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We use the differential virial theorem �DVT� directly to display the approximate spatial dependence of the
exchange-correlation �XC� force in He and Be, applying an exact integral constraint on the XC force, recently
established by March and Nagy. In He, an analytic ground-state density n�r�, combined with the DVT plus the
von Weizsäcker single-particle kinetic energy, suffices to determine an approximate XC force. For Be, the XC
force is calculated for the semiempirical fine-tuned Hartree-Fock density, as proposed by Cordero et al. �Phys.
Rev. A 75, 052502 �2007��. However, for the single-particle kinetic energy, following Dawson and March, a
phase ��r� must be obtained by solving numerically a nonlinear pendulumlike equation.
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I. INTRODUCTION

Very recently, March and Nagy �1� have established an
exact integral constraint on the exchange-correlation �XC�
force fXC=−�VXC�r� /�r in the ground states of the spherical
atoms He and Be, where VXC�r� is the XC potential in cur-
rent usage in density functional theory �DFT�. As in �1�, we
take the differential virial theorem �DVT�, going back to the
work of March and Young �2� in one dimension and gener-
alized to three dimensions by Holas and March �3� as a start-
ing point. If V�r� is the customary one-body potential of DFT
�4�, the result in �3� for the DVT reads

−
�V�r�

�r
=

− �2

4mn�r�
�

�r
�2n�r� +

r̂ · zs�r�
n�r�

. �1�

In Eq. �1�, n�r� denotes the ground-state density, while zs�r�
is defined from the kinetic-energy density tensor t���r� given
in �3� by its � component having the form

z��r� = 2�
�

�

�r�

t���r� . �2�

Finally, in Eq. �1� written in the spherical symmetry appro-
priate for the He and Be, r̂ denotes the unit radial vector r /r.

Then multiplying Eq. �1� by n�r� and then integrating
over the whole of space the result

� n�r�
�V�r�

�r
dr = 2�n�r = 0� �3�

was obtained in �1�. Equation �3� can be verified by consid-
ering the two contributing terms. The first one is

�
�

r̂ · ���2n�dr = �
��

�2nr̂ dF − 2�
�

�2n

r
dr �4�

using Gauss’ theorem for arbitrary n�r� ground-state atomic
density. The surface integral goes to zero as �→�. Further-
more, it was derived in �5,6� that

1

4�
� �2n�r�

r
dr = − n�0� . �5�

As shown in �1� the second term in both He�1s�2 and
Be�1s�2�2s�2 �s-type only orbitals� is

r̂ · zs�r� = 4� tG�r�
r

+
1

2

�tG�r�
�r

	 , �6�

where tG�r� is the positive-definite gradient form of the
single-particle kinetic energy. Using the fact that r2tG→0 for
both r→0 and r→�, this integrates as

� r̂ · zs�r�dr = 8��r2tG�r��r=0
� = 0. �7�

II. USE OF THE DVT EQUATIONS FOR THE He
ATOM

Howard et al. calculated previously �7� the ground-state
density n�r� analytically from the Chandrasekhar wave func-
tion �8� �C�r1 ,r2 ,r12�: namely,

�C 	 �1 + cr12��e−ar1−br2 + e−br1−ar2� . �8�

The best variational parameters a=1.436, b=2.208, and
c=0.2924 were obtained by Green et al. �9�. Obviously, then,
the density at the nucleus can be calculated as a limit as
r→0, which is
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nC�r = 0� = 3.540. �9�

Clearly an approximation to the first term on the right-hand
side of Eq. �1� is given by inserting nC�r� in the place of n�r�.
As for the final term, tG�r� in Eq. �6� is simply the von
Weizsäcker �10� kinetic energy tW�r�, which in turn is given
by

tW�r� =
�2

8m

��n/�r�2

n�r�
. �10�

Again replacing n by nC, we have an approximation to the
final term in Eq. �1�.

To extract the desired XC force, Gauss’ theorem was used
to write −�V�r� /�r in the DVT �1� as

−
�V�r�

�r
= −

�Vext

�r
+

e2Q�r�
r2 −

�VXC

�r
. �11�

Here, Q�r� is the number of electrons enclosed by a sphere of
radius r centered on the nucleus:

Q�r� = �
0

r

4�s2n�s�ds , �12�

which can be evaluated �QC�r�, say� by inserting nC�r� for
n�r�. Finally in Eq. �11�, Vext=−Ze2 /r, where Z=2 would be
for He. However, the effective nuclear charge consistent with
the density is determined by Kato’s cusp condition �11�

lim
r→0

1

n�r�
�n�r�

�r
= − 2ZKato. �13�

For the nC�r� with the Green’s parameters, one finds
ZKato=1.963. Using this value, the divergent nuclear attrac-
tion term for small r is properly separated form the exchange

force as shown in Fig. 1. The third curve in Fig. 1 shows also
the XC force versus r for values of a, b, and c in Eq. �8�
using the consistent set �a=1.3449, b=2.2605, c=0.2385� of
Howard and March �12�. These parameters are close to the
best variational ones, but most importantly they reproduce
the He nuclear charge and the experimental ionization poten-
tial.
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FIG. 1. �Color online� The exchange-correlation force fXC for
the He atom using the density obtained from the Chandrasekhar
wave function. Blue, dotted line: Green’s variational parameters and
Z=2. Red, dashed line: Green’s variational parameters and Z
=1.963 effective nuclear charge. Black, solid line: Howard’s con-
sistent parameters, Z=2.
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FIG. 2. �Color online� The phase factor 
�r� for the Be atom as
the result of the numerical solution of the corresponding differential
equation using the fine-tuned HF density.
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FIG. 3. �Color online� The exchange-correlation force fXC for
the Be atom from the fine-tuned HF density. Blue, solid line: the
Kohn-Sham force from the force equation. Red, dashed line: the X�
force with �=0.7 for comparison.
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III. EXCHANGE-CORRELATION FORCE FOR THE Be
ATOM GROUND STATE

We have felt it best to adopt for n�r� for the Be atom the
semiempirical fine-tuned Hartree-Fock �HF� result of Cord-
ero et al. �13�. This involved solving the HF equations nu-
merically for nonintegral nuclear charge �4.127, instead of
Z=4 �13��.

Returning to the DVT in Eq. �1�, the first term on the
right-hand side is determined by the semiempirical refine-
ment of the HF density. The new feature for Be beyond the
He atom case discussed above is that

tG�r� = tW +
1

2
n�r�� ���r�

�r
	2

�14�

�see Dawson and March �14�� and ��r� is determined, as
mentioned above, by the pendulumlike nonlinear equation

�2��r� +
�n�r�
n�r�

· ���r� + � sin 2� = 0. �15�

The parameter �=�1−�2 is the difference between the un-
known Kohn-Sham 1s and 2s orbital energies. During the
numerical solution of the differential equation, � is treated as
an eigenvalue. Normalized one-electron wave functions

�nodeless 1s and 2s with one node� were found at �
=−4.117. In Fig. 2 the corresponding ��r� vs r is shown.

IV. SUMMARY AND FUTURE DIRECTIONS

The main result of this Brief Report for the ground state
of the He atom is the exchange-correlation force
−�VXC�r� /�r depicted in Fig. 1 for a few sets of parameters
in the Chandrasekhar wave function �8�.

For Be, we have no analytic counterpart for nC�r� as in �7�
for He, but only the tabulated semiempirical refinement of
the HF density. The additional feature here is the numerical
solution of the nonlinear eigenvalue problem posed by Eq.
�15� when the Cordero density is inserted, leading to the
phase ��r� shown in Fig. 2. The predicted form of the XC
force in the ground state of the Be atom is finally displayed
in Fig. 3.
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