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An expression for the correlation energy density of the uniform electron gas is derived based on the adiabatic
connection method. It covers with a single form the transition between high-density and low-density regions in
the range 0.1�rs�30, parsing the entire spin-polarization range 0���1. The pair-correlation function used
to generate the result has been used previously to describe mainly finite systems. We argue that the universality
implied by the short-wavelength hypothesis goes both ways, and a model that works well for finite systems
may be adapted to describe the uniform electron gas as well.
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The uniform electron gas �UEG� is an important subject
in the quest for accurate exchange and correlation functionals
in density functional theory. Local �local spin density� �1,2�
and semilocal �generalized gradient approximation �GGA�
and meta GGA� �3–6� approximations were created from a
detailed knowledge of the UEG properties. The success of
these approximations for systems much different from the
UEG can in part be explained by the short-wavelength hy-
pothesis �7�. It suggests that some degree of universality may
exist in the way electrons correlate in different systems, es-
pecially at short interelectronic distances. Alternatively, effi-
cient functionals for atoms and molecules have been devel-
oped without referring to properties of the UEG �8–12�. In
this Brief Report, we argue that the universality implied by
the short-wavelength hypothesis goes both ways, and a
model that works well for finite systems can be used to de-
rive approximations for the UEG correlation energy. Some
evidence along this line has been given previously �13�.

Exact or nearly exact first-principles results are still in
demand for the UEG correlation energy. Interpolations based
on quantum Monte Carlo �QMC� data �14,15� combined with
known exact limits and constraints have reached a reasonable
accuracy �2,16–18�, while feasible first-principles solutions
are still lacking it.

In this Brief Report we use the adiabatic connection
method �19–22�, employing a spin-polarized, opposite-spin
pair-correlation function �PCF� of Jastrow type, which de-
pends on the coupling strength parameter �:

g↑↓
����r� = 1 − exp�− k↑↓

2 r2��2 − �↑↓
����2 + �r�� − exp�− 2k↑↓

2 r2�

��1 − �↑↓
����2 + �r� + ��↑↓

����2�1 + �r +
�2r2

4
�� , �1�

where r= 	r1−r2	 is the interelectronic distance. This PCF
obeys automatically the known opposite-spin, �-dependent
cusp condition �23� for any k↑↓ and �, and has the following
cusp value:

lim
r→0

g↑↓
����r� = ��↑↓

����k↑↓��2 � 0 for any 0 � � � 1. �2�

In the noninteracting limit ��=0�, the opposite-spin correla-
tion vanishes, which imposes the conditions

lim
�=0

g↑↓
����r� = 1, lim

�=0
�↑↓

����k↑↓� = 1 for any r,k↑↓. �3�

This kind of PCF has been used in the past to derive func-
tionals mainly for finite systems �11,12,24�.

The opposite-spin correlation energy density is next deter-
mined by the adiabatic connection formula �ACF� �20,22�
applied to the considered case �n=n↑+n↓�:

�c
opp = 2

n↑n↓
n



0

1

d�

0

�

r dr�g↑↓
����r� − 1� . �4�

To this end we have to specify the form of the cusp factor
�↑↓

����k↑↓�. We deduce it from the exact PCF normalization
condition, which in the case of the UEG reads �opposite
spins only�



0

�

r2 dr�g↑↓
����r� − 1� = 0. �5�

Solution of the above equation first at �=1 with respect to
�↑↓ gives

�↑↓
��=1��k� =

1

2A�k�
�− B�k� + �B�k�2 − 4A�k�C�1/2�, k  k↑↓,

�6�
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2
� +

3

2k�	
, C =

�2

4
− 2. �8�

The form of �↑↓
����k↑↓� at arbitrary � is then obtained from Eq.

�6� by the substitution k↑↓→k↑↓ /�, following the coordinate-
scaling rules of Levy �22�. This form of �↑↓

��� obeys automati-
cally the noninteracting limit, Eq. �3�.

Next we solve analytically the ACF, Eq. �4�, using Eq. �1�
with the above form of �↑↓

����k↑↓�, Eq. �6�. The resulting ex-
pression is decomposed into a sum of several different types
of integral, each handled separately. After some tedious and
lengthy algebra that we do not present here due to a lack of
space, we arrive at the following expression for the opposite-
spin correlation energy density, up to an arbitrary form of the
correlation wave vector k↑↓:

�c
opp =

n↑n↓
n

�Q1
↑↓�k↑↓� + Q2

↑↓�k↑↓� + Q3
↑↓�k↑↓�� , �9�
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where Di�k� are certain quadratic polynomials yielded by the
algebra, and ai ,ci are theoretical coefficients yielded by the
algebra as well. All these are given in the Appendix.

The obtained form of �c
opp is used next to model the

parallel-spin correlation energy density

�c
par = ��c

↑↑ + �c
↓↓� . �13�

We argue that the correlation among electrons with parallel
spins, beyond and “after” the Fermi exchange, should be
qualitatively similar to the correlation among electrons with
opposite spins �24�. With this in mind, the parallel-spin cor-
relation energy components �c



 are approximated as

�c


 =

n

2

2n
�Q1


�k
� + Q2

�k
� + Q3


�k
�� , �14�

where the functions Qi�k
� have the same form as in Eqs.
�10�–�12�, but with different argument, the parallel-spin cor-
relation wave vector. “Beyond and after the Fermi exchange”
means here that the approximation for �c



 is reasonable only
for k
�kf
, where kf
 is the local Fermi wave vector:

kf
�r�� = ax�n

1/3�r�� = ax�n�r���1 � ��r����1/3, �15�


 = ↑ �+ �, 
 = ↓ �− � ,

ax�= �6	2�1/3, ax= �3	2 /2�1/3, and � is the spin-polarization
parameter,

n↑ =
1

2
n�1 + ��, n↓ =

1

2
n�1 − �� . �16�

A trial form of k
 that obeys the condition k
�kf
 can be
constructed in terms of effective screening functions multi-
plying the Fermi wave vector �25�:

k
�r�� = eff�rs,��kf
, �17�

where eff is a certain screening function to be specified. The
opposite-spin wave vector is obtained following the Becke
ansatz �8�:

k↑↓�r�� = �eff�rs�
2kf↑kf↓

�kf↑ + kf↓�
, �18�

where �eff is yet another screening function. The screening
functions are determined by fitting suitable trial forms of
these to available literature benchmarks for the correlation
energy components �c

opp and �c
par �18,27� in the density range

0.1�rs�10. Considering first k↑↓, we use the following trial
form of �eff �25�:

�eff�rs� = �1 + �2 exp�− �3rs
1/3�rs

1/4 + �4 exp�− �5rs
1/3�rs

1/3.

�19�

The optimized coefficients �i are given in the Appendix.
The parallel-spin screening factor is chosen here in the

form
eff�rs,�� = n�rs���rs,�� , �20�

n�rs� = �6 + �7 exp�− �8rs
1/3�rs

2/3 + �9 exp�− �10rs
1/3�rs

1/3,

�21�

��rs,�� =
2

��1 + ��s�rs,�� + �1 − ��s�rs,���
, �22�

where the exponential factor s�rs ,�� is optimized using
Thiele’s interpolation technique �26�:

s�rs,�� = fr�rs�fs��� , �23�

TABLE I. Selected results for �c �a.u.� at different rs and �.

rs � −�c�rs ,��a −�c�rs ,��b rs � −�c�rs ,��a −�c�rs ,��b

0.1 0.0 0.1209 0.1209 5.0 0.0 0.0282 0.0282
0.4 0.1147 0.1145 0.4 0.0266 0.0267
1.0 0.0626 0.0644 1.0 0.0154 0.0154

0.5 0.0 0.0766 0.0766 10.0 0.0 0.0186 0.0186
0.4 0.0725 0.0725 0.4 0.0175 0.0176
1.0 0.0402 0.0406 1.0 0.0105 0.0106

1.0 0.0 0.0598 0.0598 20.0 0.0 0.0115 0.0115
0.4 0.0565 0.0565 0.4 0.0109 0.0109
1.0 0.0316 0.0316 1.0 0.0068 0.0070

2.0 0.0 0.0448 0.0448 30.0 0.0 0.0085 0.0084
0.4 0.0422 0.0423 0.4 0.0081 0.0080
1.0 0.0239 0.0234 1.0 0.0051 0.0053

MAD 0.0002
MAPDc 0.80%

aBenchmark results from Refs. �18,27�.
bResults of the present work using Eqs. �24� and �25�.
cThe mean deviations include also data for rs=3, 8, and 16, and �=0.2, 0.6, 0.8, and 0.9 �not listed in the
table�.
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fr�rs� =
P1�rs�
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i=0

5

airs
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i=0

4
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i , �24�

fs��� =
P3���
P4���

, P3��� = �
i=0

4

ci�
i, P4��� = �

i=0

3

di�
i. �25�

All the coefficients above are given in the Appendix.
The final expression of the UEG correlation energy is a

single formula that covers smoothly the transition from high-
density to low-density regions for any given � in the density
range 0.1�rs�30. Table I contains results for a few selected
rs and � sample values. The mean absolute percentage devia-
tion �MAPD� with respect to literature benchmarks
�18,27,28� is 0.80% within the density range 0.1�rs�30,
parsing the whole spin-polarization range for each rs. Re-
garding only the spin-compensated case, �=0, our model
yields the correlation energy with MAPD of 0.24% in the
same density range.

The present model relies substantially on the opposite-
spin PCF, Eq. �1�. The shape of this function is depicted in
Fig. 1 for different values of rs at �=0. The curves compare
favorably with the few existing top-notch results for this
function �30�.

An important property governed by the opposite-spin PCF
is the value of its cusp g↑↓�0�. First-principles and QMC
estimates have been reported in Refs. �29,31,32�. Table II
contains sample values of g↑↓�0� at selected electron densi-
ties and spin polarizations. These are compared to available
literature results �available mostly for �=0�. In the high-
density region the estimates of Rassolov et al. �29� are exact.
Very close to these are the first-principles results of Gori-
Giorgi et al. �31�. Our values are also close to theirs in this
limit. More noticeable is the difference from the QMC-
extrapolated results in this region. The QMC method is
known to be less accurate at small and vanishing interelec-
tronic distances in the high-density region �30,31�. Consid-
ering medium- and low-density regions, the QMC-based
analytic model of Ref. �30� �the Gori-Giorgi–Sacchetti–
Bochelet �GSB� model� involves a number of exact con-

straints and is expected to be accurate at least in the range
�0.8�rs�10� �30�. It is interesting that, in this range, our
cusp values are systematically closer to the GSB results
among the data presented in Table II.

Let us note in conclusion that a variety of functionals can
in principle be generated from Eq. �9�, depending on what
form of the correlation wave vectors is used. We employ the
screening concept to obtain a form that turns out to be suit-
able for the UEG case within certain limits. It yields a com-
pact and accurate correlation energy expression in the range
0.1�rs�30 and the whole spin-polarization range. Explora-
tion of lower-density regions, rs�30, would require dealing
with UEG magnetic phase transitions �15,33�, which is be-
yond the scope of this Brief Report.

The authors acknowledge the support of NIH through
SBIR Grants No. GM081928 and No. GM084555, and Dr.
Gori-Giorgi for her helpful comments. E.P. thanks Dr. Ajit
Thakkar for inspiring discussions and support during the pre-
cursor stage of these ideas.

APPENDIX

The theoretical values of all coefficients ai and ci are
listed in Table III. The forms of the polynomials Di�k� enter-
ing Eqs. �10�–�12� are

D1 = a6k2 + a7k + a8, D2 = a1k2 + a10k + a16,

D3 = a5k2 + a13k + a15, D4 = a9k2 + a11k + a17,

D5 = c5k2 + c6k + c7, D6 = c12k
2 + c13k + c14,

D7 = c16k
2 + c17k + c18,

D8 = �c26k
2 + c27k + c28�1/2.

The values of the fitting parameters in Eq. �19� are
�1 = 0.538 074 483 500 437,

�2 = − 2.226 094 990 985 190,

TABLE II. Values of the cusp g↑↓�0� for different rs and �.

rs � GGPa Y72b RPR99c GSBd PWe

0.01 0.0 0.9927 0.9940 0.9927 0.9833 0.9923
0.8 0.9902

0.1 0.0 0.9302 0.9360 0.9268 0.9040 0.9305
0.8 0.9132

1.0 0.0 0.5145 0.5320 0.5860 0.5738
0.8 0.5060

2.0 0.0 0.2879 0.3000 0.3752 0.3790
0.8 0.3114

3.0 0.0 0.1680 0.2407 0.2682
0.8 0.2103

5.0 0.0 0.0631 0.0660 0.1116 0.1532
0.8 0.1132

10.0 0.0 0.0082 0.0080 0.0309 0.0575
0.8 0.0397

aResults from Eq. �30� of Ref. �31� �Gori-Giorgi–Perdew�.
bFirst principles results of Ref. �32� �Yasuhara 1972�, within the
ladder approximation to the electron-electron interaction.
cExact high-density estimates of Ref. �29� �Rassolov-Pople-Ratner
1999�.
dQMC-extrapolated analytic results from Ref. �30�.
eResults of the present work �PW�. rs is multiplied by the Bohr
radius a0 before evaluating g↑↓�0� �see Eq. �5� of Ref. �28��.

g(r1)

1

0.2

0.8

0.4

r1

2.521.510.50

0.6

FIG. 1. �Color online� Opposite-spin PCF of spin-unpolarized
UEG as a function of the dimensionless distance r1=r / �rs .a0�.
Curves from left to right: rs=0.8, 2, 5, and 10 a.u.
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�3 = 0.837 303 782 322 808, �4 = 2.619 709 858 963 178,
�5 = 1.036 657 594 643 520.

The values of the fitting parameters in Eqs. �21� are
�6 = 0.410 811 466 521 28, �7 = 0.599 343 256 903 515,
�8 = 1.709 394 768 021 68, �9 = 0.077 123 208 419 481,

�10 = 0.469 584 490 076 19.

The coefficients in Eqs. �24� and �25� read
a5 = 0.000 293 039 144 178 338,

a4 = 0.944 080 741 695 104 794,
a3 = − 23.824 237 216 837 930 2,
a2 = 49.341 312 958 396 707 50,
a1 = 24.005 021 512 787 114 40,
a0 = − 113.693 369 789 727 190,

b4 = 1.0, b3 = − 25.154 009 904 187 990,

b2 = 54.403 433 137 390 836 6,

b1 = 16.266 312 944 424 241 5,

b0 = − 109.742 634 932 169 10,

c4 = − 0.010 991 223 672 914 40,

c3 = 0.580 344 063 812 247 980,

c2 = − 1.426 930 414 984 216 40,

c1 = 1.180 131 465 463 191 050,

c0 = − 0.324 815 686 049 198 86,

d3 = 1.0,

d2 = − 2.521 881 835 869 481 80,

d1 = 2.097 085 058 834 907 36,

d0 = − 0.577 861 031 932 394 30.
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