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We have proposed and experimentally demonstrated tunable cavity-linewidth narrowing by means of
coupled-active-resonator-induced dispersion. We have theoretically studied the coupling-resonator-induced-
dispersion phenomenon in the general case of N coupled resonators and especially the case of two or three
resonators. In the case of two resonators we have experimentally shown that the strong dispersion induced by
the coupling of resonators can lead to cavity ringdown effect enhancement. In the case of three resonators, we
propose a coupling scheme allowing the quality �Q� factor of a critically coupled resonator to be increased and
actively modulated by using two additional coupled resonators. We have experimentally tested the feasibility of
the proposition by using a model system consisting of Er3+-doped fiber coupled resonators. These experimental
results demonstrate the possibility of Q-factor tailoring by the use of active artificial photonic media.
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I. INTRODUCTION

High-quality �Q� optical resonators and microresonators
�1� are important in a wide range of fields such as nonlinear
optics �2,3�, cavity ringdown spectroscopy �4�, biosensing
applications �5�, frequency metrology �6� or fundamental
physics �7,8�. A lot of studies have been carried out to in-
crease the Q factor of optical cavities by reducing optical
losses. Within this framework, resonators with Q factors up
to 1011 have been demonstrated �9�. Optical losses can also
be compensated by using an amplifying medium inside the
cavity and thus the Q factor of the resonator can be uniquely
limited by the output coupler �10,11�. Generally, the ratio
between the coupling coefficient and the optical losses deter-
mine the coupling regime of the resonator �12�. Conse-
quently for a given high-Q resonator the output coupler must
be adapted in order to achieve optimal or critical coupling
�13�.

It is also of general interest that the spectral sensitivity of
interferometers can be enhanced or actively controlled. The
use of slow light or highly dispersive medium �14� can
greatly increase the spectral performances of optical interfer-
ometers �15,16�. For example, it has been shown that the
resolution of Fourier transform interferometers can be en-
hanced by using atomic vapors as slow-light systems �17�.
Optical gyroscope sensibility can be improved by using
slow-light media �18,19�. The linewidth of a cavity can also
be reduced �and thus the Q factor increased� by introducing a
purely dispersive medium inside the cavity �20–22�. The en-
hancement of the Q factor can even be used to relax the
conditions for observing the cavity ringdown effect �23�. In
this case the Q factor increase does not rely on the improve-
ment of the optical quality of the medium constituting the
resonator, but on the spectral sensitivity of the additional
dispersive medium. This has been implemented using coher-
ent effects such as coherent population trapping �20� or
electromagnetic-induced transparency �EIT� �24�. The dis-
persive medium can also be an artificial photonic medium.

For example, it has been suggested that using slow Bloch
modes would enhance the Q factor of photonic crystal mi-
crocavities �25�. Moreover, the use of coupled ring cavities
to obtain a composite resonator with a higher finesse than the
single ones have also been put forward �26–29�. The first
result we would like to present in this paper is that the Q
factor increase by means of coupled resonators can lead to
the enhancement of the ringdown effect as it has been pro-
posed in coherent media �23�.

Microresonators with tunable Q factor are also important
for all-optical signal processing based on the dynamic con-
trol of the optical properties of photonic structures �30–32�.
The Q-factor control has already been suggested and experi-
mentally demonstrated by tuning the coupling properties of
two ring resonators by means of thermo-optic �33� or electro-
optic effects �32,34�. In this paper we would like also to
present our work on the tuning of the Q factor of a ring
cavity by coupling it to a system of coupled resonators
whose optical losses can be actively modulated. Under par-
ticular conditions a transparency window can be induced into
the transmission spectrum of two lossy resonators, this phe-
nomenon often referred to as coupled-resonator-induced
transparency �CRIT� is a classical counterpart of EIT
�35–38�. Moreover, it has been shown that if the losses of the
resonators can be controlled by using active resonators, for
example, the dispersive properties of this artificial medium
can be tailored �39�. Therefore, in this present study we used
the CRIT phenomenon using two coupled resonators to con-
trol the quality factor of a third ring resonator preserving its
coupling properties.

The structure of the paper is as follows. First, we will
recall in Sec. II the basic properties of a ring cavity contain-
ing a dispersive medium used in the Gires-Tournois interfer-
ometer configuration to introduce the main idea and to give a
physical insight to our proposition. In this section, we will
emphasize the linewidth narrowing due to the spectral sensi-
tivity of the dispersive medium. Section III is devoted to the
theoretical description of the Q-factor control by means of
dispersion enhancement using coupled resonators. In Sec.
III B we will review the phase sensitivity enhancement pro-
posed by Golub in Ref. �28� and study the role of losses. The
intracavity coupled-active-resonator-induced dispersion is*yannick.dumeige@enssat.fr
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presented in Sec. III C. Finally, in Sec. IV we will experi-
mentally demonstrate cavity ringdown effect enhancement
and active tuning of resonator Q factor in a fiber optic sys-
tem.

II. BASIC THEORY

In this section we analyze the effect on the cavity line-
width of an intracavity dispersive medium. First, we will
recall the properties of a ring cavity �Fig. 1� consisting of an
input coupling mirror with amplitude reflectivity ��0 and
transmittivity j�. In this work we only take into account
lossless couplers so that �2+�2=1. The two other mirrors
perfectly reflect light �RM =1�. The static amplitude attenua-
tion of the cavity is noted a0. The resonator contains a dis-
persive medium �assumed as punctual� introducing an ampli-
tude �or optical field� attenuation aD��� and a controllable
phase ���� depending on the angular frequency �=2��.
The total accumulated phase during one round trip in the
cavity is �=�+	 with 	���=n���L� /c where n is the re-
fractive index of the empty cavity �i.e., without the disper-
sive medium� and L its length. The intensity transmission of
the cavity TC is given in the stationary regime by

TC =
Iout

Iin
=

�2 + aC
2 − 2aC� cos �

1 + aC
2 �2 − 2aC� cos �

, �1�

where aC���=a0aD��� is the total amplitude attenuation and
Iin and Iout are defined in Fig. 1. Assuming a weak coupling
and low optical losses, the off-resonance value of TC is maxi-
mal and TC=Tmax�1. For the resonance frequency �0
=2��0 such as ���0�=0�2��, the transmission TC reaches a
minimal value,

Tmin =
�� − aC��0��2

�1 − aC��0���2 . �2�

When �=aC��0� we have Tmin=0, the cavity is critically
coupled. In this case the extinction ratio defined as Tmax /Tmin
is maximal, and there is a complete transfer of the incident
wave optical power to the cavity mode. Still in the high
finesse cavity approximation, the linewidth �full width at
half-maximum� of TC��� is given in the phase space by


�1/2 =
2�1 − aC��0���

�aC��0��
. �3�

Assuming a weak variation of phase d� and considering
only the first-order term in d�, we have

d� = d�� ��

��
�

�0

= d��� ��

��
�

�0

+
ng��0�L

c 	 , �4�

where ng is the group index of the empty cavity, thus the
angular frequency linewidth 
�1/2 reads as


�1/2 =

�1/2

�G��0� +
ng��0�L

c

, �5�

where �G=�� /�� is the group delay introduced by the dis-
persive medium. Finally, we obtain the expression of the
frequency linewidth of the resonator


�1/2 =

�1/2

0

1 +
�G��0�
�L��0�

, �6�

where �L=ngL /c is the round-trip propagation duration and

�1/2

0 is the linewidth of the resonator assuming 	��0�
=0�2�� and no additional dispersion or ����=0,


�1/2
0 =

c�1 − aC��0���
�ng��0�L�aC��0��

. �7�

By writing the quality �Q� factor Q0=�0 /
�1/2
0 of the cavity

with no supplementary dispersion, we obtain the expression
of the Q factor taking into account the additional dispersion,

Q =
�0


�1/2
= Q0�1 +

�G��0�
�L��0�

	 . �8�

Equation �8� shows that it is possible to increase the Q factor
of a resonator by using a dispersive medium introducing high
resonant group delay �G��0� and no additional optical losses.
It is important to note that the introduction of a purely dis-
persive medium increases the Q factor without changing the
coupling properties of the resonator.

III. LINEWIDTH NARROWING BY DISPERSION
ENHANCEMENT USING COUPLED RESONATORS

A. Presentation of the generic structure

The generic system we study in this paper consists of N
coupled ring resonators as represented in Fig. 2, for i
� �1,N�, we call 	i the round-trip phase accumulated in the
loop i of length Li and ai the amplitude attenuation intro-
duced by each loop. We assumed that the material constitut-
ing the rings is nondispersive �ng=n� thus 	i���=n�Li /c.
The resonators are coupled to each other by couplers Ci char-
acterized by coupling coefficients �i�0 and j�i related by
�i

2+�i
2=1. We note ti��� the amplitude transfer function of

each stage as represented in Fig. 2. The cavity whose reso-
nance properties will be controlled is loop N and using the

aD(ω), φ(ω)
RMRM

ρ,κ

Iout=TC(ω)xIin Iin

FIG. 1. Sketch of a ring cavity containing a dispersive medium
which introduces both phase ���� and losses aD���. The input
mirror amplitude reflexion and transmission are � and �. The two
other mirrors have perfect reflectivity RM =1. The input Iin and out-
put Iout intensities are related by the transfer function of the cavity
TC.
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preceding section notations �=�N, L=LN, 	=	N, a0=aN,
aD= 
tN−1
, and �=arg�tN−1�. The cavity transfer function is
given by TC= 
tC
2= 
tN
2. This last expression is evaluated by
the recursive relation for i� �1,N� �36�,

ti = 
ti
ej�i =
�i − ti−1aie

j	i

1 − ti−1�iaie
j	i

�9�

with the initial value t0=1.

B. Cavity linewidth narrowing using all-pass filters

In this first example the dispersive medium embedded in
loop N is constituted by N−1 lossless identical loops used as
all-pass filters �APF� as suggested in �28�, thus ai=1, �i=�,
and Li�� for i� �1,N−1�. This purely dispersive medium
only introduces a phase shift �N−1=arg�tN−1� with aN−1
= 
tN−1
=1 which can be evaluated by calculating recursively
the phase shift �i for i� �1,N−1�,

�i = arg�ti� = � + 	i + �i−1 + 2 arctan� � sin�	i + �i−1�
1 − � cos�	i + �i−1�	 ,

�10�

with �0��0�=0. We choose L1=�=M�0 /n where �0=c /�0 is
the resonant wavelength, M �N and M 1. With Li=L1
+�0 / �2n� we have 	1��0�=0�2�� and 	i��0�=��2�� for i
� �2,N�. Consequently we obtain �i��0�=��2�� for i
� �1,N� and the resonance condition for i� �1,N−1�,

	i��0� + �i−1��0� = 0�2�� , �11�

since we have assumed ��0. The resonant group delay �i
defined by,

�i = ���i

��
�

�0

�12�

can be easily evaluated using the simple recursive relation
deduced from Eq. �10�,

�i =
1 + �

1 − �
��� + �i−1� , �13�

where ��=n� /c and �0=0. Finally we obtain

�G��0� = �N−1 =
1 + �

2�
��1 + �

1 − �
	N−1

− 1���, �14�

which can be used in Eq. �8� giving the Q-factor enhance-
ment due to the dispersive medium,

Q = Q01 +
1 + �

2�
��1 + �

1 − �
	N−1

− 1� �

L
� . �15�

Assuming that L�� we have

Q = Q0
1 + �

2�
��1 + �

1 − �
	N−1

+
� − 1

� + 1
� , �16�

which can be written in the high finesse cavity approxima-
tion ���1�,

Q � Q0� 2

1 − �
	N−1

�17�

which can also be written using the linewidth of the resona-
tor


�1/2 � 
�1/2
0 �1 − �

2
	N−1

. �18�

These results, consistent with those presented in �26,28�,
show that the cavity linewidth can be drastically reduced
assuming all the additional resonators are lossless. We illus-
trate this phenomenon by calculating the intensity transfer
function TC= 
t2
2 in the simplest case of two identical
coupled resonators with �=�1=�2=0.95. Since the cavity is
critically coupled �a2=0.95�, the finesse of the cavity �loop
2� is F=1 / �
�1/2

0 �L�=��2 / �1−�2
2��30.6.

The results are shown in Fig. 3 representing TC as a func-
tion of the normalized detuning � /
�1/2

0 with �=�−�0. This
spectrum shows simultaneously the resonances of the empty
cavity for � /
�1/2

0 = �F /2 whose linewidths are 
�1/2
0 and

the composite enhanced resonance for �=0 whose Q factor
is increased by a factor 2 / �1−��=40 with respect to the two
other resonances. Note that since we have chosen a1=1 the
three resonances are critically coupled.

If now we consider the same optical losses in each reso-
nator, ai=a�1, the resonant amplitude transmission can be
simply written for i� �2,N−1�,

ti��0� =
ati−1��0� + �

�ati−1��0� + 1
�19�

with t1��0�= ��−a� / �1−�a��0. The general term of this ho-
mographic recursive sequence can be calculated as

tN-1

tN-2

t1

Loop 1

Iin Iout

CN

tN=tC

Ci

ρi

ρi

jκi

Ring cavity

CN-1

C2

C1

Loop 2

Loop N-1

Loop N

CN-2

FIG. 2. Cavity linewidth narrowing using N−1 ring resonators
or optical loops. The dispersive medium is constituted by the
coupled ring resonators 1 to N−1. The cavity whose Q factor is
increased is loop N. The system is coupled to a bus fiber via the
coupler CN. The inset represents coupler Ci for i� �1,N�.
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ti��0� =
�− − y1�+ki−1

1 − y1ki−1 , �20�

where we note

�� =
a − 1 � ��1 − a�2 + 4a�2

2a�
�21�

and define

k =
a + 1 + ��1 − a�2 + 4a�2

a + 1 − ��1 − a�2 + 4a�2
� 1 �22�

with y1= �t1��0�−�−� / �t1��0�−�+�. Since k�1 the resonant
amplitude transmission ti��0� tends to �+�0, thus from a
particular value imax of i the resonant transmission timax

��0�
becomes positive.

In this case, the resonance condition given by Eq. �11� is
no longer fulfilled and the loop N becomes off resonance.
Consequently the additional dispersive medium only intro-
duces losses and its beneficial impact on the Q factor is
canceled. For low losses �a�1�, keeping only the first-order
terms in 1−a we obtain

�� �
�a − 1��1 � ��

2�
� 1 �23�

and k��1+�� / �1−��. y1 can also be approximately calcu-
lated by

y1 � −
�1 − a��1 + ��2

4��1 − ��
. �24�

Thus the effective resonator number imax is calculated using
Eq. �20� by imax=1+E�f�a ,��� where we define

f�a,�� = 1 +

ln� �−

y1�+	
ln k

�25�

and E�x� as the whole part of x. Using the previous first-
order approximations in 1−a we finally obtain

f�a,�� � 1 +
ln�4��1 − ��� − ln��1 + ��2�1 − a��

ln�1 + �� − ln�1 − ��
. �26�

Figure 4 represents f�a ,�� and thus imax as a function of � for
different values of a. First, for a fixed amplitude attenuation
the number of useful resonators decreases when the coupling
coefficient ��=�1−�2� between resonators decreases. Sec-
ond, for a given value of � or coupling coefficient between
resonators, optical losses limits the number of useful resona-
tors. This limitation increases when � decreases. Finally,
these results show that even with a very low attenuation the
resonator number �N−1� is severely limited. Moreover, for
low values of N−1, the optical losses must be rigorously
controlled in the first resonators where their detrimental role
is enhanced.

To illustrate this last property we have calculated the cav-
ity transmission TC= 
t3
2 for N=3 with L3=L2=L1
+�0 / �2n�, a3=�1=�2=�3=0.95. The results are given in Fig.
5 which represents the transmission TC as a function of the
normalized detuning 2� /
�1/2

0 . For a1=a2=1 the cavity re-
mains critically coupled and the linewidth is reduced by a
factor of about 1600 given by Eq. �18�. If we add low losses
into the first resonator �a1=0.9995 and a2=1�, the resonance
is much more broadened than in the case where we add the
same losses into the second resonator �a1=1 and a2
=0.9995�. Moreover, in this configuration the resonance
transmission value TC�0� depends strongly on the loss values
in the additional resonators which modifies the coupling
properties of the cavity. In our example with losses in reso-
nators 1 or 2 the cavity is no longer critically coupled.

FIG. 3. �Color online� Transmission spectrum TC= 
t2
2 in the
case of N=2 nearly identical resonators L2=L1+�0 / �2n� with a2

=�=�1=�2=0.95 and a1=1.

FIG. 4. �Color online� Function f�a ,�� giving the effective num-
ber of resonators by imax=1+E�f�a ,��� as a function of � for dif-
ferent values of round-trip amplitude attenuation a.
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C. Intracavity coupled-active-resonator-induced dispersion

In this second example we propose to use CRIT which is
the classical counterpart of coherent effects such as EIT. In
this section, we will show that using this resonator coupling
scheme, it is possible, as demonstrated in atomic systems, to
actively control the quality factor of the ring resonator by
preserving its coupling properties �20�. The system of inter-
est consists of two coupled resonators �loops 1 and 2� which
mimic the dispersive medium introducing ����. The third
resonator �loop 3� is the cavity whose quality factor Q is
controlled as it was the case in the preceding section �see
Fig. 6�. Referring to Sec. II the amplitude and the phase of
the dispersive medium are aD= 
t2
 and �=�2=arg�t2�, the
cavity is loop 3: �=�3 and L=L3 and the cavity transfer
function is given by TC= 
tC
2= 
t3
2. In this section we want

to show the unique effect of the additional dispersive me-
dium. Thus we will compare the two following situations: �i�
a2=0 allowing a decoupling of loop 3 which corresponds to
the case of an empty cavity �only loop 3�, �ii� the case where
a2�0, where the cavity is connected to the dispersive me-
dium. As already underlined, the two previous cases must
correspond to a critically coupled cavity �loop 3� to be com-
parable. Consequently we must have 
t2��0 ,a2=0�

= 
t2��0 ,a2�0�
=aD��0� and aC��0�=aD��0�a3=�3. Assum-
ing �1=a1 and 	1��0�=	2��0�=0�2��, using Eq. �9� we note
that t2��0�=�2 for any value of a2. It is crucial to note that
t2��0� is real which implies that ���0�=�2��0�=0�2��, and
thus the resonance frequency of the cavity �loop 3� remains
unaffected by the presence of the dispersive medium �loops 1
and 2�. If we consider that all the loops have the same length
L1=L2=L and thus the same resonant angular frequency �0
since 	��0�=	1��0�=	2��0�=0�2��, the resonant group de-
lay is given by

�G��0� = a2
�1�1 − �2

2�
�2�1 − �1

2�
�L, �27�

in that case the linewidth of the cavity is


�1/2 =

�1/2

0

1 + a2
�1�1 − �2

2�
�2�1 − �1

2�

. �28�

By choosing, for example, a3=1 and �2=�3, we obtain a
critically coupled cavity in the two cases �i� and �ii�. We
illustrate our approach using three loops of equal length and
refractive index with �1=a1=0.995 and �2=�3=0.95. We re-
call that the three resonators have the same resonance fre-
quency �0. Figure 7 represents the intensity transfer function
of the artificial dispersive medium T2= 
t2
2 for different val-
ues of a2. The transmission resonance is split and the reso-
nant value of transmission is T2��=0�=�2

2�0.9 whatever the
value of a2. We also represent the phase shift �2��� and the
group delay �G=��2 /�� introduced by the dispersive me-
dium �Fig. 8�. For a2=0 the dispersive medium only intro-
duces losses whereas for a2�0, in the represented frequency

FIG. 5. �Color online� Transmission spectrum TC= 
t3
2 in the
case of N=3 nearly identical resonators L3=L2=L1+�0 / �2n� with
a3=�1=�2=�3=0.95 for different values of losses in resonators 1
and 2.

Loop 2

Loop 3

Loop 1

aD(ω), φ(ω)

Iin Iout

C1

C2

C3

t1

t2

t3=tC

Dispersive medium

Ring cavity

FIG. 6. Schematic representation of the proposition of intracav-
ity coupled-resonator-induced dispersion using fiber loops. The dis-
persive medium is constituted by the two coupled ring resonators 1
and 2. Here we increase the loop 3 Q factor.

FIG. 7. �Color online� Intensity transmission spectrum T2= 
t2
2
of the dispersive medium for three values of a2.
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range, all the frequency components are delayed. At reso-
nance ��=0� for a2=1 the delay is approximately �G��=0�
�10.2�L thus we expect a narrowing of the linewidth of
about one order of magnitude. This is verified by calculating
the transfer function of the cavity TC= 
t3
2 for different val-
ues of a2 ranging from a2=0 to a2=1 as represented in Fig.
9. First, it can be noted that from a2=0 to a2=1, the reso-
nance width of the cavity is strongly reduced and the cavity
remains critically coupled.

In Fig. 10 we have represented simultaneously the case
a2=0 and a2=1. In this example, we show that by only con-
trolling the losses in loop 2 �a2�, it is possible to reduce the
linewidth of the resonator by a factor 11.2, in good agree-
ment with the first-order calculation of Eq. �7�. The two ad-
ditional transmission dips of Fig. 11 representing the two
cases a2=0.98 and a2=0 come from the splitting of the com-
mon resonance �0 of the three resonators.

IV. EXPERIMENTAL RESULTS

In this section cavity linewidth narrowing using coupled
resonators is verified in a simple model system consisting of

Er3+-doped optical fiber loops. We show in Sec. IV B that the
cavity ringdown effect can be enhanced using one coupled
resonator in the all-pass filter configuration. This effect can
be seen as the classical counterpart of the cavity ringdown
effect enhancement based on EIT as proposed in Ref. �23�. In
Sec. IV C, we demonstrate intracavity coupled-active-
resonator-induced dispersion and we show that it is possible
to actively tune the Q factor of a resonator by using artificial
coupled resonator dispersion.

A. Experimental setup and methods

The experimental setup consisting of N standard optical
fiber loops is described in Fig. 12. For the experimental test
of Q-factor enhancement using an APF, we used only N=2

FIG. 8. �Color online� Phase shift �=�2 �right axis� and group
delay dispersion �G=��2 /�� �left-hand axis� of the artificial disper-
sive medium. We represent the phase shift only for a2=1.

FIG. 9. �Color online� Cavity absorption 1−TC��� for intensity
attenuation a2

2 in loop 2 ranging from 0 to 1.

FIG. 10. �Color online� Transmission of the cavity TC= 
t3
2 for
a2=0 and a2=1 �the data are extracted from Fig. 9�. We observe a
narrowing of the transmission dip by a factor 11.2. In both cases,
the cavity remains critically coupled.

FIG. 11. �Color online� Transmission of the cavity TC= 
t3
2 for
a2=0 and a2=0.98 �the data are extracted from Fig. 9�. We observe
the same narrowing of the transmission dip as in Fig. 10. The dips
coming from the coupling of the three resonators are stronger than
in the previous case.
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loops whereas the intracavity coupled-resonator-induced-
dispersion effect requires N=3 loops.

Since all the effects presented in the previous theoretical
sections rely on very low loss resonator or optical loss modu-
lation, we used Er3+-doped fibers which allow us to compen-
sate for or to introduce optical losses by varying indepen-
dently the pumping rates of 980 nm laser diodes as shown in
Fig. 12. To probe the coupled resonators we used an external
cavity laser tunable around �0=1550 nm. The central fre-
quency of the probe laser is linearly swept and the transmis-
sion of the system is simultaneously recorded. Assuming a
slow scanning of the probe frequency, the stationary re-
sponse of the resonators can be deduced from the temporal
recording using a calibration of the frequency sweeping
speed �10,40�. If the probe wavelength is swept faster than
the cavity lifetime, the output intensity shows oscillations.
This phenomenon is known as the cavity ringdown effect
and has several interesting applications in cavity ringdown
spectroscopy, for example, �23,41–43�. For high quality
resonators this effect must be taken into account in order to
determine precisely their finesse �7,44� and can be used to
determine unambiguously their coupling regime �45�. Note
that the apparition of the cavity ringdown effect for a low
sweeping speed is the manifestation of a very narrow reso-
nance �23�. The output temporal profile for a single resonator
�without additional dispersive medium� has been derived in
several works �42,44,45�, and we give here only the relevant
results which are indispensable to characterize our resona-
tors.

We consider here a single mode resonator whose ampli-
tude round attenuation is a0, the coupling coefficient are
�� ,�� and the resonant frequency is �0 as represented in Fig.
13. If we call u the resonator mode amplitude �46�, its time
evolution can be deduced from

du

dt
= � j�0 −

1

�
	u�t� +� 2

�e
Ein�t� . �29�

�=2Q /�0 is the amplitude cavity lifetime, it is related to the
amplitude intrinsic cavity lifetime �0=�L��0��a0 / �1−a0� and
to the external cavity lifetime �e=�L��0��� / �1−�� by 1 /�
=1 /�0+1 /�e. In our experiment we use a frequency swept
input field which can be written Ein�t�=E0ej��t�·t where ��t�
=�i+VSt /2 �note that VS represents the angular frequency
sweeping speed�. In this case Eq. �29� can be analytically
integrated and the mode amplitude is thus given by

u�t� =� 2

�e
E0 exp� j�0t −

t

�
	� f�t� − f�0� +

1

j��i − �0� + 1/�	
�30�

which can be expressed using the complex error function
erf�z� with z�C,

f�t� = −� j�

2VS
exp�− j�2��i − j/��2

2VS
	erf� j/� − 2��i − VSt

�2jVS
	 ,

�31�

where 2��i=�i−�0 is the initial detuning. The output field
can be calculated by

Eout�t� = − Ein�t� +� 2

�e
u�t� , �32�

which allows the intensity transmission to be deduced using
TC= 
Eout
2 /E0

2. From an experimental point of view, we
record the experimental temporal variations of the transmis-
sion Tmes, which are compared to the theoretical value Ttheo
by using the least square method,

�2��0,�e,VS� = �
i=1

q

�Tmes,i − Ttheo,i��0,�e,VS��2, �33�

Oscilloscope
Trigger

Frequency command

P1

CN

Pump 1

Probe

Er3+ doped fiber

Pump N

Er3+ doped fiber

PC
M

M

M

M

P0

DI

C1

CN-1

PN

FIG. 12. The experimental setup is composed of N active
Er3+-doped fiber loops coupled to a bus fiber. PC is a polarization
controller and I an optical isolator. M are wavelength division mul-
tiplexers allowing the insertion of the 980 nm pump lasers i where
i� �1,N�. Pi are the injected pump powers. P0=1 mW is the optical
power entering the cavity. D is an optical detector. The probe is a
tunable 1550 nm laser diode �linewidth 150 kHz� whose central fre-
quency is linearly swept with a controllable period. To limit thermal
fluctuations, we immersed the coupled rings in a water bath.

u(t)

Ein(t) Eout(t)

Coupler C (ρ,κ)

τe

τ0

FIG. 13. Schematic description of the parameters used in the
calculation of the temporal evolution of the resonator mode ampli-
tude u�t�. �0 is the intrinsic cavity lifetime associated with optical
losses and �e is the external cavity lifetime associated with coupler
C.

INTRACAVITY COUPLED-ACTIVE-RESONATOR-INDUCED… PHYSICAL REVIEW A 79, 013832 �2009�

013832-7



where q is the number of temporal sampling points. The
value of �2 is minimized by automatically changing the
value of �0, �e, and VS to obtain the best fit. It is possible to
infer a measurement of all the characteristics of the resonator
from the values of the two cavity lifetimes �0 and �e.

B. Cavity ringdown effect enhancement
using coupled resonators

First, we test the possibility to increase the quality factor
of a resonator by introducing inside the cavity an APF as
shown in Sec. III B. We use two fiber rings, loop 2 is the
cavity whose Q factor will be increased and loop 1 plays the
role of the APF. The length of the two resonators are almost
equal, L1=2.01 m and L2=2.00 m. In loop 2 the Er3+ section
is 30 cm long whereas in loops 1 the Er3+ section is 1 m
long. The effective refractive index of the optical fibers is
n=1.46. The nominal power coupling ratios are �2=�1

2=�2
2

=90% and �1
2=�2

2=10% for both couplers C1 and C2. The
pumping rate P2=5.3 mW is optimized to obtain a critical
coupling for all the resonances, whereas we used a high
pumping rate P1=22.8 mW to compensate for the optical
losses in loop 2. We use a slow scanning rate, VS / �2��
�0.4 MHz /�s �note that this calibration is made using the
free spectral range of loop 2�. The corresponding spectrum is
given in Fig. 14�a�. We obtain two resonances associated
with the empty cavity for �=0 and �=103 MHz. The theo-
retical curve is obtained considering an empty cavity and
using the nominal values already given �a2=�2=�0.9�0.95,
L2=2.00 m, and n=1.46�. From this fit we obtain 
�1/2

0

�3.4 MHz and thus Q0=5.7�107. Between these two reso-
nances we can distinguish the very narrow composite reso-
nance. This experimental spectrum is useful since it shows
both the empty cavity resonances and the enhanced reso-
nances due to loop 1. Even though the sweeping rate is low,
since the coupling with loop 1 greatly increases the Q factor
of loop 2 we observe oscillations due to the cavity ringdown
effect. Figure 14�b� represents the cavity ringdown oscilla-
tions due to the narrow enhanced resonance as a function of
time.

By using the procedure described in Sec. IV A and Eq.
�33� we obtain the theoretical fit also given in Fig. 14�b�
from which we infer �0=2.48 �s and �e=14.3 �s. These val-
ues give �=2.11 �s and thus Q=1.3�109 corresponding to
an experimental Q-factor enhancement of about Q /Q0�23.
For a resonator including a dispersive medium, the relation
between the attenuation and the intrinsic cavity lifetime must
be changed as follows taking into account the group delay of
the whole system:

�0 =
��L��0� + �G��0���a0aD��0�

1 − a0aD��0�
, �34�

we make the same change in the relation between the cou-
pling coefficient and the external cavity lifetime,

�e =
��L��0� + �G��0����

1 − �
. �35�

In the present case, �=�2=0.95 and �L=nL2 /c�9.7 ns, us-
ing Eq. �35� we obtain �G��0��724 ns. Assuming a1�1, we
have �G��0�=�L�1+�1� / �1−�1� �since L=L2�L1�, thus we
can calculate �1�0.9735. Using Eq. �34� and considering
a0=a2�0.95 we obtain the value of aD��0�= 
t1
�0.7832.
Finally, the value of the amplitude attenuation in loop 1 a1
=0.9967 is deduced from 
t1
= �a1−�1� / �1−�1a1�. The ex-
perimental values of a1 and �1 show that the pumping of
loop 1 is nearly optimal and that the inferred coupling value
is in agreement with the nominal value �0.972�94% keeping
only two digits�.

C. Intracavity coupled-active-resonator-induced dispersion

To experimentally test the intracavity coupled-resonator-
induced-dispersion effect, we connect a third shorter fiber

TABLE I. Description of the resonators used in the experimental demonstration of intracavity active-
resonator-induced dispersion.

Loop 1 L1=1.41 m Coupler C1 �1
2=99% �1

2=1%

Loop 2 L2=2.01 m Coupler C2 �2
2=90% �2

2=10%

Loop 3 L3=2.00 m Coupler C3 �3
2=90% �3

2=10%

FIG. 14. �Color online� �a� Experimental spectrum of the trans-
mission of the cavity �loop 2� in the case N=2. We also give the
theoretical calculation corresponding to the nominal values of the
experimental parameters assuming loop 2 alone. �b� Time profile of
the cavity ringdown oscillations corresponding to the box of �a�. We
also give the theoretical calculations.
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loop to the system. The length of the ring resonators and
their associated nominal power coupling ratios are given in
Table I. In loops 1 and 3 the Er3+ section is 30 cm long
whereas in loops 2 the Er3+ section is 1 m long. We use a
longer doped fiber section in loop 2 since we want to reach
both high absorption �a2�0� and low losses �a2�1� in the
same fiber. Without pumping of loop 2 the Er3+-doped sec-
tion induced absorption of about 11.2 dB. Since the core
diameter of the doped fiber is about only 4 �m, the loss
splicing are high which allows a low value of a2 to be ob-
tained.

As already mentioned, since the values of a1 and a3 de-
pend on coupling values of C1 and C3 we also used
Er3+-doped fiber in loops 1 �with P1=18.6 mW� and 3 �with
P3=8.3 mW� in order to try to obtain the condition described
in the preceding section. Figure 15 represents the transfer
function TC=T3 without pumping �a� P2=0 and with pump-
ing �b� P2=40.2 mW of loop 2. Even though the resonance
frequency of loops 3 remains theoretically unchanged by the
pumping of loop 2, experimentally the two spectra of Fig. 15
were not aligned due to thermal drifts. We also give theoret-
ical calculations associated with these experimental results.
We used the following procedure to obtain the theoretical
fit: We fixed �1 to its nominal value ��1=0.995�, �2 and �3
are fixed to the values found in the previous experiment
��2=0.97 and �3=0.95�. We set the lengths to their measured
values and the refractive index is still n=1.46. To fit the
transmission spectrum of Fig. 15�a� without pumping of loop
2 we also fixed a2=0 and we adjust the value of losses in
loop 3 to a3=0.95. To fit the transmission spectrum of Fig.
15�b� we keep the previous value of a3 and we adjust a2
=0.97 and a1=0.985. We infer a linewidth of 
�1/2

0

=4.3 MHz from the theoretical fit without pumping and we
measure a reduction of the linewidth to 
�1/2=790 kHz
when loop 2 is pumped. We obtain a good agreement be-
tween the experiment and the calculations. The parameter
values inferred from the fit show that the losses are not to-
tally compensated in loops 1 and 2 whereas in the case of
N=2 �see Sec. IV B� the losses in loop 1 were almost com-
pensated. This difference comes from the fact that in the
whole transmission spectrum the spectral range where the
double resonance condition is verified is wider than the spec-
tral range where the triple resonance is met due to the vernier
effect. Consequently it is easier to find an experimental situ-
ation where the case N=2 is almost optimal as presented in
Sec. IV B than to obtain the ideal case corresponding to in-
tracavity coupled-resonator-induced dispersion with N=3.

V. CONCLUSION

The optical cavity Q-factor enhancement by means of in-
tracavity coupled-resonator-induced dispersion have been
studied. We have theoretically analyzed the general case of N
resonators. We have highlighted the crucial role of optical
losses. In the case of N=3 resonators we have also suggested
to use active resonators with controllable high artificial dis-
persion to tune the Q factor of a ring resonator without

changing its coupling properties and its resonance frequency.
We have experimentally tested these two approaches using a
model system consisting of Er3+-doped fibers. We have
shown that the use of coupled resonators can enhance the
cavity ringdown effect. We have also shown that it is pos-
sible to change the Q factor of a given resonance without
changing its coupling characteristics by modulating the opti-
cal losses. This last phenomenon could be of interest in the
case of planar active semiconductor coupled microresonators
�47,48� for the integration of all-optical signal processing
functions.
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FIG. 15. �Color online� Experimental spectrum of the transmis-
sion of the cavity �loop 3�: �a� Without pumping of loop 2 and �b�
with pumping of loop 2. We also give the theoretical fit obtained
using �a� a1=0.985, �1=0.995, a2=0, �2=0.97, and a2=�2=0.95;
�b� a1=0.985, �1=0.995, a2=0.97, �2=0.97, and a2=�2=0.95.
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