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Effective transport of quantum information is an essential element of quantum computation. We consider the
problem of transporting a quantum state by using a moving potential well while maintaining the encoded
quantum information. In particular, we look at a set of cases where the input control defining the position of the
potential well is subject to different types of distortion, each of which is motivated by experimental consider-
ations. We show that even under these conditions, we are able to perfectly transfer the quantum information
nonadiabatically over any given distance.
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In many current proposed implementations of quantum
computers, it is necessary that we can transport computa-
tional states between operational sites. This state will often
contain information from a previous operation that we want
to preserve and use in a further operation. Consequently, we
desire that the final quantum state become displaced, but that
the initial and final states be equivalent up to a global phase.
In this sense, we will have preserved the encoded informa-
tion. In practice, this transport process is difficult to realize
without altering the state: many external sources serve to
heat or otherwise decrease the purity of the state while it is
transported. In addition, as has been pointed out in �1�, trans-
port processes may account for 95% of the operation time of
a quantum computation. It is therefore advantageous to mini-
mize the time required for this process while preserving the
motional state. In this Rapid Comunication, we present an
analytic solution for a one-dimensional system for transport-
ing a quantum state over an arbitrary distance in the nona-
diabatic regime using a harmonic potential, subject to a dis-
tortion of the input controls. This has application in systems
where the control of the transport mechanism is imperfect, as
is the case in many realistic experimental implementations,
where a well-designed input control becomes distorted, ei-
ther through a limitation due to the experimental hardware or
through the interaction of the apparatus with an uncontrolled
environment. Analytic solutions to a driven quantum har-
monic oscillator have been known for many years �2,3�, but
there have been few attempts to utilize the results for the
benefit of quantum information transfer �4�. Our approach
differs, since it is not focused on any one implementation for
transporting quantum states �although it has particular appli-
cation to trapped particles� and we do not assume perfect
control of the system. There are also some early attempts at
high-fidelity transport in experiments �1,5–7�.

We first analytically solve the Schrödinger equation for a
quantum state confined in a driven harmonic oscillator and
show that a suitable choice of the transport function d�t�
results in an evolution of the wave packet, which constitutes
what we shall refer to as “perfect transport:” the final

evolved quantum state is equivalent to the initial state up to
an irrelevant global phase which is analogous to a free evo-
lution of the state in the frame of the potential. This moti-
vates us to treat the problem classically in order to derive a
particular form of the driving function that satisfies this cri-
terion. We examine the distortion of the ideal transport path
analytically by the introduction of a general functional and
show that a large class of functionals that describe this
broadening have no effect on the success of our transport.

We model the transport of the particle from its initial po-
sition over some arbitrary distance by a movement of the
potential well according to the functional D�d�t�� of an input
function d�t� �our intended transport path�, which defines the
position of the center of the potential well along the axis of
transport for a given time t. The system can be modeled as a
wave packet confined in a static harmonic potential of fixed

frequency, subject to the Hamiltonian Ĥ�t�= 1
2 p̂2+ 1

2 �x̂
−D�d�t���2, with x̂ and p̂ being the usual quantum operators
corresponding to position and momentum, respectively, and
where D�d�t�� now plays the role of a driving function. Note
that we have transformed the variables to make them dimen-
sionless. We prepare the system in a given eigenstate of the
harmonic oscillator, ��n�x , t=0��. If we denote the transport
distance by �x, our transport condition for the quantum case
is that the fidelity between initial and final states be F
	�
�n�x−�x ,0� ��n�x ,T���2=1; in other words, the state
should be unchanged in the reference frame moving with the
potential well except for a global kinematic phase. To verify
this, we must solve the time-dependent Schrödinger equation
for our system. The normalized solutions are �2�

��n�x,t�� = e−i�Ent+��t�/2−F�x�T̂F��n�x,0�� , �1�

where En is the energy eigenvalue corresponding to the nth

eigenstate and T̂F is the translation operator T̂F��x�=�(x
−F�t�). The function F�t� is defined as

F�t� 	 �
0

t

D�d����sin�t − ��d� , �2�

and the phase ��t� is given by*michael.murphy@uni-ulm.de
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��t� = �
0

t

2F���F���� + F�2��� + F�2���d� . �3�

We can satisfy our transport condition if the function F�t�
satisfies F�T�=�x, F�0�=F��0�=F��T�=0, such that when
t=0, the wave function in Eq. �1� reduces to the normalized
eigenstates of the harmonic oscillator, and at t=T, the wave
function reduces to the original wave functions shifted by an
amount �x and with a global phase exp�−i(EnT+ 1

2��T�)�.
There is a direct correspondence between the wave func-

tion in Eq. �1� and the equations of motion for the classical
analog of our system, which can be seen by taking the ex-
pectation values of the operators x̂ and p̂ of the state in Eq.
�1� and then noting that the time evolution of these quantities
obeys the Newtonian equations of motion for a classical par-
ticle confined within a harmonic potential well with constant
frequency. The equations of motion are given by ẋ�t�= p�t�
and ṗ�t�=D�d�t��−x�t�, where again all variables are re-
scaled to make them dimensionless. Here, x�t� and p�t� refer,
respectively, to the position and momentum of the classical
particle along the axis of transport at time t. These equations
have solutions x�t�=xc�t�+F�t� and p�t�= pc�t�+F��t�, with
F�t� as defined in Eq. �2�. The functions xc�t� and pc�t� are
solutions to the homogeneous equations of motion, which
therefore describe the simple harmonic motion undergone by
the particle when no transport is undertaken. In the classical
picture, the condition for performing perfect transport be-
comes x�T�=xc�T�+�x and p�T�= pc�T�, where �x denotes
the displacement of the potential well at the final time. Our
perfect transport condition specifies the boundary conditions
on F�t� and its first-order derivatives. We can rewrite F�t� in
terms of D�d�t�� by noting that Eq. �2� is a Volterra integral
equation of the first kind with a trigonometric kernel �8� and
hence has the solution

D�d�t�� = F��t� + F�t� . �4�

We first search for a form of the function d�t� by supposing
that D�d�t��=d�t�. Substituting the transport conditions on
x�t� and p�t� into Eq. �4� and imposing the condition F��0�
=F��T�=0, we find F�0�=0 and F�T�=�x. If we fix the con-
dition that d��t�=0 when t=0 and T, we subsequently place
boundary conditions on F��t� and F��t� at the initial and final
times. Taking all of these conditions into account for F�t�
and its derivatives, we can now construct a function d�t� that
transports our particle perfectly. This procedure is as follows:
we construct a general F�t� by taking the simplest form of
transport function �a linear function� and adding a series of
Fourier components. We scale the components so that their
period matches the transport time. We then apply the bound-
ary conditions on F�t� to solve for the Fourier coefficients.
Due to the periodicity of the components, we have only five
independent boundary conditions, and so we may uniquely
specify only this many Fourier components. Substituting this
into Eq. �4� gives us the solution

do�t� = �x� t

T
+ sin2�t

T
� 8�

3T2 −
2

3�
�

+ sin4�t

T
� 1

12�
−

4�

3T2�� , �5�

which we shall call our transport function. This equation
depends on the transport time T, so that one must choose the
correct transport function for the appropriate transport time.
Since we have scaled all the variables in our system, T
=2� represents transport over one period of the harmonic
motion in the potential well �the trap period�. We henceforth
assume throughout that d�t�	d0�t�. �It should be noted that
one can follow a more rigorous derivation by starting from a
description in the frame of an optimal control problem, but
this was not presented here. See, for instance, �9�.�

Through consideration of the above, we may state the
following: if the functional D�d�t�� has a form such that the
boundary conditions on F�t� are preserved (and D�d�t�� is
nonsingular for all t), then the functional D does not affect
the transport of the particle. We consider the following three
forms for D�d�t�� and briefly discuss the motives for doing
so.

�i� The ḋ�t� model: D�d�t��=d�t�+�ḋ�t�, where � is a real

constant and ḋ�t� represents differentiation with respect to
time. A physical interpretation for this model could be that
we consistently “overshoot” or “undershoot” our desired po-
tential well position, so that as we move the well more
quickly, the deviation from the desired position becomes
greater.

�ii� The piecewise model: The functional D casts d�t� into
a piecewise form

D�d�t�� = d�tn� for t � tn −
T

2N
,tn +

T

2N
� , �6�

where tn= nT
N for a given N�Z+ ,N�1. This has the effect

that the potential undergoes discrete “jumps” in its position
along the transport axis, which could be due to a sampling
rate limitation of the equipment used for experiment.

�iii� The Fourier model: D�d�t��=d�t�+g�t�, where g�t� is
a discrete Fourier series. This is of relevance since we may
decompose any periodic signal �for instance, periodic pulse
distortions� into a Fourier series �note that the Fourier repre-
sentation must converge at all times t to the signal being
represented�.

We now show that for each of these functionals the con-
ditions for perfect transport are still satisfied. In the case of

the ḋ�t� model, we begin by writing d�t�=F��t�+F�t�. Hence

D�d�t��= F̃��t�+ F̃�t�, where F̃�t�=F��t�+F�t�. It should be

clear that F̃�t� satisfies the same boundary conditions as F�t�.
Hence we conclude that we achieve our desired transport
with this functional for any transport time T.

In the case of the piecewise function, we substitute the
functional directly into Eq. �2� and solve for F�t�. We find in
the limit that T→Tk=2k�, k�Z+, the boundary conditions
for F�t� are satisfied as before. In other words, the piecewise
functional can only achieve the boundary conditions when
the transport time is an integer multiple of the period of the
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harmonic trap. It may additionally be the case that the move-
ment of the potential is not exactly stepwise, but that instead
the movement is smoothed out �for instance, if we consider a
segmented ion trap, this will be due to the charging charac-
teristics of the electrodes�. We can model this by writing Eq.
�6� as

D�d�t�� = d�tn� − qt − tn +
T

2N
��d�tn� − d�tn−1�� , �7�

so that q�t� describes the smoothing from the previous value
in the stepwise function to the next. Substituting this into Eq.
�2�, we can calculate that the part of the integral dependent
on q�t� evaluates to zero. Hence we may conclude that any
smoothing of the transport path due to these terms may be
ignored.

Finally, we consider the Fourier model. Again, through
direct integration of the functional via Eq. �2�, we can obtain
the associated function F�t�. Here, we see that we satisfy the
boundary conditions if the period of the function g�t� is Tk /2,
with Tk as given above. We can satisfy this by tuning the the
frequency of the harmonic potential to accommodate the pe-
riodic noise. Figure 1 shows sample transport paths D�d�t��
over a short transport time T=2�. One can see that the de-
viation here is not small; we significantly disturb the motion
of the particle. Figure 2 shows the classical trajectories
through phase space of the particles transported according to
the transport paths D�d�t�� �or, equivalently, the expectation
values of the operators x̂ and p̂�. One sees here that the
trajectories begin and end on the constant energy curve given
by the free oscillation in the well.

Figure 3 shows snapshots of the evolution of the ground-
state wave function subject to distortion; although the prob-
ability distributions diverge from each other at intermediate
times for the different models for D�d�t��, at the final time
the wave functions converge to the ground-state probability
distribution of the displaced potential well. Furthermore, one
may verify that the energy expectation at the final time is the
predicted value of 
E�=En= �n+ 1

2 �, which can be immedi-
ately found from Eq. �1� �although 
E� is only uniquely
specified for the ground state�.

The scheme also allows us to transport far from the adia-
batic limit, which can be demonstrated by calculating the
fidelity between the actual transported ground state and the
instantaneous ground state of the displaced potential well for
different values of the transport time. As we transport the
state, the fidelity deviates further from unity at intermediate
times, only to recover again at the final time �demonstrated
in Fig. 4�. Although here we have chosen the ground state of
the potential, we may well have used any of the other eigen-
states of the harmonic oscillator and produced similar results.

We can also begin with superpositions of states. Consider
the coherent superposition of eigenstates given by ���x ,0��
=�n=0

M cn��n�x ,0��, where cn are normalized coefficients. In
order to recover the maximum fidelity, we must preserve the
relative phases between initial states. The nth eigenstate ac-
quires a relative phase exp�−i�n−m�T� with the mth eigen-
state during transport, and so in order to preserve its phase
relation with the other superposed states, we can choose T
=Tk. Hence the transport condition is satisfied.

If we instead begin with a mixed state described by the
density matrix 	�x ,0�=�n=0

M 	n��n�
�n� and take the fidelity
�10� F= �tr��	1	2

�	1�1/2�2, where 	1 and 	2 are the initial
and final states, respectively, we can show that the fidelity of
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FIG. 1. �Color online� Distortion of the transport function over
time period T=2�. The thick �red� solid line is the transport func-

tion from Eq. �5�, the dot-dashed �green� line is the ḋ�t� model ��
=1�, the dashed �blue� line is the Fourier model �random coeffi-
cients in the range �−1,1��, and the dotted �black� line is the piece-
wise model with an exponential-type smoothing �N=8�.
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FIG. 2. �Color online� Trajectories through phase space in the
frame of the moving potential of a transported particle over time
period T=2�. See caption of Fig. 1 for key. For illustative purposes,
the particle was given some initial momentum. The center circle is
the trajectory of a freely oscillating particle with constant energy
and the same initial momentum in a static potential.
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FIG. 3. �Color online� The evolution of the ground-state prob-
ability distribution from �a� an initial time t=0 to �f� the final time
T=2�. See caption of Fig. 1 for key.
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transport does not depend on the coefficients 	n, so that the
distribution of states remains constant during transport. We
can then infer that the transport is insensitive to temperature.

In this paper, we have derived analytic solutions for the
transport of a quantum state via a moving harmonic potential
with a constant frequency. We considered the conditions un-
der which a functional that distorts the input control achieves
the conditions we have set for perfect transport. In particular,
we studied three different models that have a quantitative
relevance in experiments dealing with quantum transport and
showed that under certain conditions, all three models de-
scribe a broadening of the transport path without detriment to
the transport success. We briefly review these conditions: �i�
The ḋ�t� model fulfills the transport condition for any trans-

port time. �ii� The piecewise model fulfills the transport con-
dition when the transport time is an integer multiple of the
trap period. �iii� The Fourier model �which models signal
distortions� satisfies the boundary conditions if the signal is
periodic with half the trap period.

Of course, in a realistic situation beyond our harmonic
oscillator model, complete insensitivity to such a broad range
of control imperfections is not to be expected: in that case,
we not only have distortion of the input controls, but also
distortion of the shape of the potential itself. However, our
result indicates significant robustness �by which we mean a
low sensitivity of the transport fidelity to such distortions� is
likely to be obtained at least when potential anharmonicities
are small, since the system is well approximated by the har-
monic oscillator. This will be the subject of future investiga-
tions. Such deviations may also be overcome by application
of optimal control methods �11,12�. The consequence of per-
forming robust transport, particularly in the presence of such
imperfections, is that we can distribute quantum information
to separate elements of a quantum computer with a very high
fidelity in short times and over large distances. This is essen-
tial for scalability and fault tolerance of quantum systems for
future use in computation.
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FIG. 4. �Color online� The fidelity between the instantaneous
ground state and the transported ground state over a time T=2�.
See caption of Fig. 1 for key.
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