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It is shown that an optical parametric amplifier inside a cavity can considerably improve the cooling of the
micromechanical mirror by radiation pressure. The micromechanical mirror can be cooled from room tempera-
ture 300 K to sub-Kelvin temperatures, which is much lower than what is achievable in the absence of the
parametric amplifier. This is further illustrated in case of a precooled mirror, where one can reach millikelvin
temperatures starting with about 1 K. Our work demonstrates the fundamental dependence of radiation pres-
sure effects on photon statistics.
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I. INTRODUCTION

Recently there is considerable interest in micromechanical
mirrors. These are macroscopic quantum mechanical systems
and the important question is how to reach their quantum
characteristics �1–4�. The thermal noise limits many highly
sensitive optical measurements �5,6�. We also note that there
has been considerable interest in using micromirrors for pro-
ducing superpositions of macroscopic quantum states if such
micromirrors can be cooled to their quantum ground states
�7,8�. Thus cooling of micromechanical resonators becomes
a necessary prerequisite for all such studies. So far two dif-
ferent ways to cool a mechanical resonator mode have been
proposed. One is the active feedback scheme �9–12�, where a
viscous force is fed back to the movable mirror to decrease
its Brownian motion. The other is the passive feedback
scheme �4,13–17�, in which the Brownian motion of the
movable mirror is damped by the radiation pressure force
exerted by photons in an appropriately detuned optical
cavity.

Clearly we need to think of methods which can cool the
micromirror toward its ground state. Since radiation pressure
depends on the number of photons, one would think that the
cooling of the micromirror can be manipulated by using ef-
fects of the photon statistics. In this paper, we propose and
analyze a method to achieve cooling of a movable mirror to
sub-Kelvin temperatures by using a type I optical parametric
amplifier inside a cavity. We remind the reader of the great
success of cavities with parametric amplifiers in the produc-
tion of nonclassical light �18–20�. The movable mirror can
reach a minimum temperature of about a few hundred mK, a
factor of 500 below room temperature 300 K. The lowering
of the temperature is achieved by changes in photon statistics
due to parametric interactions �21–26�. Note that if the mir-
ror is already precooled to say about 1 K, then we show that
by using an optical parametric amplifier we can cool to about
millikelvin temperatures or less.

The paper is organized as follows. In Sec. II we describe
the model and derive the quantum Langevin equations. In
Sec. III we obtain the stability conditions, calculate the spec-
trum of fluctuations in position and momentum of the mov-
able mirror, and define the effective temperature of the mov-
able mirror. In Sec. IV we show how the movable mirror can
be effectively cooled by using the parametric amplifier inside
the cavity.

II. MODEL

We consider a degenerate optical parametric amplifier
�OPA� inside a Fabry-Perot cavity with one fixed partially
transmitting mirror and one movable totally reflecting mirror
in contact with a thermal bath in equilibrium at temperature
T, as shown in Fig. 1. The movable mirror is free to move
along the cavity axis and is treated as a quantum mechanical
harmonic oscillator with effective mass m, frequency �m,
and energy decay rate �m. The effect of the thermal bath can
be modeled by a Langevin force. The cavity field is driven
by an input laser field with frequency �L and positive ampli-
tude related to the input laser power P by �̃=�P / ���L�.
When photons in the cavity reflect off the surface of the
movable mirror, the movable mirror will receive the action
of the radiation pressure force, which is proportional to the
instantaneous photon number inside the cavity. So the mirror
can oscillate under the effects of the thermal Langevin force
and the radiation pressure force. Meanwhile, the movable
mirror’s motion changes the length of the cavity; hence the
movable mirror displacement from its equilibrium position
will induce a phase shift on the cavity field.

Here we assume the system is in the adiabatic limit,
which means �m��c /L; c is the speed of light in vacuum
and L is the cavity length in the absence of the cavity field.
We assume that the motion of the mirror is so slow that the
scattering of photons to other cavity modes can be ignored,
thus we can consider one cavity mode only �27,28�, say, �c.
Moreover, in the adiabatic limit, the number of photons gen-
erated by the Casimir effect �29�, retardation, and Doppler
effects is negligible �9,30,31�. Under these conditions, the
total Hamiltonian for the system in a frame rotating at the
laser frequency �L can be written as
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FIG. 1. Sketch of the cavity used to cool a micromechanical
mirror. The cavity contains a nonlinear crystal which is pumped by
a laser �not shown� to produce parametric amplification and to
change photon statistics in the cavity.
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H = ���c − �L�nc − ��ncq +
1

2
� p2

m
+ m�m

2 q2� + i���c† − c�

+ i�G�ei	c†2 − e−i	c2� . �1�

Here c and c† are the annihilation and creation operators for
the field inside the cavity, respectively; nc=c†c is the number
of the photons inside the cavity; and q and p are the position
and momentum operators for the movable mirror. The pa-
rameter �=�c /L is the coupling constant between the cavity
and the movable mirror; and �=�2
�̃. Note that 
 is the
photon decay rate due to the photon leakage through the
fixed partially transmitting mirror. Further 
=�c / �2FL�,
where F is the cavity finesse. In Eq. �1�, G is the nonlinear
gain of the OPA, and 	 is the phase of the field driving the
OPA. The parameter G is proportional to the pump driving
the OPA.

In Eq. �1�, the first term corresponds to the energy of the
cavity field, the second term arises from the coupling of the
movable mirror to the cavity field via radiation pressure, the
third term gives the energy of the movable mirror, the fourth
term describes the coupling between the input laser field and
the cavity field, and the last term is the coupling between the
OPA and the cavity field.

The motion of the system can be described by the Heisen-
berg equations of motion and adding the corresponding
damping and noise terms, which leads to the following quan-
tum Langevin equations:

q̇ = p/m ,

ṗ = − m�m
2 q + ��nc − �mp + � ,

ċ = i��L − �c�c + i�qc + � + 2Gei	c† − 
c + �2
cin. �2�

Here cin is the input vacuum noise operator with zero mean
value; its correlation function is �32�

��cin�t��cin
† �t��	 = ��t − t�� ,

��cin�t��cin�t��	 = ��cin
† �t��cin�t��	 = 0. �3�

The force � is the Brownian noise operator resulting from the
coupling of the movable mirror to the thermal bath, whose
mean value is zero, and it has the following correlation func-
tion at temperature T �31�:

���t���t��	 =
��m

2�
m
 �e−i��t−t���coth� ��

2kBT
� + 1�d� ,

�4�

where kB is the Boltzmann constant and T is the thermal bath
temperature. In order to analyze Eq. �2�, we use standard
methods from quantum optics �33�. A detailed calculation of
the temperature for G=0 is given by Paternostro et al. �16�.
By setting all the time derivatives in Eq. �2� to zero, we
obtain the steady-state mean values

ps = 0, qs =
��cs2

m�m
2 , cs =


 − i + 2Gei	


2 + 2 − 4G2 � , �5�

where

 = �c − �L − �qs = 0 − �qs = 0 −
��2cs2

m�m
2 �6�

is the effective cavity detuning, including the radiation pres-
sure effects. The modification of the detuning by the �qs
term depends on the range of parameters. The qs denotes the
new equilibrium position of the movable mirror relative to
that without the driving field. Further cs represents the
steady-state amplitude of the cavity field. Note that qs and cs
can display optical multistable behavior, which is a nonlinear
effect induced by the radiation-pressure coupling of the mov-
able mirror to the cavity field. Mathematically this is con-
tained in the dependence of the detuning parameter  on the
mirror’s amplitude qs. It is evident from Eqs. �5� and �6� that
 satisfies a fifth-order equation and in principle can have
five real solutions implying multistability. Generally, in this
case, at most three solutions would be stable. The bistable
behavior is reported in Refs. �34,35�.

III. RADIATION PRESSURE AND QUANTUM
FLUCTUATIONS

In order to determine the cooling of the mirror, we need to
find out the fluctuations in the mirror’s amplitude. Since the
problem is nonlinear, we assume that the nonlinearity is
weak. We are thus interested in the dynamics of small fluc-
tuations around the steady state of the system. Such a linear-
ized analysis is quite common in quantum optics �33,36�. So
we write each operator of the system as the sum of its steady-
state mean value and a small fluctuation with zero mean
value,

q = qs + �q, p = ps + �p, c = cs + �c . �7�

Inserting Eq. �7� into Eq. �2�, then assuming cs�1, we get
the linearized quantum Langevin equations for the fluctua-
tion operators

�q̇ = �p/m ,

�ṗ = − m�m
2 �q + ���cs�c† + c

s
*�c� − �m�p + � ,

�ċ = − i�c + i�cs�q + 2Gei	�c† − 
�c + �2
�cin,

�ċ† = i�c† − i�c
s
*�q + 2Ge−i	�c − 
�c† + �2
�cin

† . �8�

Introducing the cavity field quadratures �x=�c†+�c and �y
= i��c†−�c�, and the input noise quadratures �xin=�cin

†

+�cin and �yin= i��cin
† −�cin�, Eq. �8� can be written in the

matrix form

ḟ�t� = Af�t� + ��t� , �9�

where f�t� is the column vector of the fluctuations, and ��t�
is the column vector of the noise sources. For the sake of
simplicity, their transposes are

f�t�T = ��q,�p,�x,�y� ,

��t�T = �0,�,�2
�xin,�2
�yin�; �10�

and the matrix A is given by
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A =�
0

1

m
0 0

− m�m
2 − �m ��

cs + c
s
*

2
��

cs − c
s
*

2i
i��cs − c

s
*� 0 − �
 − 2G cos 	�  + 2G sin 	

��cs + c
s
*� 0 −  + 2G sin 	 − �
 + 2G cos 	�

� . �11�

The solutions to Eq. �9� are stable only if all the eigen-
values of the matrix A have negative real parts. Applying the
Routh-Hurwitz criterion �37,38�, we get the stability condi-
tions

2
�
2 − 4G2 + 2 + 2
�m� + �m�2
�m + �m
2 � � 0,

�2
 + �m�2�2��2cs2

m
 +

2��2�cs
2 + c

s
*2�G sin 	

m

+
2i��2�cs

2 − c
s
*2�G cos 	

m
� + 2
�m��
2 − 4G2 + 2�2

+ �2
�m + �m
2 ��
2 − 4G2 + 2� + �m

2 �2�
2 + 4G2 − 2�

+ �m
2 + 2
�m�� � 0,

�m
2 �
2 − 4G2 + 2� −

2��2cs2

m
 −

2��2�cs
2 + c

s
*2�G sin 	

m

−
2i��2�cs

2 − c
s
*2�G cos 	

m
� 0. �12�

Note that in the absence of coupling �, the conditions �12�
become equivalent to


2 − 4G2 + 2 � 0. �13�

The condition for the threshold for parametric oscillations is

2−4G2+2=0. We always would work under the condition
that �13� is satisfied. Further for ��0 we would do numeri-
cal simulations using parameters so that conditions �12� are
satisfied.

On Fourier transforming all operators and noise sources in
Eq. �8� and solving it in the frequency domain, the position
fluctuations of the movable mirror are given by

�q��� = −
1

d���
„�2 + �
 − i��2 − 4G2�����

− i��2
����� + i
 − �cs + 2iGei	c
s
*��cin

† ���

+ ��� + i
 + �c
s
* + 2iGe−i	cs��cin����… , �14�

where d���=2��2�cs2+ iGe−i	cs
2− iGei	c

s
*2�+m��2−�m

2

+ i��m��2+ �
− i��2−4G2�. In Eq. �14�, the first term pro-
portional to ���� originates from the thermal noise, while the
second term proportional to � arises from radiation pressure.
So the position fluctuations of the movable mirror are now

determined by the thermal noise and radiation pressure. No-
tice that if there is no radiation pressure, the movable mirror
will make Brownian motion, �q���=−���� / �m��2−�m

2

+ i��m��, whose susceptibility has a Lorentzian shape cen-
tered at frequency �m with width �m.

The spectrum of fluctuations in position of the movable
mirror is defined by

Sq��� =
1

4�

 d�e−i��+��t��q����q��� + �q����q���	 .

�15�

To calculate the spectrum, we need the correlation functions
of the noise sources in the frequency domain,

��cin����cin
† ���	 = 2���� + �� ,

���������	 = 2���mm��1 + coth� ��

2kBT
����� + �� . �16�

Substituting Eq. �14� and Eq. �16� into Eq. �15�, we obtain
the spectrum of fluctuations in position of the movable
mirror

Sq��� =
�

d���2�2
��2��
2 + �2 + 2 + 4G2�cs2

+ 2Gei	c
s
*2�
 − i� + 2Ge−i	cs

2�
 + i��

+ m�m���2 + 
2 − �2 − 4G2�2

+ 4
2�2�coth� ��

2kBT
�� . �17�

In Eq. �17�, the first term is the radiation pressure contribu-
tion, whereas the second term corresponds to the thermal
noise contribution. Then Fourier transforming �q̇=�p /m in
Eq. �8�, we obtain �p���=−im��q���, which leads to the
spectrum of fluctuations in momentum of the movable mirror

Sp��� = m2�2Sq��� . �18�

For a system in thermal equilibrium, we can use the equipar-
tition theorem to define temperature 1

2m�m
2 �q2	= �p2	

2m
= 1

2kBTeff, where �q2	= 1
2��−�

+�Sq���d�, and �p2	
= 1

2��−�
+�Sp���d�. However, here we are dealing with a driven

system and 1
2m�m

2 �q2	� �p2	
2m , hence the question is how to

define temperature. We use an effective temperature defined
by the total energy of the movable mirror kBTeff

= 1
2m�m

2 �q2	+ �p2	
2m . We also introduce the parameter r
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=m2�m
2 �q2	 / �p2	. This parameter gives us the relative impor-

tance of fluctuations in position and momentum of the mir-
ror. We mention that one can calculate the quantum state of
the oscillator and we find that the Wigner function is
Gaussian.

Equation �17� is our key result which tells how the tem-
perature of the micromirror would depend on the parameters
of the cavity: 
, gain of the OPA, external laser power, etc.
We specifically investigate the dependence of the tempera-
ture on the gain G and the phase 	 associated with the para-
metric amplification process. In the limit of G→0, the result
�17� reduces to the one derived by Paternostro et al. �16�.

IV. COOLING MIRROR TO ABOUT SUB-KELVIN
TEMPERATURES

In this section, we present the possibility of cooling the
micromirror to temperatures of about sub-Kelvin by using
parametric amplifiers inside cavities. In all the numerical cal-
culations we choose the values of the parameters which are
similar to those used in recent experiments: �L=2�c /�L
=1064 nm, L=25 mm, P=4 mW, m=15 ng, �m / �2��
=275 kHz, and the mechanical quality factor Q=�m /�m
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FIG. 2. �Color online� The dotted curve indicates the �qs

�106 s−1� as a function of the detuning 0 �107 s−1� �rightmost ver-
tical scale�. The solid curve shows the effective temperature Teff �K�
as a function of the detuning 0 �107 s−1� �leftmost vertical scale�.
The dashed curve represents the parameter r as a function of the
detuning 0 �107 s−1� �leftmost vertical scale�. Parameters: cavity
decay rate 
=108 s−1, cavity finesse F=188.4 s−1, parametric gain
G=0.
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FIG. 3. �Color online� The dotted curve indicates the �qs

�107 s−1� as a function of the detuning 0 �107 s−1� �rightmost ver-
tical scale�. The position that corresponds to the minimum effective
temperature reached is indicated by the arrow. The solid curve
shows the effective temperature Teff �K� as a function of the detun-
ing 0 �107 s−1� �leftmost vertical scale�. The dashed curve repre-
sents the parameter r as a function of the detuning 0 �107 s−1�
�leftmost vertical scale�. Parameters: Cavity decay rate 
=108 s−1,
cavity finesse F=188.4 s−1, parametric gain G=3.5�107 s−1, para-
metric phase 	=0.
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FIG. 4. The behavior of �qs �107 s−1� shown as a function of the
detuning 0 �107 s−1�. The position that corresponds to the mini-
mum effective temperature reached is indicated by the arrow. Pa-
rameters: Cavity decay rate 
=107 s−1, cavity finesse F=1884 s−1,
parametric gain G=5�106 s−1, parametric phase 	=3� /4.
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FIG. 5. �Color online� The solid curve shows the effective tem-
perature Teff as a function of the detuning 0 �107 s−1�. The dashed
curve represents the parameter r as a function of the detuning 0

�107 s−1�. Parameters: Cavity decay rate 
=107 s−1, cavity finesse
F=1884 s−1, parametric gain G=5�106 s−1, parametric phase 	
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=2.1�104. Further in the high-temperature limit kBT���,
we have coth��� /2kBT��2kBT /��.

A. From room temperature (T=300 K) to about sub-Kelvin
temperatures

If we choose 
=108 s−1, F=188.4 s−1, G=0 to satisfy the
stability conditions �12�, the detuning must satisfy 0�4
�106 s−1. Figure 2 gives the variations of the �qs, the effec-
tive temperature Teff, and the parameter r with the detuning
0. It should be borne in mind that for the range of the
detuning shown in Fig. 2, =0−�qs�0. We find the �qs
is single valued, so the movable mirror is monostable. Note
that the parameter r is very close to unity, 1

2m�m
2 �q2	� �p2	

2m ;
the mirror is thus in nearly thermal equilibrium. Figure 2
shows the possibility of cooling the mirror to a temperature
of 15.23 K for 0=4.9�107 s−1, which is in agreement with
the previous calculation �16�.

Now we keep the values of 
 and F the same as in Fig. 2,
and we choose parametric gain G=3.5�107 s−1 and para-
metric phase 	=0; the detuning must satisfy 0�5.7
�107 s−1. If 0�5.7�107 s−1 and for fixed 
 and G, the
system will be unstable. The threshold for unstable behavior
occurs when any of the three conditions �12� is not satisfied.
It may be noted that the threshold for parametric oscillation
has been of great importance in connection with the produc-
tion of nonclassical-squeezed light. Near the parametric
thresholds but under �13�, large degrees of squeezing were
produced �18,19�. Thus it would be advantageous to work
near the threshold of instability but below the instability
point. Figure 3 shows the variations of the �qs, the effective
temperature Teff, and the parameter r with the detuning 0.
We find the �qs is still single valued, so the movable mirror
is still monostable. The minimum temperature reached is
0.65 K for 0=6.7�107 s−1. Thus, with the parametric am-
plifier the minimum temperature is about a factor of 20 lower
than the one without parametric interaction. Note that the
parameter r is always larger than 1, implying that momentum
fluctuations are suppressed over position fluctuations. Note

that as one moves away from the threshold for parametric
instability, the minimum temperature does not rise sharply
which is in contrast to the behavior in Fig. 2, and is advan-
tageous in giving one flexibility about the choice of the de-
tuning parameter.

We next examine the case when the behavior of the sys-
tem is multistable. For this purpose, we choose the cavity to
have the higher quality factor. We choose 
=107 s−1, F
=1884 s−1, G=5�106 s−1 and 	=3� /4; then to satisfy the
stability conditions �12�, the detuning must satisfy 0
�1.847�107 s−1. Figure 4 gives the behavior of �qs as a
function of the detuning 0. We find the �qs is multivalued,
so the movable mirror is multistable. By use of the lowest
curve of the �qs, we obtain the variations of the effective
temperature Teff and the parameter r with the detuning 0, as
shown in Fig. 5. We choose that the range of the detuning is
2.0�107 s−1–3.0�107 s−1. The minimum temperature
achieved is 0.265 K for 0=2.0�107 s−1. Note that r is
close to unity but larger than unity. The general trend is clear.
By playing around with various parameters such as laser
power, cavity finesse, and parametric gain, one can achieve a
variety of different temperatures. As another example, if we
choose 
=5�106 s−1, F=3768 s−1, G=107 s−1, and 	
=0.2467+� /2, then we find that the minimum temperature
is 0.092 K for 0=2.13�107 s−1.

B. From 1 K to millikelvin temperatures

If the thermal bath is cryogenically cooled down to a tem-
perature of 1 K and the mirror is initially thermalized, then
we can use radiation pressure effects and photon statistics to
reach millikelvin or even lower temperatures.

If we choose 
=108 s−1, F=188.4 s−1, and G=0, the ef-
fective temperature Teff with the detuning 0 is shown in Fig.
6. The minimum temperature reached is 0.051 K for 0
=4.9�107 s−1. Next we examine how the effective tempera-
ture changes by the parametric interactions inside the cavity.
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FIG. 6. �Color online� The solid curve shows the effective tem-
perature Teff �K� as a function of the detuning 0 �107 s−1� �leftmost
vertical scale�. The dashed curve represents the parameter r as a
function of the detuning 0 �107 s−1� �rightmost vertical scale�. Pa-
rameters: Cavity decay rate 
=108 s−1, cavity finesse F
=188.4 s−1, parametric gain G=0.
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FIG. 7. �Color online� The solid curve shows the effective tem-
perature Teff �K� as a function of the detuning 0 �107 s−1� �leftmost
vertical scale�. The dashed curve represents the parameter r as a
function of the detuning 0 �107 s−1� �rightmost vertical scale�. Pa-
rameters: Cavity decay rate 
=108 s−1, cavity finesse F
=188.4 s−1, parametric gain G=3.5�107 s−1, parametric phase 	
=0.
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We keep all other parameters as in Fig. 6 and choose para-
metric gain G=3.5�107 s−1 and phase 	=0. Then the effec-
tive temperature Teff with the detuning 0 exhibits behavior
as shown in Fig. 7. The minimum temperature achieved is
0.0044 K for 0=7.9�107 s−1, a factor of 12 lower than the
one without parametric interaction.

Finally it should be borne in mind that the radiation pres-
sure depends on the number operator and then it is sensitive
to the photon statistics of the field in the cavity. The photon
statistics can be calculated from the quantum Langevin equa-
tions �8�. It can be proved that the Wigner function W of the
field in the cavity is Gaussian of the form exp����−cs�2

+���*−c
s
*�2+���−cs���*−c

s
*��, with � ,� ,� determined by


 , ,G ,	, etc. The photon number distribution �24� associ-
ated with such a Gaussian Wigner function depends in an
important way on the parameter � and the inequality of �
and �. The latter depend on G�0 or on the presence of OPA
in the cavity.

V. CONCLUSIONS

In conclusion, we have demonstrated how the addition of
a parametric amplifier in a cavity can lead to cooling of the
micromirror to a temperature; which is much lower than
what is achieved in an identical experiment without the use
of a parametric amplifier. The parametric processes inside
the cavity change the quantum statistics of the field in the
cavity. This change leads to lower cooling since the radiation
pressure effects are dependent on the photon number. Thus
photon statistics becomes central to achieving lower cooling
temperatures. The use of parametric processes could provide
us with a way to cool the mirror to its quantum ground state
or even squeeze it.
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