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The Cherenkov radiation is substantially modified in the presence of a medium with a nontrivial dispersion
relation. We consider Cherenkov emission spectra of a point or line charge, respectively, moving in general,
three- �3D� and two-dimensional �2D� photonic crystals. Exact analytical expressions for the spectral distribu-
tion of the radiated power are obtained in terms of the Bloch mode expansion. The resulting expression reduces
to a simple contour integral �3D case� or a one-dimensional sum �2D case� over a small fraction of the
reciprocal space, which is defined by the generalized Cherenkov condition. We apply our method to a specific
case of a line source moving with different velocities in a 2D square-lattice photonic crystal. Our method
demonstrates a reasonable agreement with numerically rigorous finite-difference time-domain calculations
while being less demanding on computational resources.
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I. INTRODUCTION

Back in 1934 Cherenkov reported the observation of the
electromagnetic radiation produced by an electron moving in
a dielectric medium at a velocity greater than the phase ve-
locity of light in this medium �1�. Such a radiation possesses
a unique angular and frequency spectrum and is called Cher-
enkov radiation �2�. A nontrivial dispersion relation of a me-
dium leads to substantial modifications of the Cherenkov ra-
diation. It has been shown that an electron moving in a
homogeneous medium with dispersion should emit at any
velocity �3�. Richer spatial distribution of the emitted radia-
tion including intensity oscillations behind the Cherenkov
cone is a signature of the radiation in such a medium �4–6�.

To understand the properties of the Cherenkov radiation
one can represent the moving electron with space-time de-
pendence of the corresponding current density J�r , t���3�r
−vt� as a superposition of plane waves �3�r−vt�
=�k exp�ik ·r− ik ·vt� with different wave vectors k and fre-
quency k ·v, where v is the electron velocity. Only plane
waves with frequency and wave vector fitting the medium
dispersion ��k� can resonantly excite electromagnetic modes
in the medium, which gives the Cherenkov resonance condi-
tion �7�

��k� = k · v . �1�

In a homogeneous, nondispersive medium with refractive in-
dex n, the dispersion relation is simply given by ��k�
= �c /n��k� and the Cherenkov condition �1� leads to a well-
known conical wave front with an aperture cos �=c / �n�v��
and a condition on the electron velocity �v��c /n �2,7�, c
being the vacuum speed of light. In an inhomogeneous me-
dium the interplay between interference and propagation can
result in an engineered nontrivial dispersion relation ��k�.
For example, periodic dielectric media �photonic crystals�

�8,9� substantially modify both dispersion and diffraction of
electromagnetic waves possessing many unusual optical phe-
nomena, including modification of emission dynamics
�10–12�, ultrarefraction �13–16�, and photon focusing
�17–19� effects. The present work focuses on an analytical
understanding of the influence of a periodic medium on the
Cherenkov effect.

Several studies on the modification of the radiation pro-
duced by a charged particle moving near or inside periodic
dielectric media are available. The Cherenkov radiation in
cholesteric liquid crystals has been analyzed in Ref. �20�.
The modification of the Smith-Purcell radiation has been re-
cently studied both theoretically and experimentally near a
surface of a two- �2D� and three-dimensional �3D� photonic
crystal �21–25�. The Cherenkov radiation generated by an
electron moving inside an air pore of a 2D photonic crystal
perpendicular to the periodicity plane has been used to map
its photonic band structure in Refs. �26,27�. In all above-
mentioned reports, the theoretical analysis of the Cherenkov
effect has been done in the plane wave basis. Spatial and
spectral modifications of the Cherenkov radiation produced
by an electron moving in the periodicity plane of a 2D pho-
tonic crystal have been studied in Ref. �28� using the finite-
difference time-domain �FDTD� method. To date, there do
not exist any reports on the general theory of the Cherenkov
effect in an arbitrary 3D periodic dielectric medium �29�.

The main purpose of the present work is to develop such
a theory and to provide a simple expression for the Cheren-
kov emission spectrum �energy loss spectrum� for a point or
line charge, respectively, moving with velocity v in an arbi-
trary direction inside a general 3D or 2D photonic crystal. To
achieve this goal we derive an analytical expression for the
power emitted per unit length of the charge trajectory in
terms of the Bloch mode expansion. This expression is fur-
ther reduced to a simple contour integral �3D case� or a one-
dimensional sum �2D case� over a small fraction of the re-
ciprocal space. As a result, to calculate the Cherenkov
emission spectrum, Bloch eigenmodes and their correspond-
ing group velocities are required only along an integration
path �3D case� or at a discrete set of k points �2D case�,
considerably reducing computational demands. The integra-
tion path and the discrete set of points are defined by the
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generalized Cherenkov condition. Our theory confirms that
the Cherenkov radiation does exist in a periodic medium for
an arbitrary electron velocity �28�. It also predicts an en-
hancement of the radiated power near the frequencies corre-
sponding to the vanishing component of the group velocity,
which is orthogonal to the electron trajectory.

The paper is organized as follows. In Sec. II the general
solution of Maxwell’s equations is summarized for an arbi-
trary periodic medium. In Sec. III an analytical expression is
derived for the power radiated per unit length by a moving
point charge in 3D and a line charge in 2D periodic media. In
Sec. IV we apply our theory to calculate the Cherenkov
emission spectra in the particular case of a 2D photonic crys-
tal. The predictions of the analytical theory are substantiated
by numerically rigorous FDTD calculations. Section V con-
cludes the paper.

II. RADIATED FIELD

We consider a point �line� charge q uniformly moving
with a velocity v along some direction in a general, infinite
periodic 3D or 2D medium ��r�=��r+R� �Fig. 1�. Here R is
a vector of the direct Bravais lattice, R=�iliai, li is an integer
and ai is a basis vector of the periodic lattice. It is assumed
that the medium is linear, nonmagnetic, and that no absorp-
tion takes place. Then the relevant Maxwell’s equations read
in Système International �SI� units

� � E�r,t� = − �0
�

�t
H�r,t� , �2�

� � H�r,t� = �0��r�
�

�t
E�r,t� + J�r,t� , �3�

where the electric �magnetic� field is denoted by E �H�. An
electromagnetic field is produced by a current source J�r , t�,
which in the case of the moving point �line� charge is defined
as

J�r,t� = qv�d�r − vt� . �4�

Here d=2,3 is the dimensionality of the periodic lattice. In
the frequency domain, a general solution of Maxwell’s equa-
tions, Eqs. �2� and �3�, for an arbitrary current source J�r , t�
and a periodic dielectric function ��r� is given in terms of the
Bloch eigenmode expansion �9,30�

E�r,�� = − i
1

�2��d

�

�0
�

n
�

BZ

ddk� ddr�

�	 Ekn
�T��r� � Ekn

�T���r��
�� − �kn

�T� + i	��� + �kn
�T� + i	�

+
Ekn

�L��r� � Ekn
�L���r��

�� + i	�2 
 · J�r�,�� . �5�

Here J�r ,�� is the Fourier transform of the current density
J�r , t�, for the moving point �line� charge �4� given by �31�

J�r,�� = qr̂��
d�r��exp�i�

r�

�v� . �6�

The coordinate system is chosen with one axis, r̂�, being
parallel and other, �r̂�

i �, orthogonal to the electron trajectory
�Fig. 1�. Ekn

�T��r� and Ekn
�L��r� are generalized transverse and

longitudinal Bloch eigenmodes �9,30� characterized by the
band index n, the wave vector k, and the eigenfrequencies
�kn

�T� and �kn
�L�, respectively. The Bloch eigenmodes satisfy

standard lattice periodic boundary conditions. As it will be
shown in the next section, only transverse Bloch eigenmodes
contribute to the Cherenkov radiation field. The asterisk ���
and � denote the complex conjugate and the outer tensor
product in 3D space, respectively. Bloch eigenmodes satisfy
the homogeneous wave equation and fulfill the normalization
conditions

� ddr ��r�Ekn
�
���r� · Ek�n�

��� �r� = �2��d�
��nn��
d�k − k��

�7�

and completeness relations

�
n

�

BZ

ddk���r���r��Ekn
�
��r� � Ekn

�
���r�� = �2��d1̂�d�r − r�� ,

�8�

where 
, �=T or L, and 1̂ is the unit tensor. In Eq. �5� the
k-space integration is performed over the first Brillouin zone
�BZ� of the periodic medium and the summation is carried
out over different photonic bands. A positive infinitesimal 	
in Eq. �5� assures causality �9�.

III. EMISSION SPECTRUM

The emitted power of the Cherenkov radiation in a gen-
eral periodic medium is given by the rate at which the mov-
ing charge does work on the surrounding electromagnetic
field. For an arbitrary current density J�r , t� in a 3D or 2D
volume V0, the time-dependent emitted power is given by
�32�

P�t� = − �
V0

ddr J�r,t� · E�r,t� . �9�

The total energy U radiated by the current J�r , t� is obtained
by integrating �9� over all moments of time

FIG. 1. A sketch of a periodic medium and a charge trajectory.
Basis vectors ai of the lattice are shown. The coordinate system is
chosen with one axis along �r̂�� and the other perpendicular �r̂�� to
the charge trajectory.
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U = �
−�

�

dt P�t� . �10�

The time integral in Eq. �10� can be further transformed into
the integral over frequency �see Appendix A�,

U = �
0

�

d� P��� , �11�

with a total power radiated per frequency interval �� ,�
+d�� given by

P��� = −
1

�
Re��

V0

ddr J�r,�� · E��r,��� . �12�

To obtain the power emitted per unit length of the charge
trajectory the integration volume V0 should be chosen as a
cylinder coaxial with the trajectory, while the integral itself
should be normalized by the cylinder length l. In the 2D
case, the volume integral is reduced to the surface integral
over a rectangle coaxial with the charge trajectory and the
result should be normalized to the rectangle length.

We further derive the spectral dependence of the power
�dP /dl� �12� radiated per unit length by the point �line�
charge �4� uniformly moving in a periodic medium. Assum-
ing that the presence of the moving charge does not change
the band structure of the periodic medium, the electromag-
netic field E�r ,�� surrounding the moving charge can be
expressed in the form of the Bloch eigenmode expansion �5�.
This expansion is valid for any point r in the medium being
different from, but as close as required to, the charge trajec-
tory. Substituting the Fourier transform of the current density
�6� and the Bloch mode expansion �5� in Eq. �12� we obtain

dP

dl
= −

1

�2��d

�

��0
�

n
�

BZ

ddk

�Re�− i	 I�T�

�� − �kn
�T� + i	��� + �kn

�T� + i	�

+
I�L�

�� + i	�2
� �13�

with

I�
� = q2I1
�
�I2

�
� = q2	�
−�

�

dr��ekn
�
���r�� · r̂��e−i�k�−�/�v��r�


�	 1

l
�

−l/2

l/2

dr��ekn
�
��r�� · r̂��ei�k�−�/�v��r�
 , �14�

where 
=T ,L. We have readily performed the space integra-
tion in the transverse direction r̂� and used the Bloch theo-
rem Ekn

�
��r�=ekn
�
��r�exp�ik ·r�, where ekn

�
��r� is a lattice peri-
odic function. To avoid having to deal with the
“bremsstrahlung” radiation we limit ourselves to the electron
trajectories which do not cut dielectric interfaces in the peri-
odic medium. Such trajectories are necessarily rationally ori-
ented with respect to the periodic lattice. In this case the
function �ekn

�
��r�� · r̂�� in Eq. �14� as well as its complex con-
jugate are both one-dimensional periodic functions with a

period a defined by a particular orientation of the electron
trajectory. Then, Eq. �14� can be further simplified to �see
Appendix B�

I�
� = 2�q2�
m

�cm
�
��k;n��2��k� −

�

�v�
−

2�

a
m . �15�

Here k� is the component of the wave vector parallel to the
electron trajectory. cm�k ;n� is the mth �m�Z� Fourier coef-
ficient of the periodic function �ekn

�
��r�� · r̂�� defined as

cm
�
��k;n� =

1

a
�

0

a

dr��ekn
�
��r�� · r̂��e−i2�/amr� . �16�

Taking into account the expression �15� and the relation
Re�i�Re�z�+ i Im�z���=−Im�z�, the power radiated by a mov-
ing charge per unit length is given by

dP

dl
= −

1

�2��d−1

�q2

��0
�
nm
�

BZ

ddk ��k� −
�

�v�
−

2�

a
m

�	�cm
�T��k;n��2 Im� 1

�� − �kn
�T� + i	��� + �kn

�T� + i	��
+ �cm

�L��k;n��2 Im� 1

�� + i	�2�
 . �17�

This expression can be further integrated along the direction
k� in the k space yielding

dP

dl
= −

1

�2��d−1

�q2

��0
�
nm
�

S
dd−1k�

�	�cm
�T��k;n��2 Im� 1

�� − �kn
�T� + i	��� + �kn

�T� + i	��
+ �cm

�L��k;n��2 Im� 1

�� + i	�2�
 . �18�

In the 3D case, a resulting surface integral is taken over a
plane S. In the 2D case, the integration reduces to an integral
over a line C �Fig. 2�. Both the integration plane and the
integration line should be orthogonal to the electron trajec-
tory and are defined by the following relation

k� =
�

�v�
+

2�

a
m . �19�

Here the integer m should be chosen in such a way that the
wave vector k� stays in the first BZ. Further, taking the limit
	→0+ and using the relation

Im� lim
	→0+

1

�  �kn
�T� + i	� = − ����  �kn

�T�� , �20�

the spectral radiated power �18� can be expressed in the form
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dP

dl
=

1

�2��d−1

�q2

��0
�
nm
�

S
dd−1k�	 �

2�kn
�T� �cm

�T��k;n��2

����� − �kn
�T�� − ��� + �kn

�T��� +
2�

�
�cm

�L��k;n��2����
 .

�21�

The eigenfrequencies of the Bloch modes are positive �8�,
so the second term in Eq. �21� containing the delta function
���+�kn

�T�� is zero for all frequencies. The third term in Eq.
�21� is due to the work the current does on the longitudinal
part of the electromagnetic field. In the presence of free
charges the longitudinal part of the field corresponds to the
static electric field and the work done against it results in
nonradiative energy transfer with a nonzero contribution
only at zero frequency. In what follows we will disregard this
nonradiative contribution and will limit ourselves to the ra-
diation into propagating electromagnetic waves only. Then
the spectral radiated power is given by

dP

dl
=

1

�2��d−2

�q2

4��0
�
nm
�

S
dd−1k�

�cm
�T��k;n��2��� − �kn

�T��
�kn

�T� .

�22�

The argument of the Dirac delta function in Eq. �22� is a
function of the wave vector. One can use this fact to further
reduce the dimensionality of the �d−1� k-space integral. In
the 3D case, using the relation

�
V

ddkf�k���g�k�� = �
�V

dd−1k
f�k�

��kg�k��
, �23�

where �V is the �d−1� dimensional surface defined by g�k�
=0, the integral over the plane S is converted into a contour
integral

�dP

dl
3D

=
q2

8�2�0
�
nm
�

�S
dk

�cm
�T��k;n��2

��k�
�kn

�T��
. �24�

The contour �S is defined by the relation �19� and

�kn
�T� = � . �25�

It is an intersection of the isofrequency surface with plane S
�Fig. 2 �top��. In the 2D case, the relation

�„f�k�… = �
i

��k − ki�
�f��ki��

�26�

can be used, where summation is taken over all solutions of
the equation f�k�=0. Substituting Eq. �26� into Eq. �22� we
obtain

�dP

dl
2D

=
�q2

4��0
�
nmi
�

C
dk�

�cm
�T��k;n��2��k� − k�,i�

�kn
�T������kn

�T�/�k����k�,i

,

�27�

where �k�,i� are simultaneous solutions of Eqs. �19� and �25�
given by the intersections of the isofrequency contour with
the line C �Fig. 2 �bottom��. Performing k-space integration,
we finally obtain

�dP

dl
2D

=
q2

4��0
�
nmi
�� �cm

�T��k;n��2

���kn
�T�/�k��

�
k�,i

, �28�

where the function in brackets is calculated for the wave
vectors corresponding to the set �k�,i�.

Formulas �24� and �28� constitute the main result of the
present work. They give the power radiated by the moving
point charge �3D� or line charge �2D� q in the spectral inter-
val �� ,�+d�� per unit length of the trajectory for a 3D and
2D periodic medium, respectively. The radiated power is
proportional to the Fourier coefficients cm

�T��k ;n�, which ef-
fectively describe the local coupling strength between the
current density produced by a moving charge and the elec-
tromagnetic field at the electron location. The gradient and
derivative of the dispersion relation v�

g =�k�
�kn

�T� and v�
g

=��kn
�T� /�k� yield the component of the group velocity, vg, of

the Bloch eigenmode �k ;n�, which is orthogonal to the elec-
tron trajectory. The Cherenkov radiated power is propor-
tional to the inverse of this component of the group velocity.

FIG. 2. �Top� Diagram to define the integration plane S and the
integration contour �S �dashed line� in Eqs. �18� and �24�. Isofre-
quency surface enclosed in the first BZ of the fcc lattice is shown
for a normalized frequency �kn=� inside the first band gap of a 3D
inverted opal �33�. �Bottom� Diagram to define the integration line
C and the set of points �k�,i� �two thick dots� in Eqs. �18� and �28�.
Isofrequency contour enclosed in the first BZ of a square lattice
PhC is shown for a normalized frequency �kn=� inside the first
band gap. The plane S and the line C are defined by the relation
k� =�k� =

�

�v� +
2�
a m. The choice of the coordinate system with one

axis, k�, parallel to the electron trajectory is shown.
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That means that the radiated power can be strongly enhanced
not only if the group velocity itself is small for some fre-
quency, but also if the component of the group velocity or-
thogonal to the electron trajectory becomes small. At the
same time suppression of the Cherenkov radiation is possible
if for some frequency the current density produced by a
moving charge is not coupled to the corresponding Bloch
mode and the Fourier coefficients cm

�T��k ;n� is small.
Only eigenmodes with the wave vectors on the contour �S

�24� and from the set �k�,i� �28� contribute to the radiated
power at a given frequency. It is important to realize that
Eqs. �19� and �25� defining the contour �S and the set �k�,i�
are equivalent to the Cherenkov resonance condition �1�. In
fact, substituting Eq. �25� in Eq. �19� and taking into account
that the scalar product in Eq. �1� results in v ·k= �v�k�, one
obtains the generalized Cherenkov condition for a periodic
medium

�kn
�T� = �v�k� − �v�

2�

a
m . �29�

In the 4D �3D� ��-k� space the right-hand side of the relation
�29� defines a hyperplane �plane� whose intersection with the
band structure, �kn

�T�, determines Bloch modes contributing to
the Cherenkov radiation �Fig. 3 �top��. Nonzero integers m
ensure that such an intersection and consequently the Cher-
enkov radiation exist in a periodic medium for an arbitrarily
small charge velocity. In a homogeneous medium m=0 and
the Cherenkov condition reduces to a standard form �k
= �v�k�.

As a simple check of our theory we show in the following
that the final formulas �24� and �28� reproduce the limit of a
homogeneous medium with the dielectric constant �. For a
given frequency �, the wave vector �k� and the group veloc-
ity �v�

g � are given by �k�= ����� /c and �v�
g �

= �c�k��� / ����k � �, respectively, with k�=k−k� being the
component of the wave vector perpendicular to the electron
trajectory. The appropriately normalized eigenmodes are
plane waves E= �1 /���ê exp�ik ·r�, where ê is a polarization
unit vector orthogonal to the wave vector k. Further, accord-
ing to the Eq. �19� the wave vector component k� is equal to
k� =� / �v� with m=0 and the coefficient c0 is given by c0
= �k�� / ����k � �. Then in the 3D case, taking into account that
an integration contour �S is a circle of radius �k�� and per-
forming integration in polar coordinates with dk= �k��d�,
the radiated power �24� is given by

�dP

dl


h

3D

=
1

4��0

q2

c��
�k��1 − � �k��

�k� 
2� , �30�

which finally yields the usual results of the Frank-Tamm
theory �7�

�dP

dl


h

3D

=
q2�

4��0c2�1 −
c2

��v�2 . �31�

In the 2D case Eq. �28� yields

�dP

dl


h

2D

=
1

2��0

q2

c��
�1 −

c2

��v�2
. �32�

IV. NUMERICAL RESULTS

In this section the analytical results developed in the pre-
vious section are applied to the numerical study of the Cher-
enkov radiation in a 2D photonic crystal. An infinite 2D
square lattice of air holes in a dielectric medium is consid-
ered. The radius of the holes is r=0.4a, while the dielectric
constant of the background medium is �=12.0. A line charge
oriented perpendicular to the periodicity plane of the crystal
moves along the z axis with a velocity v, staying always in
the space between air holes �Fig. 3 �bottom��. The corre-
sponding current density, Eqs. �4� and �6�, generates an elec-
tric field �5� polarized in the periodicity plane �transverse
electric or TE polarization� �8,9�, i.e., the Bloch eigenmode
expansion should include the TE polarized Bloch modes
only. The first TE band for the considered PhC is presented
in Fig. 3 �top�. The band structure was calculated using the
plane wave expansion method �33�.

To find the power radiated by a charge moving with a
given velocity v, all Bloch modes contributing to the radia-
tion should be determined. These modes are specified by the
solutions of the relation �29�. In what follows we restrict our
analysis to the frequency range of the first band of the con-

FIG. 3. Diagram to illustrate the generalized Cherenkov condi-
tion �29�. A 3D representation of the photonic band structure �top�
of the 2D PhC �bottom� is shown for TE polarization. An infinite
2D square lattice of air holes in a dielectric medium is considered.
The radius of the holes is r=0.4a, the dielectric constant of the
background medium is �=12.0. Only the first band in the first BZ is
presented. The right-hand side of Eq. �29� defines the set of planes
for different m. The intersection �dashed line� of these planes with
the band structure determines the Bloch modes contributing to the
Cherenkov radiation. Here it is supposed that a line charge moves
along the z axis in the crystal with velocity �v�=0.15c.
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sidered PhC structure. In Fig. 3 �top�, solutions of the Cher-
enkov relations �29� are graphically illustrated for m=0,
−1,−2 �dashed lines� and charge velocity v=0.15c. The fre-
quencies satisfying relations �29� determine the spectral
range of nonzero contribution to the Cerenkov radiated
power, the Cherenkov band. The evolution of the Cherenkov
band is presented in Fig. 4 as a function of the charge veloc-
ity.

For charge velocity v=0.15c, the Cherenkov spectrum is
given by the intersections of the band structure with the
planes m=−1 and m=−2. The plane corresponding to m=0
does not intersect the band structure of the crystal �Figs. 3
and 4�. For smaller charge velocities, more and more planes
intersect the photonic band structure, and the Cherenkov
spectrum is built from a number of discrete subbands. For
sufficiently small charge velocities the spectral range of the
first photonic band becomes densely filled with the discrete
subbands �Fig. 4�.

In the long wavelength limit the periodic medium is ef-
fectively homogeneous. For the PhC considered in Fig. 4 the
effective refractive index is equal to neff=��eff�2.186. Con-
sequently, for m=0 the relation �29� imposes a condition on
the minimal charge velocity to produce Cherenkov radiation
at small frequencies, namely v�vmin=c /neff�0.457c. For
charge velocities larger than the threshold value the Cheren-

kov band covers the spectral range from zero to the maxi-
mum frequency, which is defined by the intersection of the
band structure with the plane m=0 at the first BZ boundary
�Fig. 4�.

To compute the radiated power from Eq. �28�, one should
calculate the Bloch modes along a charge trajectory, their
Fourier transforms and corresponding group velocities for
wave vectors belonging to the intersections defined by Eq.
�29�. The calculation of the Cherenkov spectrum is illus-
trated in Fig. 5 for a line charge �q=1.6�10−19C� moving
with the velocity v=0.1c. To calculate Bloch modes and
group velocities, the plane wave expansion method �34� and
the Hellmann-Feynman theorem were used, respectively. For
the velocity v=0.1c the Cherenkov spectrum consists of
three sub-bands defined by the planes m=−1, m=−2, and
m=−3 �Figs. 4 and 5�, respectively. The Fourier coefficients,
cm

�T��k ;n�, �Fig. 5�b�� and the orthogonal component of the
group velocity, v�

g , �Fig. 5�c�� are nonzero only within the
subbands. Both Fourier coefficients and the orthogonal com-
ponent of the group velocity approach zero at subband edges
A, B, and C. At the edges D, E, and F only the orthogonal
component of the group velocity is zero, while the Fourier
coefficients have finite nonzero value. Calculation of the
Cherenkov radiated power at the band edges A, B, and C
leads to the indeterminate limits of the form 0 /0, which can
be evaluated using l’Hopital’s rule and is equal to zero. At
the band edges D, E, and F the Cherenkov power diverges in
an intgegrable way.

In Fig. 6 the Cherenkov radiated power spectra are shown
for charge velocities v=0.15c, v=0.3c, and v=0.6c. For
charge velocities smaller than the threshold value vmin
�0.457c the Cherenkov radiation is nonzero only within
single or multiple spectral bands. For velocities above the
threshold, the radiated power is nonzero almost everywhere
within the first band, approaching asymptotically the value of
the Cherenkov radiated power in a homogeneous medium
with n=neff for small frequencies. The radiated power calcu-
lated using Eq. �32� for v=0.6c and neff=2.186 is shown in
Fig. 6 �bottom panel� as the dotted line. The Cherenkov ra-
diated power is enhanced near those frequencies where the
group velocity component orthogonal to the charge trajectory
vanishes, while the Fourier coefficients remain finite �Fig. 6�.

To substantiate our analytical results the direct numerical
integration of the Maxwell’s equations has been performed
using the rigorous finite-difference time-domain �FDTD�
method �35�. The simulated structure was a 10a�Na lattice
of air holes in a homogeneous medium with �=12.0. The
longitudinal size of the periodic structure was set to N
=188, N=376, and N=752 lattice constants for an charge
velocity v=0.15c, v=0.3c, and v=0.6c, respectively. The lat-
tice was surrounded by a 2a wide layer of homogeneous
material. The simulation domain was discretized into squares
with a side �=a /18 and was surrounded by a 35-cell-wide
perfectly matched layer �PML� �36�. The time step of inte-
gration was set to 98% of the Courant value. The moving
line source �4� was modeled as a current density source �35�
with the Dirac delta function represented via an appropri-
ately normalized Kronecker delta �ij /�2. The charge trajec-
tory was oriented in the longitudinal direction of the system,
placed in the geometrical center of the crystal, exactly be-
tween the fifth and the sixth row of holes.

FIG. 4. Cherenkov radiation band. Subbands defined by the in-
tersections of the band structure with the planes corresponding to
the different m’s are shaded in light and dark gray. Vertical lines
mark the charge velocities used in the further calculations, v
=0.15c, v=0.3c, and v=0.6c in the top panel and v=0.1c in the
bottom panels, respectively.
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For the numerical computation of the radiated power the
electric and magnetic fields were stored at a detector surface
enclosing the crystal, and their Fourier transforms with re-
spect to time were found by discrete Fourier transformation.
The longitudinal dimension of the structure was different for
different charge velocities in order to keep the integration
time at the detector and consequently the spectral resolution

constant. The detector surface was situated in the close vi-
cinity of the crystal boundary. The total radiated power per
unit length was then calculated as

dP

dl
=

1

d

2

�
�

0

D

dz S�z,�� · n̂ , �33�

where S�z ,��= 1
2 Re�E�z ,���H��z ,��� is the Poynting vec-

tor at radiation frequency �, D is the length of the detector
surface along the trajectory, and n̂ is a unit vector orthogonal
to the detector interface.

An overall very good agreement between the results of
the analytical �Fig. 6, solid lines� and numerical calculations

FIG. 5. Cherenkov emission spectrum for the charge velocity
v=0.1c. Projections of the first band of the considered photonic
crystal and the planes m=−1, m=−2, and m=−3 defining the Cher-
enkov band on the kx-� plane are shown in panel �a�. The Fourier
coefficients, cm

�T��k ;n�, the orthogonal component of the group ve-
locity, v�

g , and the Cherenkov power spectrum are shown in panels
�b�, �c�, and �d�, respectively. Vertical lines mark the edges of the
Cherenkov subbands. Contribution from the subbands correspond-
ing to m=−1, m=−2, and m=−3 are shown as dashed, solid, and
dashed-dotted lines, respectively.

FIG. 6. Cherenkov emission spectra for different charge veloci-
ties in a 2D photonic crystal. Solid lines correspond to the analytical
results �28�. Dotted line in the bottom panel �v=0.6c� corresponds
to the Cherenkov radiated power in the homogeneous medium with
neff=2.186, Eq. �32�. Radiated power spectra obtained using FDTD
method are shown as dashed lines. For charge velocity v=0.15c
radiated power spectra are show for both 10a�188a �dashed line�
and 20a�188a �dashed-dotted line� structures.
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�Fig. 6, dashed lines� is obtained. Both the spectral range of
a nonzero radiated power and its absolute value are well
represented using the FDTD method. The main difference
can be traced back to Fabry-Perot-like oscillations of the
radiated power due to the finite-size effects in the FDTD
calculations. In the finite structure, the Cherenkov radiated
power stays considerably enhanced near the band edges hav-
ing large but finite value. The total power oscillates around
the analytical value becoming partially suppressed or en-
hanced for different frequencies. To confirm that these oscil-
lations indeed result from the finite transverse dimension of
the considered photonic crystal, we have performed simula-
tions for the crystal with a double thickness �20a�188a� for
the charge velocity v=0.15c. Resulting radiated power spec-
trum is shown in the corresponding panel in Fig. 6 as a
dashed-dotted curve. One can see twice as many oscillations
as in the case of the thinner structure, which is a typical
signature of the Fabry-Perot-like phenomena. The further en-
hancement of the radiated power in comparison to the infi-
nite structure can be associated with the longer interaction
time of the charge at resonance frequencies with the effec-
tively slow Fabry-Perot modes of a photonic crystal slab.

V. CONCLUSIONS

In this paper, analytical expression for the Cherenkov
power emitted per unit length of the charge trajectory in the
case of a general 3D and 2D periodic dielectric medium has
been derived. The obtained formula for the Cherenkov power
involves the calculations of Bloch modes and corresponding
group velocities at a limited number of points of the recip-
rocal space only, making the application of the proposed
method computationally not demanding. All calculations
have been performed on a desktop PC and our method re-
quires 5 to 10 times less CPU time then FDTD method. The
analysis of the Cherenkov emission spectrum in the periodic
medium reveals that the Cherenkov effect indeed exists for
every electron velocity. Similar to the case of the modifica-
tion of the dipole emission in a photonic crystal, the Cher-
enkov radiation can be suppressed if the coupling of the cur-
rent density produced by a moving electron with a Bloch
mode is poor. At the same time, an enhancement of the Cher-
enkov radiation is possible also if only the component of the
group velocity orthogonal to the electron trajectory is small.
We have illustrated the developed analytical method and its
conclusions using a numerically rigorous finite-difference
time-domain method in a special case of a 2D photonic crys-
tal and demonstrated a reasonable agreement between nu-
merical and analytical results.
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APPENDIX A

Using the Fourier representation of the time-depended
real function F�r , t�,

F�r,t� = Re� 1

2�
�

−�

�

d� F�r,��e−i�t�
=

1

4�
�

−�

�

d��F�r,��e−i�t + F��r,��ei�t� , �A1�

for the electric field E�r , t� and the current density J�r , t� in
Eq. �9�, the total radiated energy �10� can be written in the
form

U = −
2

�4��2 Re��
V0

ddr�
−�

�

dt�
−�

�

d��
−�

�

d�

� �J�r,�� · E�r,��e−i��+��t

+ J�r,�� · E��r,��e−i��−��t�� . �A2�

Changing the integration order and using the integral relation
for the Dirac delta function

��x� =
1

2�
�

−�

�

dy e−ixy �A3�

we obtain for total radiated energy

U = −
1

4�
Re��

V0

ddr�
−�

�

d��
−�

�

d�

� �J�r,�� · E�r,����� + �� + J�r,�� · E��r,��

���� − ���� . �A4�

Further, integrating over � and using the symmetry of the
Fourier transform of the electric field, E�r ,−��=E��r ,��,
the total radiated energy can be written as an integral over
frequency �11�

U = −
2

�
�

0

�

d�
1

2
Re��

V0

ddr J�r,�� · E��r,��� . �A5�

The integrand in Eq. �A5� coincides with the time-averaged
radiated power of the monochromatic source J�r ,�� �32�.

APPENDIX B

Expanding a periodic function �ekn
�
��r�� · r̂�� in the Fourier

series

�ekn
�
��r�� · r̂�� = �

m=−�

�

cm
�
��k;n�ei2�/amr� �B1�

with coefficients cm
�
��k ;n� defined in Eq. �16�, integrals I1

�
�

and I2
�
� in Eq. �14� can be transformed to

I1
�
� = �

m=−�

�

cm
�
���k;n��

−�

�

dr� e−i�k�−�/�v�−2�/am�r� �B2�

and
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I2
�
� = �

p=−�

�

cp
�
��k;n�

1

l
�

−l/2

l/2

dr� ei�k�−�/�v�−2�/ap�r� , �B3�

respectively. In Eq. �B2�, integration over r� immediately
yields

I1
�
� = 2� �

m=−�

�

cm
�
���k;n���k� −

�

�v�
−

2�

a
m . �B4�

Integral in �B3� is equal to l, if k� −
�
�v� −

2�
a p=0. Overwise it

results in

sin��k� −
�

�v�
−

2�

a
p�l/2��

�k� −
�

�v�
−

2�

a
p . �B5�

Then, in the limit l→�, I2
�
� vanishes for k� −

�
�v� −

2�
a p�0,

while is equal to 2��p=−�
� cp

�
��k ;n� for k� −
�
�v� −

2�
a p=0. Fi-

nally, using the function

�̃�x� = 	1, x = 0,

0, x � 0,

 �B6�

relation �14� can be written in the form

I�
� = 2�q2 �
m=−�

�

�
p=−�

�

cm
�
���k;n�cp

�
��k;n�

� ��k� −
�

�v�
−

2�

a
m�̃�k� −

�

�v�
−

2�

a
p , �B7�

which is nonzero only for m= p yielding relation �15�.
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