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In the original Bennett-Brassard 1984 protocol, the bit basis and the phase basis are used with equal
probability. Lo et al. [J. Cryptology 18, 133 (2005)] proposed modifying the ratio between the two bases by
increasing the final key generation rate. However, the optimum ratio has not yet been derived. In this Rapid
Communication, in order to examine this problem, the ratio between the two bases is optimized for exponential
constraints, given Eve’s information distinguishability and the final error probability.
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Bennett and Brassard in 1984 (BB84) [1] proposed a pro-
tocol for quantum key distribution (QKD). Recently, several
researchers have reported the generation of a single-photon
source with telecommunication wavelength 1.3 um [2] (with
economical instruments) and 1.5 wm [3], which has the low-
est transmission loss. Also, as a single-photon source for free
space communication, single nitrogen-vacancy centers in
diamond have been developed [4]. Therefore, a quantum key
distribution system with a single-photon source is close to
becoming realistic. Indeed, it has been shown that this pro-
tocol generates secret random bits between two distinct par-
ties, even if the quantum channel is noisy [5,6]. Since a proof
of security was established for this protocol, many research-
ers [7] have improved the key generation rate. Lo et al. [8]
proposed to improve the key generation rate by modifying
the ratio between the bit (+) basis and the phase (X) basis.
In the original BB84 protocol, the sender Alice and the re-
ceiver Bob choose the + basis and the X basis with equal
probabilities. However, this one-to-one ratio is not essential,
because the purpose of a random basis choice is to estimate
the phase error rate in the channel of qubits on a coincidence
basis. That is, in order to generate secure keys from raw keys
in the + basis, it is sufficient to estimate the error rates in
both bases precisely. The aim of the present Rapid Commu-
nication is to improve the key generation rate by modifying
the ratio between the two bases.

For example, the following protocol improves the key
generation rate. When Alice and Bob communicate N qubits,
Alice and Bob use the X basis only for the randomly chose_n
VN qubits and use the + basis for the remaining N—\N
qubits. For this protocol, when the length of the code N is
sufficiently large, Alice_ and Bob can estimate the phase error
rate precisely. Since VN/N approaches zero, the rate of dis-
carded qubits approaches zero. That is, it is possible that the
generation rate of the raw keys with transmitted qubits is
almost 100%. Hence, in order to optimize this ratio, we have
to choose a suitable formulation. Due to the difficulty of such
a formulation, this optimization has not been dealt with in
existing research. As a possible formulation, one may con-
sider optimization of the final key generation rate with a
constant constraint on Eve’s information in the finite length
code. However, as has been discussed by Lo er al. [8], Ha-
yashi [9], and Scarani and Renner [10], the formula for a
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finite-length code is not simple. Furthermore, its analysis de-
pends on the length of the code. Hayashi [11] treats security
of an imperfect source and channel. Indeed, while [11] treats
the case of an imperfect source, it contains the case of a
single photon with a lossy channel as a special case.

This Rapid Communication focuses on exponential con-
straint as an intermediate criterion between the finite- and the
infinite-length cases. The exponential rate is a common mea-
sure in information theory [12], and it has been discussed in
the QKD context in several papers [9,13,14]. Here, we treat
exponential constraints on the block error probability for fi-
nal keys and for Eve’s information distinguishability for final
keys [15]. This Rapid Communication optimizes the final
key generation rate based on the key distillation protocol
given by Hayashi [9,11]. In this key distillation protocol,
first, a classical error correction is made. Next, privacy am-
plification using a Toeplitz matrix, which is an economical
random matrix [16,17], is carried out. Hence, Eve’s informa-
tion distinguishability can be characterized by the phase er-
ror probability of the corresponding Calderbank-Shor-Steane
(CSS) code.

One may think that, since Alice and Bob use an asymmet-
ric ratio, Eve can improve her strategy by using the asym-
metric property of the protocol. However, since the role of
the X basis is only to estimate the error rate of the X basis in
QKD, the disadvantage of the asymmetric protocol is that it
decreases the precision of estimation of the error rate of the
X basis. If estimation of the error rate of the X basis is not
sufficiently precise, Eve can eavesdrop on Alice’s informa-
tion. Thus, the exponential constraint for Eve’s information
distinguishability for final keys reflects this disadvantage of
the asymmetric protocol.

Thanks to recent advances in technology [2—4], it is natu-
ral to assume that a single-photon source with a lossy quan-
tum channel is available. This Rapid Communication ana-
lyzes optimization under this assumption. Furthermore, for a
simpler analysis, the random coding and the maximum like-
lihood decoding are assumed to be performed in the classical
error correction procedure.

This paper focuses on the asymmetric protocol in which
Alice and Bob use the X basis with ratio p,, and they an-
nounce the check bits, which are randomly chosen with ratio
p; among the bits for which Alice’s and Bob’s bases are the
+ basis. (As will be shown later, the optimal case arises
when the ratio of the X basis used by Alice is equal to that
used by Bob.) The performance of the protocol is character-
ized by two quantities, i.e., the final error probability of the
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FIG. 1. (Color online) Asymptotic key generation rate: The up-
per line shows max R4, while the lower line shows max Ryg.

classical error correction and Eve’s information distinguish-
ability. The latter is equal to [|psz—ps ® pgll; for Eve’s final
state pg, Alice’s final state p,, and the final state p,p of the
joint system of the final keys.

The final error probability of the classical error correction
depends on the number N of transmitted qubits, the observed
error rates g, of the + basis. However, Eve’s information
distinguishability cannot be determined from the observed
values because it depends on Eve’s attack. Hence, we com-
pute only the upper bounds, i.e., the upper bound
By(N,p;,p2,q,) of the final error probability and the upper
bound B,,(N,p;,p>,qx) of Eve’s information distinguishabil-
ity [9,11], which depends on the observed error rates gy of
the X basis and does not depend on Eve’s attack. For a given
constant C, the following exponential constraint is consid-
ered:

o
lim — log B,(N,p;,pa,q.) = C, (1)
N— N

fim 1 B,(N. )>C )
im P1-D2 = —,

N Og BN, P1,P2:4 x 2

The reason for such an asymmetric constraint is that correct-
ness for the final keys requires higher precision than secrecy.

Thus, our main target is the calculation of the rates p; and
p, which optimize the final key generation rate
Ri(p1,P2,9+.9%,C) under conditions (1) and (2), when ¢
'=q,=¢qx. These values are numerically calculated using
logarithms to base 2 with C=0.0001. For example, when N
=100000, 2°CN2=2-5_ However, since the quantity
BI,S(N ,P1-P2,qx) has a polynomial factor, it is greater than
27,

Next, we consider the symmetric protocol, in which the
ratio of the X basis to the + basis is chosen to be the one-
to-one ratio for both parties. In this case, it is possible to
control only the ratio p; of the check bits. The original BB84
protocol is an example of this case where p;=1/2.
Then, we can numerically calculate the rate p,
optimizing the final key generation rate R¢(p;,q,,¢x,C) un-
der conditions (1) and (2), when g¢:=¢g,=¢gx. The
numerical results for maxoépl’pzél/zRA(pl ,P2.4,4,0.0001)
and maxo<, <i2Rs(p1.4,¢,0.0001) are shown in Fig. 1.

Using the above results, we obtain Fig. 2, which
shows argmaxo<p <12 maXOSp2$1/2RA(p1 .P2-4,4q,0.0001)
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FIG. 2. (Color online) Optimal choice rate for the check bits:
The upper line is argmax Rg, while the lower line is argmax R,.

and argmaxo<, <12Rs(p1.¢.9,0.0001). Figure 3 shows
argmaxg<, <> MaXo<, <12RA(P1.P2.¢,4,0.0001).

The above figures are derived by combining the type
method [18] and the analysis by Hayashi [9,11] as follows.
Here, we discuss security based on the key distillation pro-
tocol given by Hayashi [9,11], in which, after the generation
of raw keys, classical error correction is performed using a
pseudoclassical noisy channel, and random privacy amplifi-
cation is carried out using the Toeplitz matrix. As was shown
by Hayashi [9,11], application of a classical error correction
via a pseudoclassical noisy channel is equivalent to combi-
nation of a classical error correction and discrete (partial)
twirling. Hence, due to this kind of classical error correction,
it is sufficient to concentrate on analysis of the security of the
discrete-twirled channel. Indeed, it was proven by Hayashi
([11], that, Sec. V) when discrete twirling is applied, any
lossy channel with a single-photon outcome becomes a Pauli
channel, which can be described by a probabilistic applica-
tion of Pauli matrices. Therefore, the following analysis
deals with the case of a single-photon source with a lossy
channel.

Let us calculate the probability that the estimated phase
error rate is g, and the phase error rate among raw keys is
q%. As discussed by Hayashi [9], this probability can be
evaluated using the hypergeometric distribution, that is,

{( Np3 )( N(1=py)*(1 = p)) ”
Np3gx ) \N(1 = p2)*(1 = p1)g’s
( N@p3+(1=p)*(1=py) )
Np3gs +N(1 = py)*(1 = p1)gs
where N is the total number of transmitted qubits. Since

—pnh(kin) < (1) < 27"k this probability is bounded by

n+l
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FIG. 3. (Color online) Optimal choice rate of X basis.
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{( Np3 )( N(1L=p2)*(1 - py) ﬂ
Np3asx ) \N(1 = py)*(1 = p1)gy —eld))
( N3+ (1= py)X(1=py) ) ridx
Np3gs +N(1 = p2)*(1 = p1)gl
= [N(p% +(1=p)*(1-p)) + 1]2—NDp(P1st’4x,q;),

where the exponentially decreasing rate is given by
Dy(p1:p2:4x:4%) = [P+ (1 = pp)*(1 = py)]
h(piqxz +(1-py)*(1 —pl)q'x)
pa+(1=p)*(1-py)
— P3h(gx) = (1= p2)*(1 = p)h(g}).

When the phase error rate among raw keys is g, the random
privacy amplification with the sacrificed bit rate S, reduces
the block error probability of final keys in the X basis
to S,(q%)= 2-MS2=(1-p2*(1-pDh(@))e [9], where [x], is x
for a positive number x while [x], is zero for a negative
number x. Since ¢! takes values in {0,1/N,2/N,..., 1},
the (block) error probability of the final keys in the X basis
is bounded above by Ei’zoep(k/N) 8,(k/N).  Define
the bound Bp(N7p15p2»q><) by Bp(Nsplva’qX)
i=2.2V=) €, (k/N)8,(k/N). Then, Eve’s distinguishability
[lpa.—pa® pgl; is characterized by [11]

Elpsg—pa® peli <E m}gXIIpE,x— pelli < B,(N.p1.p2.qx).

where E denotes the average with respect to random privacy
amplification, M denotes the length of the final keys, and
ppx is Eve’s state when the final key is X. Hence,
B,(N.py.p2.qx) can be regarded as an upper bound for
Eve’s distinguishability.

Applying the type method to the parameter ¢} [18], we
obtain its exponentially decreasing rate (see Hayashi [9]):

. 1
lim — log B,(N.,p1.p2.qx)

N—x N
=7 min {[S, = (1= p)*(1 = ph(gl)],
0=<q!, <172
X
+ D, (1,029 %)}- (3)

In the following discussion, S,(p;,p,,qx,C) represents the
solution S, of (3), C/2. Thus, the quantity S,(p,,p,,¢x,C) is
the minimum sacrificed bit rate for random privacy under the
condition that the exponentially decreasing rate of the upper
bound of Eve’s distinguishability is greater than C/2.

Now, it will be shown why the rate p, 4 of the X basis of
Alice can be assumed to be equal to the rate p, p of the X
basis of Bob. If different rates are chosen, then the perfor-
mance is characterized by the coincidence probability for the
+ basis, (1-pya)(1=p2p)=1+pyaP25=2(P2a+p2p), and
the coincidence probability for the X basis, p, 4p, 5. Hence,
it is sufficient to maximize the coincidence probability for
the + basis (1-p; A)(1=p; g)=1+pssp25=2(Pr4+P2p) Un-
der the condition that the coincidence probability for the X
basis p, 4p, g is equal to an arbitrary constant P. This maxi-
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mum value occurs when p; 4= p2,3=\e‘"P. Thus, it is sufficient
to consider only the case of p, ,=p; 5.

In order to express the rate of sacrificed bits
S,(p1,p2,9x,C) as a function of the constraint C, we intro-
duce two quantities ‘],x,l and q'x’2 as solutions of the follow-
ing equations in the range [0,1/2]:

D,(p1.P2.9x-9% 1) = C,

pagx + (1= p)* (1= p)g’ » =( 4% )2
pa(1=g )+ (1=p)*(1=p)(1 =gk, \1-gl,

Then, the rate of sacrificed bits S,(py,ps,q9x,C) is as fol-
lows:

S5(P1:p2:Gx-C) = (1 = p2)*(1 = p)h(q’ ;)

when ¢! | <g ,. Otherwise,

SZ(pl’pZ’qX’C) = Dp(pl’pZ’qX’q;J) +C.

Next, we consider the (block) error probability of the final
keys in the case when Gallager random coding and maxi-
mum likelihood decoding are applied [12]. When the bit er-
ror rate of the raw keys is ¢, and the rate of sacrificed bits in
classical error correction is S, the final error probability is
bounded above by €,(g!):=2"Ms1-( =P’ (1-pDha) We cal-
culate the probability that the estimate of the bit error rate is
g, and the phase error bit among raw keys is g¢;. Similar to
the case of the bit error rate, by using the hypergeometric
distribution, this probability is bounded above by &,(q.)
i=2-N0s(p1p2.4+42) ) [N(1-p,)2+1], where the exponentially
decreasing rate is given by

Db(Pl,Pz,ﬁh,qu)
= (1 —Pz)z{h[Pl% +(1 —Pl)qu] - pih(qy)
—(1=p)h(g)}.

Thus, the (block) error probability of the final keys in the +
basis is  bounded above by  B,(N,p;.p2.q.)
=3 €,(k/N)8,(k/N). Applying the type method to the pa-
rameter ¢, [18], we obtain the exponentially decreasing rate:

=1
lim — log B,(N,p1,p2,9.)

N—x© N
= min  Dy(p1,p2.9..9,) +[S)
Oqu’rsl/z
—(1=p)*(1 = pDhlg})],. (4)

In the following, S;(p;,p,.q.,C) represents the solution S,
of (4), C. Thus, the quantity, S;(p;,p2,4q.,C) is the minimum
sacrificed bit rate in the classical error correction under the
condition that the exponentially decreasing rate of the upper
bound of error probability of the final keys is greater than C.

Following the discussion of S,(p;,p,,qx,C), in order to
express the rate of sacrificed bits S,(p,p2,9x,C) as a func-
tion of the constraint C, we introduce two quantities, g 4,1 and
g, as solutions of the following in the range [0,1/2]:

Dy(p1,P2.9+:9+.1) = C,
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P1g+(1=pg., _( ) )2
Pl(l—ch)"‘(l—l?l)(l—‘b:,z) l—qu,z

Therefore, S;(p;.p>,q9x,C) is given as a function of the con-
straint C as follows. When ¢} ; <q, ,,

S1(p1.p2.q+,C) = (1= pr)*(1 _pl)h(Q-:—,l)~

Otherwise,

Sl(p]’pZ’CI+’C) = Db(pl’pZ’q+sCI-:-,2) +C.

Hence, the final key generation rate R4(p;,p2,¢+,qx,C) is
given by

Ru(P1:P2.44:qx.C) = (1= pp)*(1 = p)) = $1(p1.2.44.C)
- S(p1,02:9x.C).

Next, we consider the final key generation rate
R¢(p1,4+,9%,C) for the symmetric case. In this case, the
exponential decreasing rate of the final error probability is
given by substituting 1/2 into p, in the formula
S1(p1,p2,q4,C). The exponentially decreasing rate of Eve’s
distinguishability is given by substituting 1/2 into p, in the
formula S;(p;,p2,9%,C). Thus, R¢(p;,q.,qx,C) is calcu-
lated by

1-p
Rs(P1:44-9x,C) = Tl ~28,(p1,112,q,,E)

- 2Sl(pl’ 1/27q><ac)
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Applying numerical analysis to these formulas, we obtain
Figs. 1-3.

It has been shown that the asymmetric protocol improves
the symmetric protocol under an exponential constraint con-
dition based on the analysis of Hayashi [9]. This result sug-
gests the importance of the choice of the ratio between the
two bases when designing a QKD system. It would be inter-
esting to attempt to implement a QKD system consisting of a
single-photon source with a lossy quantum channel in the
optimum ratio derived here using current technology [2-4].
A similar result can be expected based on the results of Lo et
al. [8] and Scarani and Renner [10]. It is interesting to com-
pare the results obtained here with those based on Lo et al
[8] and Scarani and Renner [10]. A similar result can also be
expected for the decoy method [19-23]. Future work will
investigate the same problem in a finite-length framework. In
addition, it has been shown in this Rapid Communication
that the exponential rate is a useful criterion for the case of
limited coding length. It would be interesting to apply this
criterion to other topics in QKD.
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