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We present a simple derivation of the formula for the Hamiltonian operator�s� that achieve the fastest
possible unitary evolution between given initial and final states. We discuss how this formula is modified in
pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed
quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric �inner product�
dependence of the lower bound on the travel time and the universality �metric independence� of the upper
bound on the speed of unitary evolutions.
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In quantum mechanics the travel time for unitary time
evolutions between initial and final states �I and �F has a
minimum that is proportional to the distance between �I and
�F in the state space �1�. For a system with a fixed energy
scale, this implies that the speed of unitary evolutions has an
upper bound. The problem of determining a Hamiltonian op-
erator that achieves the highest evolution speed has been
considered in �2–6�. The purpose of the present paper is to
offer a very simple derivation of the formula for a time-
independent optimal-speed Hamiltonian that can be directly
generalized to the pseudo-Hermitian representation of quan-
tum mechanics �7�. In particular, we give the explicit form of
the most general time-independent quasi-Hermitian �8�
optimal-speed Hamiltonian that evolves �I into �F.

In the standard formulation of quantum mechanics, the
�pure� states of a physical system are identified with the rays
in a complex separable Hilbert space H. Each ray can be
determined in terms of an associated state vector ��H
− �0� according to ��= �c� �c�C�. It is usually convenient to
use the one-to-one correspondence between the states �� and
the projection operators ��ª

���	��
	���� to describe the properties

of the space of all states, i.e., the projective Hilbert space
P�H�. For a Hilbert space H of dimension N��, P�H� is
the complex projective space CPN−1 that plays a central role
in the description of geometric phases �9�.

It is an easy exercise to show that �� satisfies

��
2 = �� = ��

† , tr���� = 1, �1�

where “tr” denotes the trace. Recall that for a linear operator
L acting in H, tr�L�ª
n=1

N 	�n �L�n�, where ��n� is an arbi-
trary orthonormal basis of H �20�.

In view of �1�, �� is an element of the space B2�H� of all
linear operators L :H→H fulfilling tr�L†L���. We can use
“tr” to define the following inner product on this space
�L �J�ª tr�L†J�. This makes B2�H� into a separable Hilbert
space known as the Hilbert-Schmidt class �10�. Because the
state space P�H� is a subset of B2�H�, we can use the inner
product �·�·� to define a notion of distance �metric� on P�H�.
We define the line element ds on P�H� according to

ds2
ª

1

2
�d���d��� =

	����	d��d�� − �	��d���2

	����2 , �2�

where we have used ��ª
���	��
	���� and �1� �11�. For N��

where � can be represented by a complex column vector z�
with components z1 ,z2 , . . . ,zN, �2� takes the form ds2

=
a,b=1
N gab*dzadz

b
* where gab*ª �z��−4��z��2	ab−z

a
*zb�. This is

precisely the Fubini-Study metric tensor �12�. For N=2, en-
dowing P�H� with this metric yields a round two-
dimensional sphere of unit diameter.

Now, suppose that we wish to use an arbitrary Hermitian
�self-adjoint� Hamiltonian operator H :H→H to evolve an
initial state ��I

to a final state ��F
. We can view the evolving

state ���t� as a point moving on P�H�. According to �2�, the
instantaneous speed of the evolution is given by

ds

dt
=

�	��t����t��	�̇�t���̇�t�� − �	��t���̇�t���2

	��t����t��
=


E��t�

�
,

where


E��t� ª�	��t��H2��t��
	��t����t��

−
�	��t��H��t���2

	��t����t��2 �3�

is the uncertainty in energy and we have employed the

Schrödinger equation, H��t�= i��̇�t�. We can integrate ds /dt
to obtain the length of the curve traced by ���t� in P�H� as a
function of the travel time � �1�,

s =
1

�
�

0

�


E��t�dt . �4�

Because 
E��t�0 for all t� �0,��, s is a monotonically in-
creasing function of �. This makes � a monotonically in-
creasing function of s. Therefore, the shortest travel time is
achieved for the paths of the shortest length, i.e., the geode-
sics on P�H� �1�.

Note that the geodesic distance is uniquely determined by
the initial and final states and is insensitive to the choice of
the Hamiltonian one uses to evolve the initial state along
such a geodesic. The travel time depends on the Hamiltonian
through the energy uncertainty 
E��t�. In particular, if one
can make the latter arbitrarily large, the travel time can be
made arbitrarily small. In typical situations, however, 
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has a constant upper bound. For example, consider the case
that the Hilbert space is finite dimensional �N��� and the
energy eigenvalues En are bounded functions of time, i.e.,
there is some E�R+ such �En�t���E for all n and t. Then, we
can easily show that 
E��t��E; the travel speed is bounded
by E /�; and the travel time has �s /E as a lower bound. Here
s is to be identified with the geodesic distance between the
initial and final states.

The above argument is valid, if one does not have addi-
tional restrictions on the choice of the Hamiltonian. In prac-
tice, one may have to impose constraints that would make it
impossible to evolve the initial state along the shortest geo-
desic connecting it to the final state. In this case one can
formulate the problem as a constrained variational problem
�5�. In the remainder of this paper we consider constant un-
constrained Hamiltonians where the minimum travel time
depends, besides the geodesic distance between the initial
and final states, on a single real parameter specifying the
energy scale of the system.

Let H be a time-independent Hamiltonian operator. Then
the time-evolution operator e−itH/� commutes with H and H2,
and 
E��t� does not depend on t. In this case, �4� implies �
=�s /
E�, and the speed of the evolution is given by 
E� /�.
Therefore, to achieve the highest speed we need to choose
the Hamiltonian so that 
E� /� is maximized. This shows
that the travel time is bounded by the ratio of the minimum
of s, i.e., the geodesic distance between ��I

and ��F
, to the

maximum of speed 
E� /�.
Because we require the evolving state ���t� to trace a geo-

desic in P�H� that connects ��I
and ��F

, it lies entirely in the
projective Hilbert space P�H�� where H� is the subspace of
H spanned by �I and �F. This is in fact a characteristic
property of the Fubini-Study metric �1,13�. It shows that we
can restrict our attention to the case that H is two dimen-
sional; N=2 �4�. Furthermore, without loss of generality, we
can suppose that tr�H�=0. This implies that the eigenvalues
of H have opposite sign, E2=−E1¬E. Let ��1 ,�2� be an
orthonormal basis consisting of the eigenvectors of H, H�n
=En�n. We expand ��0�=�I in this basis to find

�I = c1�1 + c2�2, c1,c2 � C , �5�

and use the time independence of 
E� to compute it at t
=0. In view of �3� and �5�, this yields


E� = E�1 −  �c1�2 − �c2�2

�c1�2 + �c2�2�
2

� E . �6�

Therefore, the travel time � satisfies

�  �min ª
�s

E
, �7�

where s is the geodesic distance between ��I
and ��F

in
P�H�. Equation �7� identifies �min with a lower bound on the
travel time. Next, we construct a Hamiltonian H� with eigen-
values �E for which �=�min. This shows that indeed �min is
the minimum travel time.

Because s is completely determined by ��I
and ��F

, the
condition �=�min is fulfilled if and only if 
E�=E. In light of
�6� this is equivalent to �c1�= �c2�. If we expand �F in the
basis ��1 ,�2� to find

�F = d1�1 + d2�2, d1,d2 � C , �8�

and compute 
E� at t=�, we obtain �6� with �c1 ,c2� replaced
with �d1 ,d2�. As a result, in order to maintain 
E�=E, we
must have �d1�= �d2�.

Next we express �c1�= �c2� and �d1�= �d2� in the form c2
=ei�Ic1 and d2=ei�Fd1, for some �I ,�F�R, respectively.
Substituting these in �5� and �8�, we find

�1 + ei�I�2 = c1
−1�I, �1 + ei�F�2 = d1

−1�F. �9�

We can solve these equations for �1 and �2 in terms of �I
and �F, and use the spectral resolution of H�, i.e.,

H� = E�− ��1�	�1� + ��2�	�2�� , �10�

to compute H�. This calculation is more conveniently per-
formed in terms of

� ª �I − �F, �̂I ª
�I

�2c1

, �̂F ª
ei�/2�F

�2d1

. �11�

The result is �5,6�

H� =
iE���̂F�	�̂I� − ��̂I�	�̂F��

4 sin�

2
� �12�

=

iE cot�

2
�

4
 ��F�	�I�

	�I��F�
−

��I�	�F�
	�F��I�

� , �13�

where we have used the fact that �̂I and �̂F are unit vectors.

Moreover, �11� implies cos2�� /2�=
�	�I��F��2

	�I��I�	�F��F� , which as ex-

plained in �1� identifies � with 2s �21�.
Equation �13� can be easily modified to give the expres-

sion for the optimal-speed Hamiltonians in pseudo-
Hermitian quantum mechanics. One merely needs to make
the following substitution in the above analysis:

��n� → ��n�, 	�n� → ��n� ª 	�n��+, s → s�+
, �14�

where �+ :H→H is the metric operator that defines the inner
product of the physical Hilbert space Hphys, i.e.,
	· , · ��+

ª 	·��+ · �=� · � ·�, and s�+
is the distance defined by

the natural metric on the projective Hilbert space P�Hphys�.
We can obtain the line element associated with this metric by
making the substitutions �14� on the right-hand side of �2�.
This gives �11�

ds�+

2
ª

������d��d�� − ����d���2

�����2 . �15�

Similarly we find the following expressions for minimum
travel time �min

��+� and the optimal-speed �+-pseudo-Hermitian
�14� Hamiltonian H�

��+� �with eigenvalues �E�,
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�min
��+� =

�s�+

E
, �16�

H�
��+� =

iE cot�s�+
�

4
 ��F���I�

��I��F�
−

��I���F�
��F��I�

� , �17�

where

cos2�s�+
� =

���I��F��2

��I��I���F��F�
. �18�

According to �7� and �16�, if we choose �+ such that the
geodesic distance s�+

between ��I
and ��F

in P�Hphys� is
smaller than the geodesic distance s between ��I

and ��F
in

P�H�, then �min
��+���min. This is the essence of the main result

of �15�. Indeed, as we show below, it is possible to choose �+
so that regardless of the choice of ��I

and ��F
their distance

in P�Hphys� becomes arbitrarily small. But this does not seem
to have any physical implications, for such an evolution
amounts to evolving a state to an arbitrarily close state in an
arbitrarily short time. The physical quantity of practical sig-
nificance, particularly in areas such as quantum computation,
is the speed of the evolution, namely E /�, which is a univer-
sal quantity independent of the choice of �+. Therefore, the
minimum travel time between states of a given distance is
independent of �+ �11�. A physical process that involves
evolving ��I

into ��F
in P�Hphys� using an

�+-pseudo-Hermitian Hamiltonian H :H→H in time � may
be described equally well by evolving ��+

1/2�I
into ��+

1/2�F
in

P�H� using the equivalent Hermitian Hamiltonian h
ª�+

1/2H�+
−1/2 in the same time �. As shown in �11�, the

length of the curve corresponding to these evolutions in the
respective projective Hilbert spaces are identical. Therefore,
they will have the same speed.

Next, we wish to show how by choosing the metric op-
erator we may adjust the value of s�+

and consequently �min
��+�.

Again, without loss of generality we confine our attention to
the case N=2. Let �e1 ,e2� denote the standard basis of C2,
i.e., e1ª � 1

0 �, e2ª � 0
1 �. Then we can represent any metric op-

erator �+ in �e1 ,e2� by a positive-definite matrix of the form

�+ = a b*

b c
� , �19�

where a ,c�R and b�C. Because �+ is a positive-definite
matrix,

a + c = tr��+� � 0, D ª ac − �b�2 = det��+� � 0. �20�

For states ��, differing from �e2
, we can use a representative

state vector of the form �ª � 1
x+iy �. Substituting this relation

in �15� and using �14� and �19� we find �11�

ds�+

2 =
D�dx2 + dy2�

�a + 2�b1x + b2y� + c�x2 + y2��2 , �21�

where b1 and b2 are, respectively, the real and imaginary
parts of b, i.e., b¬b1+ ib2.

Next, we introduce the angular coordinates �� ,�� that are
related to �x ,y� according to x=tan� �

2 �cos��+��, y

=tan� �
2 �sin��+��, where �ª tan−1�b2 /b1�. These coordi-

nates also allow for treating the state �e2
. To see this, first

observe that for �x ,y��R2, we have �� �0,2�� and �
� �0,��. The state �e2

corresponds to the point at infinity in
the x-y plane which we can identify with �=�. In terms of
�� ,��, �21� reads as

ds�+

2 =
k1�d�2 + sin2 �d�2�

�1 + k2 cos � + k3 cos � sin ��2 , �22�

where we have introduced k1ª
D

�a+c�2 =
det��+�

tr��+�2 , k2ª
a−c
a+c , and

k3ª
2�b�
a+c . Note that because of �20� we have k1�0, −1�k2

�1, and 0�k3�1.
If we set �+= I we recover the standard Euclidean inner

product on the Hilbert space. In this case s�+ =s, a=c=1, b

=0, k1=1 /4, k2=k3=0, and �22� becomes ds2= 1
4 �d�2

+sin2 � d�2�. This is just the standard metric for a round
sphere of unit diameter. In �11� we show that P�Hphys� is
related to P�H� by an isometry. Therefore, �22� also de-
scribes a round sphere of unit diameter, and �� ,�� are the
usual spherical coordinates.

We can use �17� and �19� to obtain the explicit form of the
optimal-speed �+-pseudo-Hermitian Hamiltonians for given
initial ��I

and final ��F
states. We can always perform an

invertible linear �basis� transformation in H so that ��I
=�e1

.
Let ��F

be an arbitrary final state �that is different from �e1
�.

Then we can take �I= � 1
0 �, and �F= � �

1 �, for some ��C. In
view of �14� and �19�, we have ��I ��I�=a, ��F ��F�
= D+���2

a , ��I ��F�=a�+b*¬�. Inserting these in �18� and
using �16�, we find cos s�+

= ��� /�D+ ���2 and

�min
��+� =

�

E
cos−1����/�D + ���2� . �23�

Similarly we employ �17� and �19� to obtain the matrix
representation of H�

��+� in the basis �e1 ,e2�,

H�
��+� =

iEe−i�

4a�D
− ab* − �De2i� + b*2�

a2 ab*
� , �24�

where �ªarg���, i.e., ei�=� / ���. It is interesting to see that
the minimum travel time and optimal-speed Hamiltonians
are, respectively, determined by the modulus and the phase
of �. Note also that the right-hand side of �24� does not have
a unique limit as �→0. This is because �=0 corresponds to
the case that ��I

and ��F
are antipodal points of P�Hphys� that

are connected via an infinity of geodesics with equal length.
Setting a=c=D=1 and b=0 in �23� and �24�, we find the

explicit form of the optimal-speed Hamiltonian and the mini-
mum travel time in conventional quantum mechanics:

H� =
iE

4
0 − ei�

e−i� 0
� ,

�min =
�

E
cos−1����/�1 + ���2� . �25�

Note that in this case �=� and ei�=� / ���. Comparing �25�
with �23�, we see that by keeping a and b fixed, so that � is
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left unchanged, and decreasing the value of c we can make D
as small as we wish. This in turn reduces the value of �min

��+�

below that of �min. For example, we can set a=1 and b=0.
Then, D=c, �=�, and we find

H�
��+� =

iE

4 � 0 − �cei�

e−i�

�c
0 � ,

and �min
��+�= �

E cos−1���� /�c+ ���2�. For c�1, this yields �min
��+�

��min. As we explained above, this observation does not
seem to have any practical implications, if we use H�

��+� to
generate a unitary evolution, i.e., consider the dynamics tak-
ing place in P�Hphys�. If we instead consider the dynamics
defined by H�

��+� in P�H�, then the travel time is still given
by �23� �which can be made smaller than �min� but the evo-
lution is nonunitary. This is a manifestation of the nonexist-
ence of an upper bound on evolution speed for nonunitary
evolutions �16�. A more interesting observation is that one
can realize this fact using a quasi-Hermitian Hamiltonian
�PT-symmetric Hamiltonians considered in �15� being spe-
cial cases� �17�; there is no upper bound on the speed of
quasiunitary evolutions �22�.

To offer a physical interpretation for this result we first
recall that in quantum mechanics, a physical system is rep-
resented by a Hilbert space-Hamiltonian pair �H ,H�. This
representation is, however, not unique, for unitary-equivalent
Hilbert space-Hamiltonian pairs describe the same system. If

H and Hphys are Hilbert spaces that have identical vector
space structure but different inner products �say correspond-
ing to the choices I and �+ for their metric operators, respec-
tively�, one can use a single Hamiltonian operator to repre-
sent two different quantum systems, e.g., �H ,H�

��+�� and
�Hphys ,H�

��+�� represent distinct physical systems with quasi-
unitary and unitary dynamical evolutions, respectively. The
above argument shows that while the evolution speed for the
latter system is given by E /�, that of the former can be made
arbitrarily large. To determine whether this observation can
have practical applications requires a more detailed investi-
gation of the role of quasi- and pseudo-Hermitian Hamilto-
nians in open quantum systems �18�.

In summary, we have offered a straightforward derivation
of an expression for the most general time-independent
optimal-speed quasi-Hermitian �in particular Hermitian�
Hamiltonians and established by explicit calculation the met-
ric dependence of the minimum travel time and metric inde-
pendence of the maximum travel speed. Our analysis con-
firms the existence of infinitely fast quasiunitary evolutions.
These might find applications in areas such as quantum com-
putation and quantum control �3,19�. The derivation of an
explicit expression for the most general optimal-speed quasi-
Hermitian Hamiltonian, which we have reported here, is a
necessary step in this direction.
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