within the two wells,
resulting in an oscillating tunnel coupling. In this regime the
atom number fluctuations first oscillate wildly and then sig-
nificantly drop. These results are in good agreement with the

generic two-mode model; see Fig. 1.

To turn off the condensate oscillations after the squeezing
optimization, we introduced an additional optimization step
for the trapping of the orbitals, similar to our previous work
on the optimization of the Gross-Pitaevskii equation [25].
With this, the orbitals are brought to an almost complete halt,
as evidenced by the stationary evolution at later times [29].

We obtain similar results for larger atom numbers (500
atoms) and different splitting times. This makes us believe
that the oscillating control for achieving a high degree of
squeezing is of general nature and that the simple two-mode
model provides a proper description for the underlying phys-

ics.

In the free-time evolution after splitting, an atom number
superposition state with finite An undergoes a spread of evo-

lution rates due to the nonlinear atom-atom interactions [12].
This “diffusion” of the relative phase with time degrades the
coherence a:= 2Re<&LdL>/ N of the condensates, directly ob-
servable as the fringe contrast [30]. Here, d, (dg) represents
the mode operator for the left (right) condensate. To quanti-
tatively analyze the improvement of OCT, we calculated the
coherence 30 ms after splitting for N=100 (500) atoms and
found values of above 80% (90%) for OCT, to be contrasted
with the values of close to zero (50%) for exponential split-
ting. Thus our squeezing protocol strongly improves the

in the upper panel: indeed, as can be observed from the num-
ber fluctuations in the middle panel, the envelope of An(r)
decreases in a fashion similar to the results of the OCT cal-
culations. Thus, if we turn off E; at the lower turning point of
An(T), we freeze the system m a squeezed number state
[although the detailed freezing sequence of E(t) happens to
be more complex in the case of OCT].

We now address the question whether our findings would
prevail in the case of a more realistic modeling of the many-
body splitting process. Contrary to the two-mode model,

phase coherence for a long time after splitting.

where all details of the condensate orbitals are embodied in 10 .
E; and E,, in general the control of E; and E, is indirect r
through the condensate orbitals, which, in turn, can be ma- 5[ Squeezing Trapping  .” Free evolution 7
nipulated by means of the confinement potential V, (x). Here, g o- L <
\(7) is a control parameter that describes the variation of the o & \,] / ] "/g o)
confinement potential when changing the external param- 2 _sf I k B--
eters, such as currents through the microtrap wires or fre- §
quency and strength of additional rf fields [4]. g 10 & (00D
For a realistic description of the splitting process, we em- S ~
ploy MCTDHB(2) [21], where the orbitals are determined § 151 Heisenberg limit
self-consistently from a variational principle. This approach ool
accounts in a natural manner for both the atom number fluc-
tuations and the orbital dynamics. We raise the issue of -25 ‘ ‘ ‘ : : :
whether the nonadiabatic dynamics of the orbitals allows us 0 10 20 Timseo(ms) 0 % %

to exploit the same control mechanism as before.

In our calculations we use parameters typical for cigar-
shaped potentials with a few 100-500 atoms, split along the
transverse direction, similar to recent atom chip [6,7] or
squeezing experiments [11] (see caption of Fig. 3 for details).
We first choose \(7) such that the tunneling decays approxi-
mately monoexponentially. Figure 3 shows that for such

FIG. 4. (Color online) Useful squeezing & for N=100 (dark
lines) and N=500 (bright lines) for the exponential (dashed lines)
and optimal control (solid lines). The optimized solutions stay well
beyond the standard quantum limit (¢;=1), in sharp contrast to the
unoptimized cases. The lines in the lower part indicate the Heisen-

berg limits &= V2/N for the investigated N’s.
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Our OCT protocols will also be useful in experiments
based upon the measurement of an atom number difference
between the wells. The phase sensitivity is then quantified by
the factor of useful squeezing &=2An/Na [14]. It displays
that squeezing enhances the sensitivity below the shot-noise
limit £x=1 and is (Heisenberg) limited from below by V2/N
[13]. Furthermore, & <1 is a sufficient criterion for the pres-
ence of entanglement between the N atoms, signifying a type
of entanglement, which is useful as a resource [11,31]. It is
apparent from Fig. 4 that OCT squeezing achieves a phase
sensitivity close to this fundamental limit of quantum mea-
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surements as well as the creation of N-body nonseparable
states.

In conclusion, we have demonstrated that nonadiabatic
condensate splitting following OCT allows for a very effi-
cient number squeezing on short time scales, leading to a
strongly enhanced phase coherence, thus rendering the tech-
nique powerful for interferometry applications.
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