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We show that configurations exist in which the correlation functions and the degree of violation of Bell-type
inequalities in the relativistic Einstein-Podolsky-Rosen �EPR� experiment have local extrema for some values
of the velocities of the EPR particles. Moreover, this strange behavior can be observed for both discussed
relativistic spin operators and for spin-1 /2 as well as spin-1 particles.

DOI: 10.1103/PhysRevA.79.014102 PACS number�s�: 03.65.Ud, 03.65.Pm, 03.65.Ta

Until recently, almost all papers concerning quantum-
information processing were based on the nonrelativistic
quantum mechanics. On the other hand, the present techno-
logical possibilities speed up the investigation of the relativ-
istic aspects of the quantum Einstein-Podolsky-Rosen �EPR�
correlations.

The aim of this paper is to report some strange behavior
of the relativistic EPR correlation functions. We show that
the correlation function, which in the relativistic case de-
pends on the particle momenta, for some fixed configurations
has local extrema. Such a behavior has not been reported in
the previous works �1,2�. Such extrema can be observed for
both spin-1 /2 and spin-1 particles and for two different
choices of the relativistic spin operator. This suggests that the
discussed effect is a general property of the relativistic cor-
relation functions. We also show that relativistic quantum
correlations are stronger than nonrelativistic ones for a vari-
ety of configurations. Consequently, in such configurations
Bell inequalities are more strongly violated by relativistic
correlations than by nonrelativistic ones.

An appropriate treatment of the EPR experiment is hin-
dered by very serious theoretical and interpretational diffi-
culties concerning the relativistic quantum mechanics. One
of the most frustrating problems is the lack of the Lorentz-
covariant notion of localizability in the relativistic quantum
mechanics. The position operator is needed not only to take
into consideration the finite size of the detectors but also it is
directly related with the definition and form of spin operator.

The most familiar choice of the position operator for a
massive particle is the Newton-Wigner operator �3�

Q̂NW = −
1

2� 1

P̂0
K̂ + K̂

1

P̂0� −
P̂ � Ŵ

mP̂0�m + P̂0�
, �1�

where P̂0, P̂ are the four-momentum operators, m the particle

mass, K̂ is the Lorentz boosts generator, and Ŵ= P̂0Ĵ+ P̂
�K̂ is the space part of the Pauli-Lubanski four-vector Ŵ�

= 1
2�����P̂�Ĵ��, Ĵ is the total angular momentum operator, and

K̂i= Ĵ0i, Ĵi=�ijkĴjk. The Newton-Wigner operator forms a vec-

tor with commuting, self-adjoint components, and is defined
for arbitrary spin. Another popular choice of the position
operator is �4�

Q̂c.m. = −
1

2� 1

P̂0
K̂ + K̂

1

P̂0� �2�

interpreted also as the center-of-mass position operator. For
spinning particles components of this operator do not com-
mute. Unfortunately, both operators do not form any autono-
mous geometrical object with a covariant transformation law.

Now, for observers in the same inertial frame spin is de-
fined as a difference between total angular momentum
�which is well defined as the generator of the rotations� and

the orbital angular momentum L̂=Q̂� P̂:

Ŝ = Ĵ − Q̂ � P̂ . �3�

However, to define the orbital angular momentum L̂ we

should know the relativistic position operator Q̂. The lack of
a generally accepted position operator results in ambiguities
in the definition of relativistic spin operator. In particular,

Newton-Wigner operator Q̂NW leads to the following spin
observable:

ŜNW =
1

m�Ŵ − Ŵ0 P̂

P̂0 + m
� , �4�

which satisfies usual spin algebra �su�2� Lie algebra�. ŜNW is
the only axial-vector operator being linear function of the
Pauli-Lubanski four vector �5�. However, such spin operator
is neither an autonomous geometrical object under Lorentz
transformations nor even a part of an irreducible object.

For the position operator Q̂c.m. the corresponding spin ob-
servable takes the form

Ŝc.m. =
Ŵ

P̂0
. �5�

Unfortunately, components of this operator do not form the
spin algebra. Moreover their eigenvalues �i are momentum-
dependent, i.e., �i=�	�m2+ �ki�2� /k0, �=−s ,−s+1, . . . ,s.

Furthermore, in contrast to the operator ŜNW
2 , the operator

Ŝc.m.
2 does not reduce to the relativistic spin-square operator

−W�W� /m2 equal to s�s+1�1 in a unitary irreducible repre-
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sentation of the Poincaré group. Therefore the operator �5�
cannot be treated as a proper spin observable. For this reason
Czachor �6�, and following him a number of authors �see,
e.g., Refs. �1,7,8��, used the normalized operator �5�. One
can easily show that the spin observable used in Ref. �6� can
be cast in the following form:

Ŝ�a� =
a · Ŵ

	m2 + �a · P̂�2
. �6�

This operator has a proper spectrum; however, it cannot be
treated as a projection of any spin observable on the direc-
tion a, 
a
=1, because it is a nonlinear function of a. In the
following we will compare EPR correlations and Bell-type
inequalities obtained with help of the spin operator �4� and
the operator �6�.

Let us consider two distant observers Alice and Bob in the
same inertial frame, sharing a pair of particles with sharp
momenta in a two-particle state 
	�. We take into account
only such measurements in which Alice and Bob register one
particle each. Without loss of generality we can assume that
particles are distinguishable and Alice registers the particle
with momentum equal to k and Bob the particle with mo-
mentum equal to p. Now let Alice measure spin component
of her particle in direction a and Bob spin component of his
particle in direction b, where 
a
= 
b
=1. Their observables

are �a · ŜNW� � 1 and 1 � �b · ŜNW�, when one uses the spin

operator ŜNW defined in Eq. �4�, or Ŝ�a� � 1 and 1 � Ŝ�b�
when one uses the operator �6�. Consequently, the normal-
ized correlation function in the EPR-type experiment has the
form

C	�a,b� =
�	
�a · ŜNW� � �b · ŜNW�
	�

s2�	
	�
, �7�

for the spin operator ŜNW or

CCz
	 �a,b� =

�	
Ŝ�a� � Ŝ�b�
	�
s2�	
	�

, �8�

for the operator �6� proposed by Czachor.
In this paper we will discuss EPR correlations in two-

particle states which are singlets of the Lorentz group. Some
of the formulas presented in this paper have been obtained in
our previous works but we include them to the present paper
to make it self-consistent. Let us remind first the notation
concerning one-particle states. For the particle with mass m
and spin s space of states is spanned by the four-momentum
eigenvectors 
k ,m ,s ,
�. These vectors are normalized cova-
riantly. The action of the Lorentz transformation � on the
vector 
k ,m ,s ,
� is of the form

U���
k,m,s,
� = D�

s �R��,k��
�k,m,s,�� , �9�

where Ds is the matrix spin s representation of the SO�3�
group, R�� ,k�=L�k

−1�Lk is the Wigner rotation, and Lk des-
ignates the standard Lorentz boost defined by the relations

Lkk̃=k, Lk̃= I, k̃= �m ,0�. Throughout all the paper we will
assume that both EPR particles have mass m. Moreover, for

fixed values of the spin we will use the notation 
k ,
�

k ,m ,s ,
�.

For s=1 /2 pseudoscalar state of two particles with sharp
momenta was discussed in Refs. �9,10�. It has the following
form:


��k,p�� =
− i

	2	�1 +
k0

m
��1 +

p0

m
���1�1 +

k0 + p0

m
+

kp

m2�

−
i�k � p� · 


m2 �
2�

�


k,
� � 
p,�� , �10�

where 
 ,�= 
1
2 , �= �
1 ,
2 ,
3�, and 
i are standard Pauli

matrices. In the center-of-mass �c.m.� frame �p=k�

�k0 ,−k�� the state �10� is an ordinary singlet state.
Correlation function �7� for spin-1 /2 particles in the state

�10� was calculated in Ref. �9� and it reads

C��k,p��a,b� = − a · b +
�k � p�
m2 + kp

���a � b� +
�a · k��b � p� − �b · p��a � k�

�k0 + m��p0 + m� � .

�11�

Notice that in the c.m. frame the above correlation function
is the same as in the nonrelativistic case C��k,k���a ,b�
=−a ·b.

On the other hand, one can check that correlation function
�8� in the state �10� has the form

CCz
��k,p��a,b� =

m2

	m2 + �a · k�2	m2 + �b · p�2

��− a · b +
�a · k��b · p�

m2

−
�a · �k + p���b · �k + p��

m2 + kp
� . �12�

In the c.m. frame it takes the form obtained by Czachor �6�.
The unexpected behavior of the correlation functions �11�

and �12� can be observed in the cases when observers are not
in the c.m. frame of the pair of EPR particles. As an ex-
ample, let us consider the situation when in Alice’s and
Bob’s inertial frame

k� = m�	4x + 1,	x,0,− 	3x� , �13a�

p� = m�	4x + 1,− 	x,0,− 	3x� , �13b�

where

x =
W2

4m2 − 1. �14�

Here W denotes invariant total energy of the two-particle
system in the c.m. frame. In this case we can find such con-
figurations in which both correlation functions �11� and �12�
posses local extrema—see Fig. 1.

This behavior of the correlation function has interesting
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physical consequences. The violation of the Clauer-Horne-
Shimony-Holt �CHSH� inequality �11�

�CHSH� = 
C�a,b� − C�a,d� + C�c,b� + C�c,d�
 � 2

�15�

depends on the particle momenta and on the chosen spin
operator. There are configurations in which the quantity
CHSH possesses local maximum and exceeds 2 for both cor-
relation functions C��k,p��a ,b� and CCz

��k,p��a ,b�—see Fig. 2.
There are also such configurations in which the function
C��k,p��a ,b� violates the CHSH inequality while the function
CCz

��k,p��a ,b� does not �Fig. 3� and vice versa. Notice that x
=0 corresponds to the nonrelativistic case. Therefore, in all
configurations depicted in Figs. 2 and 3 the CHSH inequality
is not violated in the nonrelativistic case.

The situation is more surprising for spin-1 particles. In
this case we can observe similar phenomena even in the c.m.
frame. To see this let us consider the scalar state of two
spin-1 particles �12�


��k,p�� = �

,�=0,1

e�

�k�e���p�
k,
� � 
p,�� , �16�

where the explicit form of the amplitudes e�

�k� can be

found in Ref. �12�.
The correlation function C	�a ,b� �Eq. �7�� in the state

�16� was calculated in Ref. �12�. In the c.m. frame this cor-
relation function takes the form

C��k,k���a,b� =
2

2 + �1 + 2x�2 �− �1 + 2x��a · b�

+ 2x�a · n��b · n�� , �17�

where n= k

k
 and x is defined in Eq. �14�. In the c.m. frame x

is connected to the velocity of the particle via the relation
�v /c�2=x / �x+1�. Therefore the correlation function �17� de-
pends only on the velocity of the particles, not on its mass.

As one can check, the correlation function CCz
	 �a ,b� �Eq.

�8�� in the state �16� has the following form:

CCz
��k,p��a,b� = 2

− a · b�kp� − �a · p��b · k�

�2 +
�kp�2

m4 �	m2 + �a · k�2	m2 + �b · p�2

.

�18�

In the c.m. frame it reduces to

CCz
��k,k���a,b� = 2

− a · b�1 + 2x� + x�a · n��b · n�
�2 + �1 + 2x�2�	1 + �a · n�2x	1 + �b · n�2x

.

�19�

In Fig. 4 we have plotted the functions �17� and �19� for the
fixed configuration. We again observe local maxima for both
functions.

In this case physical consequences are stronger than for
s=1 /2 particles. According to the Mermin’s paper �13�, in
the EPR-type experiments with the pair of spin 1 particles in
the singlet state the following inequality has to be satisfied:
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FIG. 2. The plot shows dependence of the left hand side of the
CHSH inequality for C��k,p��a ,b� �solid line� and for CCz

��k,p��a ,b�
�dashed line� on x for k and p given in Eq. �13�, a= �0,0 ,1�, b
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FIG. 1. The plot shows dependence of correlation functions
C��k,p��a ,b� �solid line� and CCz

��k,p��a ,b� �dashed line� on x for k and
p given in Eqs. �13� and a= �0,0 ,1�, b= �
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FIG. 3. The plot shows dependence of the left-hand side of the
CHSH inequality for C��k,p��a ,b� �solid line� and for CCz

��k,p��a ,b�
�dashed line� on x for k and p given in Eqs. �13�, a= �0,0 ,1�, b
= �0,0 ,1�, c= �

	3
2 ,0 ,− 1
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�Bell-Mermin� = Ca·b + Cb·c + Cc·a � 1, �20�

in the theory which fulfills the assumptions of local realism.
One can show �13� that in the nonrelativistic case this in-
equality is satisfied for each configuration. However, both
relativistic correlation functions �17� and �19� can violate the
inequality �20�. We have depicted such a situation in Fig. 5.

It should be stressed that previous works suggest that for
fixed measurements directions the degree of violation of
Bell-type inequalities by a pair of spin-1 /2 particles mono-
tonically decreases with increasing velocity of the particles
�1,2�. Our results show that such a statement is false, in
general, also for spin-1 particles. We have shown that, at
least for certain states, there exist configurations in which the
correlation functions and the degree of violation of Bell-type
inequalities have local extrema for some values of the veloci-
ties of the EPR particles. Moreover, this strange behavior can
be observed for both discussed spin operators and for
spin-1 /2 as well as spin-1 particles. The most surprising fact
is that EPR experiment in a fixed configuration can distin-
guish the values of the velocity of the particles correspond-
ing to local extrema. This observation is supported by the
recent results obtained in Ref. �14�, where the helicity and

linear polarization correlations of spin-1 particles were ana-
lyzed.

We have shown also that relativistic quantum correlations
are stronger than nonrelativistic ones for a variety of con-
figurations. Consequently, in such configurations Bell in-
equalities are violated stronger by relativistic correlations
than by nonrelativistic ones.

Let us notice also that in some configurations the correla-
tion function and the degree of violation of CHSH inequality
strongly depend on the relativistic spin operator used in cal-
culations �compare, e.g., Figs. 2 and 3�. This observation
could help us to determine experimentally which of the dis-
cussed spin operators is a proper one. In the recent experi-
ments with protons �15� the particles were too slow to dis-
tinguish different spin operators. The main result of our
paper is the observation that the discussed strange behavior
of the correlation functions seems to be a general property of
the relativistic quantum mechanics independent of the cho-
sen relativistic spin operator.

This work has been supported by the University of Lodz
grant and LFPPI network.
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FIG. 4. The plot shows dependence of correlation functions

C��k,k���a ,b� �solid line� and CCz
��k,k���a ,b� �dashed line� in the c.m.

frame on x for a ·b=−1 /2, a ·n=b ·n=1 /2.
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FIG. 5. The plot shows dependence of the left-hand side of the
Bell-Mermin inequality in the c.m. frame for C��k,k���a ,b� �solid

line� and CCz
��k,k���a ,b� �dashed line� on x for a

= �0.995004,0 ,0.0998334�, b= �−0.40899,0.907061,0.0998334�, c
= �−0.581043,−0.807727,0.0998334�, and n= �0,0 ,1�.
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