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Nonlinear harmonic generation and devices in doubly resonant Kerr cavities
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We describe a theoretical analysis of the nonlinear dynamics of third-harmonic generation (w— 3w) via Kerr
(x®) nonlinearities in a resonant cavity with resonances at both w and 3w. Such a doubly resonant cavity
greatly reduces the required power for efficient harmonic generation, by a factor of ~V/Q?, where V is the
modal volume and Q is the lifetime, and can even exhibit 100% harmonic conversion efficiency at a critical
input power. However, we show that it also exhibits a rich variety of nonlinear dynamics, such as multistable
solutions and long-period limit cycles. We describe how to compensate for self- and cross-phase modulation
(which otherwise shifts the cavity frequencies out of resonance), and how to excite the different stable solu-
tions (and especially the high-efficiency solutions) by specially modulated input pulses.
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I. INTRODUCTION

In this paper, we describe how 100% third-harmonic con-
version can occur in doubly resonant optical cavities with
Kerr nonlinearities, even when dynamical stability and self-
phase modulation (which can drive the cavities out of reso-
nance) are included (extending our earlier work [1]), and
describe the initial conditions required to excite these effi-
cient solutions. In particular, we show that such doubly-
resonant nonlinear optical systems can display a rich variety
of dynamical behaviors, including multistability (different
steady states excited by varying initial conditions, a richer
version of the bistable phenomenon observed in single-mode
cavities [2]), gap solitons [3], long-period limit cycles (simi-
lar to the “self-pulsing” observed for second-harmonic gen-
eration [4,5]), and transitions in the stability and multiplicity
of solutions as the parameters are varied. One reason for
studying such doubly resonant cavities was the fact that they
lower the power requirements for nonlinear devices [1], and
in particular for third harmonic conversion, compared to sin-
gly resonant cavities or nonresonant structures [6-23]. An
appreciation and understanding of these behaviors is impor-
tant to design efficient harmonic converters (the main focus
of this paper), but it also opens the possibility of new types
of devices enabled by other aspects of the nonlinear dynam-
ics. For example, strong Kerr nonlinearities are desired in the
context of quantum information theory for use in low-loss
photon entanglement and other single-photon applications
[24-28].

In a Kerr (x®) medium, there is a change in the refractive
index proportional to the square of the electric field; for an
oscillating field at a frequency w, this results in a shift in the
index at the same frequency [self-phase modulation (SPM)],
generation of power at the third-harmonic frequency 3w, and
also other effects when multiple frequencies are present
[cross-phase modulation (XPM) and four-wave mixing
(FWM)] [29]. When the field is confined in a cavity, re-
stricted to a small modal volume V for a long time given by
the quality factor Q (a lifetime in units of the optical period)
[30], such nonlinear effects are enhanced by both the in-
creased field strength for the same input power and by the
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frequency sensitivity inherent in resonant effects (since the
fractional bandwidth is 1/Q). This enhancement is exploited,
for example, in nonlinear harmonic and sum-frequency gen-
eration, most commonly for y? effects where the change in
index is proportional to the electric field (which requires a
noncentrosymmetric material) [29]. One can further enhance
harmonic generation by using a cavity with two resonant
modes, one at the source frequency and one at the harmonic
frequency [4,31-38]. In this case, one must also take into
account a nonlinear down-conversion process that competes
with harmonic generation [4,37,38], but it turns out to be
theoretically possible to obtain 100% harmonic conversion
for either ¥¥ (w—2w) or ¥ (w— 3w) nonlinearities at a
specific “critical” input power P, (both in a one-
dimensional model of propagating waves for y'*' nonlineari-
ties [39] and also in a more general coupled-mode model for
either y'» or x'® nonlinearities [1]). In particular, we studied
the harmonic-generation and down-conversion processes in a
broad class of model systems depicted in Fig. 1: a single
input channel (e.g., a waveguide) is coupled to a nonlinear
cavity with two resonant frequencies, where both reflected
and harmonic fields are emitted back into the input channel.
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FIG. 1. (Color) Top: Schematic of general scheme for third-
harmonic generation and dynamical variables for coupled-mode
equations: a single input (output) channel [with incoming (outgo-
ing) field amplitudes s-] is coupled to a resonant cavity with two
modes at frequencies w; and 3w, (and corresponding amplitudes a,
and as3). The two resonant modes are nonlinearly coupled by a Kerr
(x®)) nonlinearity. Bottom: An example realization [1], in one di-
mension, using a semi-infinite quarter-wave stack of dielectric lay-
ers with a doubled-layer defect (resonant cavity) that is coupled to
incident plane waves; the electric field of a steady-state 3w; solu-
tion is shown as blue, white, and red for negative, zero, and posi-
tive, respectively.
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In this case, we predicted 100% harmonic generation at a
critical power P, proportional to V/Q? for x» and V/Q?
for x¥® [1]. However, we only looked at the steady-state
solution of the system and not its dynamics or stability.
Moreover, in the x® case there can also be an SPM and
XPM effect that shifts the cavity frequencies out of reso-
nance and spoils the harmonic-generation effect. In this pa-
per, we consider both of these effects, describe how to com-
pensate for SPM and XPM, and demonstrate the different
regimes of stability in such y'* doubly resonant systems. We
show that the parameters and the initial conditions must be
chosen within certain regimes to obtain a stable steady state
with high conversion efficiency.

In other regimes, we demonstrate radically different be-
haviors: not only low-efficiency steady states, but also limit-
cycle solutions where the efficiency oscillates slowly with a
repetition period of many thousands of optical cycles. With
infrared light, these limit cycles form a kind of optical oscil-
lator (clock) with a period in the hundreds of GHz or THz
(and possibly lower, depending on the cavity parameters).
Previously, limit-cycle (self-pulsing) behaviors have been
observed in a number of other nonlinear optical systems,
such as doubly resonant x® cavities coupled by second-
harmonic generation [4]; bistable multimode Kerr cavities
with time-delayed nonlinearities [40]; nonresonant distrib-
uted feedback in Bragg gratings [41]; and a number of non-
linear lasing devices [42]. However, the system considered in
this work seems unusually simple, especially among x> sys-
tems, in that it only requires two modes and an instantaneous
Kerr nonlinearity, with a constant-frequency input source, to
attain self-pulsing, and partly as a consequence of this sim-
plicity the precise self-pulsing solution is quite insensitive to
the initial conditions. In other nonlinear optical systems
where self-pulsing was observed, other authors have also ob-
served chaotic solutions in certain regimes. Here, we did not
observe chaos for any of the parameter regimes considered,
where the input was a constant-frequency source, but it is
possible that chaotic solutions may be excited by an appro-
priate pulsed input as in the y'» case [4,5].

Another interesting phenomenon that can occur in nonlin-
ear systems is multistability, where there are multiple pos-
sible steady-state solutions that one can switch among by
varying the initial conditions. In Kerr (x*)) media, an impor-
tant example of this phenomenon is bistable transmission
through nonlinear cavities: for transmission through a single-
mode cavity, output can switch discontinuously between a
high-transmission and a low-transmission state in a hyster-
esis effect that results from SPM [2]. For example, if one
turns on the power gradually from zero the system stays in
the low-transmission state, but if the power is increased fur-
ther and then decreased to the original level, the system can
be switched to the high-transmission state. This effect, which
has been observed experimentally [43], can be used for all-
optical logic, switching, rectification, and many other func-
tions [2]. In a cavity with multiple closely spaced reso-
nances, where the nonlinearity is strong enough to shift one
cavity mode’s frequency to another’s, the same SPM phe-
nomenon can lead to more than two stable solutions [44].
Here, we demonstrate a much richer variety of multistable
phenomena in the doubly resonant case for widely separated
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cavity frequencies coupled by harmonic generation in addi-
tion to SPM—not only can there be more than two stable
states, but the transitions between them can exhibit compli-
cated oscillatory behaviors as the initial conditions are var-
ied, and there are also Hopf bifurcations into self-pulsing
solutions.

The remaining part of the paper is structured as follows.
In Sec. II, we review the theoretical description of harmonic
generation in a doubly resonant cavity coupled to input and
output waveguides, based on temporal coupled-mode theory,
and demonstrate the possibility of 100% harmonic conver-
sion. We also discuss how to compensate for frequency shift-
ing due to SPM and XPM by preshifting the cavity frequen-
cies. In Sec. III, we analyze the stability of this 100%-
efficiency solution, and demonstrate the different regimes of
stable operation that are achieved in practice starting from
that theoretical initial condition. We also present bifurcation
diagrams that show how the stable and unstable solutions
evolve as the parameters vary. Finally, in Sec. IV, we con-
sider how to excite these high-efficiency solutions in prac-
tice, by examining the effect of varying initial conditions and
uncertainties in the cavity parameters. In particular, we dem-
onstrate the multistable phenomena exhibited as the initial
conditions are varied. We close with some concluding re-
marks, discussing the many potential directions for future
work that are revealed by the phenomena described here.

II. 100% HARMONIC CONVERSION IN DOUBLY
RESONANT CAVITIES

In this section, we describe the basic theory of frequency
conversion in doubly resonant cavities with x* nonlineari-
ties, including the undesirable self- and cross-phase modula-
tion effects, and explain the existence of a solution with
100% harmonic conversion (without considering stability).
Consider a waveguide coupled to a doubly resonant cavity
with two resonant frequencies w{™'=w; and &5 =w;=3w,
(below, we will shift w™ to differ slightly from w;), and
corresponding lifetimes 7; and 73 describing their radiation
rates into the waveguide (or quality factors Q,=w;7;/2). In
addition, these modes are coupled to one another via the Kerr
nonlinearity. Because all of these couplings are weak, any
such system (regardless of the specific geometry), can be
accurately described by temporal coupled-mode theory, in
which the system is modeled as a set of coupled ordinary
differential equations representing the amplitudes of the dif-
ferent modes, with coupling constants and frequencies deter-
mined by the specific geometry [1,45]. In particular, the
coupled-mode equations for this particular class of geom-
etries were derived in Ref. [1] along with explicit equations
for the coupling coefficients in a particular geometry. The
degrees of freedom are the field amplitude a; of the kth cav-
ity mode (normalized so that |a,|* is the corresponding en-
ergy) and the field amplitude s;- of the incoming (+) and
outgoing (—) waveguide modes at w; (normalized so that
s+ |? is the corresponding power), as depicted schematically
in Fig. 1. These field amplitudes are coupled by the follow-
ing equations (assuming that there is only input at w,, i.e.,
53,=0):
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As explained in Ref. [1], the a and B coefficients are geom-
etry and material-dependent constants that express the
strength of various nonlinear effects for the given modes.
The «;; terms describe self- and cross-phase modulation ef-
fects: they clearly give rise to effective frequency shifts in
the two modes. The (; term characterize the energy transfer
between the modes: the (3 term describes frequency up-
conversion and the B term describes down-conversion. As
shown in Ref. [1], they are related to one another via con-
servation of energy w ﬁ]:w3,8;k , and all of the nonlinear
coefficients scale inversely with the modal volume V.

There are three different «;; parameters (two SPM coeffi-
cients @;; and az3 and one XPM coefficient aj3=az;). All
three values are different, in general, but are determined by
similar integrals of the field patterns, produce similar
frequency-shifting phenomena, and all scale as 1/V. There-
fore, in order to limit the parameter space analyzed in this
paper, we consider the simplified case where all three
frequency-shifting terms have the same strength «;;=a.

One can also include various losses, e.g., linear losses
correspond to a complex w; and/or ws;, and nonlinear two-
photon absorption corresponds to a complex a. As discussed
in the concluding remarks, however, we have found that such
considerations do not qualitatively change the results (only
reducing the efficiency somewhat, as long as the losses are
not too big compared to the radiative lifetimes 7), and so in
this manuscript we restrict ourselves to the idealized lossless
case.

Figure 2 shows the steady-state conversion efficiency
(|s3_|*/|s14/?) versus input power of light that is incident on
the cavity at (", for the same parameter regime in Ref. [1]
(i.e., assuming negligible self- and cross-phase modulation
so that a=0), and not considering the stability of the steady
state. As shown by the solid red curve, as one increases the
input power |s, |, the efficiency increases, peaking at 100%
conversion for a critical P;=|s{}|, where

|scrit _ ( 4 )1/4 (3)
1+ = .
’ |w1B1|27€7'3

The efficiency decreases if the power is either too low (in the
linear regime) or too high (dominated by down-conversion).
The critical input power |s{}|* scales as V/Q?, so one can in
principle obtain very low-power efficient harmonic conver-
sion by increasing Q and/or decreasing V [1]. Including ab-
sorption or other losses decreases the peak efficiency, but

does not otherwise qualitatively change this solution [1].
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FIG. 2. (Color online) Steady-state efficiency of third-harmonic
generation (solid red line) from Ref. [1], for =0 (no self-phase
modulation), as a function of input power |s,,|> scaled by the Kerr
coefficient n,=3x'3/4ce. The reflected power at the incident fre-
quency w; is shown as a dashed black line. There is a critical power
where the efficiency of harmonic generation is 100. The parameters

used in this plot are Q;=1000, Q3=3000, B;=(4.55985-0.7244i)
X 107 in dimensionless units of )/ Ve.

There are two effects that we did not previously analyze
in detail, however, which can degrade this promising solu-
tion: nonlinear frequency shifts and instability. Here, we first
consider frequency shifts, which arise whenever a# 0, and
consider stability in the next section. The problem with the «
terms is that efficient harmonic conversion depends on the
cavities being tuned to harmonic frequencies w;=3w;; a non-
linear shift in the cavity frequencies due to self- and cross-
phase modulation will spoil this resonance. In principle,
there is a straightforward solution to this problem, as de-
picted in Fig. 3. Originally (for @=0), the cavity was de-
signed to have the frequency w; in the linear regime, but
with a#0 the effective cavity frequency wll\”“ (including
self- and cross-phase modulation terms) is shifted away from
the design frequency as shown by the blue line. Instead, we
can simply design the linear cavity to have a frequency w{™
slightly different from the operating frequency w;, so that
self- and cross-phase modulation shifts wll\”“ exactly to w; at
the critical input power, as depicted by the green line in Fig.
3. Exactly the same strategy is used for wg”“, by preshifting
wcav.

3M0re precisely, to compute the required amount of pre-
shifting, we examine the coupled-mode equations (1) and
(2). First, we solve P, assuming a=0, as in Ref. [1], and

obtain the corresponding critical cavity fields a{™:

) 1 1/2
|acr1t|2 — ( ) (4)
! w%|181|27-371,s ’
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FIG. 3. (Color online) Shift in the resonant frequency w)" as a
function of input power, due to self- and cross-phase modulation.
(There is an identical shift in w; NL ) If the cavity is designed so that
the linear (P;,—0) frequencies are harmonics, the nonlinearity
pushes the system out of resonance (lower blue line) as the power
increases to the critical power for 100% efficiency. This is corrected
by preshifting the cavity frequencies (upper green line) so that the
nonlinear frequency shift pushes the modes into resonance at P_;;.
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Then, we substitute these critical fields into the coupled-
mode equations for a# 0, and solve for the new cavity fre-
quencies ™ so as to cancel the a terms and make the a{™
solutions still valid. This yields the following transformat1on

of the cavity frequencies:

W)

cav _

= - 6

R e ©
cav _ w3

= - 7

w3 1- a13|a€rlt|2 _ a33|acnl|2 ( )

By inspection, when substituted into Egs. (1) and (2) at the
critical power, these yield the same steady-state solution as
for a=0. (There are two other appearances of w; and w3 in
the coupled-mode equations, in the 3, terms, but we need not
change these frequencies because that is a higher-order ef-
fect, and the derivation of the coupled-mode equations con-
sidered only first-order terms in x).)

The nonlinear dynamics turn out to depend only on four
dimensionless parameters 73/ 7 =03/30;, aji/Bi, as3/ B,
and aq3/B1=a3;/B;. The overall scale of Q, «, etcetera,
merely determines the absolute scale for the power require-
ments: it is clear from the equations that multiplying all «
and S coefficients by an overall constant K can be compen-
sated by dividing all @ and s amplitudes by VK [which hap-
pens automatically for s at the critical power by Eq. (3)]; the
case of scaling 7| ; by an overall constant is more subtle and
is considered below. As mentioned above, for simplicity we
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take a; =as3=aj3=a3;=a. Therefore, in the subsequent
sections we will analyze the asymptotic efficiency as a func-
tion of 73/ 7 and a/ .

So far, we have found a steady-state solution to the
coupled-mode equations, including self- and cross-phase
modulation, that achieves 100% third-harmonic conversion.
In the following sections, we consider under what conditions
this solution is stable, what other stable solutions exist, and
for what initial conditions the high-efficiency solution is ex-
cited.

To understand the dynamics and stability of the nonlinear
coupled-mode equations, we apply the standard technique of
identifying fixed points of the equations and analyzing the
stability of the linearized equations around each fixed point
[46]. By a “fixed point,” we mean a steady-state solution
corresponding to an input frequency w; (s;,~e™’) and
hence a,(f)=A,e!" and a;()=A;e®!" for some unknown
constants A, and A;. [An input frequency w, can also gener-
ate higher harmonics, such as 9w, or Sw;, but these are neg-
ligible: both because they are higher-order effects (~[x*)]?,
and all such terms were dropped in deriving the coupled-
mode equations), and because we assume there is no reso-
nant mode present at those frequencies.] By substituting this
steady-state form into Egs. (1) and (2), one obtains two
coupled polynomial equations whose roots are the fixed
points. We already know one of the fixed points from the
previous section, the 100% efficiency solution, but to fully
characterize the system one would like to know all of the
fixed points (both stable and unstable). We solved these poly-
nomial equations using MATHEMATICA, which is able to com-
pute all of the roots, but some transformations were required
to put the equations into a solvable form, as explained in
more detail in the Appendix.

As mentioned above, the dynamics are independent of the
overall scale of 7, 3, and depend only on the ratio 73/ 7. This
can be seen from the equations for A 3, in which the w ;
oscillation has been removed. In these equations, if we mul-
tiply 7, and 73 by an overall constant factor K, after some
algebra it can be shown that the A ; _quatlons are invariant
if we rescale A|—A; /\K Az — A3/ VK, rescale time t— Ki,
and rescale the input s,,—s,,/K [which happens automati-
cally for the critical power by Eq. (3)]. Note also that the
conversion efficiency |s3_/s,,|>=(2/73)|A5/s,,|* is also in-
variant under this rescaling by K. That is, the powers and the
time scales of the dynamics change if you change the life-
times, unsurprisingly, but the steady states, stability, etc. (as
investigated in the next section) are unaltered.

III. STABILITY AND DYNAMICS

Given the steady-state solutions (the roots), their stability
is determined by linearizing the original equations around
these points to a first-order linear equation of the form
dx/dt=Ax; a stable solution is one for which the eigenvalues
of A have negative real parts (leading to solutions that decay
exponentially towards the fixed point) [46]. The results of
this fixed-point and stability analysis are shown in Fig. 4 as a
“phase diagram” of the system as a function of the relative
lifetimes 73/ 7,=303/Q; and the relative strength of self-
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FIG. 4. (Color online) Phase diagram of the nonlinear dynamics
of the doubly resonant nonlinear harmonic generation system from
Fig. 1 as a function of the relative cavity lifetimes (73/7
=305/0,) and the relative strength of SPM and XPM vs harmonic
generation (a/B;) for input power equal to the critical power for
100% efficiency. For 73<<7 there is always one stable 100%-
efficiency solution, and for nonzero « the system may have addi-
tional stable solutions. For 73> 7| the 100%-efficiency solution be-
comes unstable, but there are limit cycles and lower-efficiency
stable solutions. Various typical points A-G in each region are la-
beled for reference in the subsequent figures.

phase-modulation vs four-wave mixing a/ ;. Our original
100%-efficiency solution is always present, but is only stable
for 73 <1, and becomes unstable for 73> 7. The transition
point, 73=7,, corresponds to equal energy |a|>=|as|* in the
fundamental and harmonic mode at the critical input power.
The unstable region corresponds to |as|*>|a;|> (and the
down-conversion term is stronger than the up-conversion
term)—intuitively, this solution is unstable because, if any
perturbation causes the energy in the harmonic mode to de-
crease, there is not enough pumping from up-conversion to
bring it back to the 100%-efficiency solution. Conversely, in
the stable |a;|><|a,|> (r3<7,) regime, the higher-energy
fundamental mode is being directly pumped by the input and
can recover from perturbations. Furthermore, as «/pf; in-
creases, additional lower-efficiency stable solutions are intro-
duced, resulting in regimes with two (doubly stable) and
three (triply stable) stable fixed points. These different re-
gimes are explored in more detail via bifurcation diagrams
below, and the excitation of the different stable solutions is
considered in the next section.

For 73> 1, the 100%-efficiency solution is unstable, but
there are lower-efficiency steady-state solutions and also an-
other interesting phenomenon: limit cycles. A limit cycle is a
stable oscillating-efficiency solution, one example of which
(corresponding to point D in Fig. 4) is plotted as a function
of time in Fig. 5. (In general, the existence of limit cycles is
difficult to establish analytically [46], but the phenomenon is
clear in the numerical solutions as a periodic oscillation in-
sensitive to the initial conditions). In fact, as we shall see
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FIG. 5. (Color online) An example of a limit-cycle solution,
with a periodically oscillating harmonic-generation efficiency as a
function of time, corresponding to point D in Fig. 4. Perturbations
in the initial conditions produce only phase shifts in the asymptotic
cycle. Here, the limit cycle has a period of around 3 X 10* optical
cycles. Inset: Square of Fourier amplitudes (arbitrary units) for each
harmonic component of the limit cycle in the Fourier-series expan-
sion of the As.

below, these limit cycles result from a “Hopf bifurcation,”
which is a transition from a stable fixed point to an unstable
fixed point and a limit cycle [47]. In this example at point D,
the efficiency oscillates between roughly 66% and nearly
100%, with a period of several thousand optical cycles. As a
consequence of the time scaling described in the last para-
graph of the previous section, the period of such limit cycles
is proportional to the 7’s. If the frequency w; were 1.55 um,
for a O of 500 optical cycles, this limit cycle would have a
frequency of around 70 GHz, forming an interesting type of
optical “clock™ or oscillator. Furthermore, the oscillation is
not sinusoidal and contains several higher harmonics as
shown in the inset of Fig. 5; the dominant frequency compo-
nent in this case is the fourth harmonic (~280 GHz), but
different points in the phase diagram yield limit cycles with
different balances of Fourier components.

To better understand the phase diagram of Fig. 4, it is
useful to plot the efficiencies of both the stable and unstable
solutions as a function of various parameters. Several of
these bifurcation diagrams (in which new fixed points typi-
cally appear in stable-unstable pairs) are shown in Figs. 6-8.
To begin with, Figs. 6 and 7 correspond to lines connecting
the labeled points ACF, BCD, and ECG, respectively, in Fig.
4, showing how the stability changes as a function of «a/f
and 73/ 7. Figure 6 shows how first one then two new stable
fixed points appear as a/f, is increased, one approaching
zero efficiency and the other closer to 50%. Along with these
two stable solutions appear two unstable solutions (dashed
lines). (A similar looking plot, albeit inverted, can be found
in Ref. [44] for SPM-coupled closely spaced resonances.) In
particular, the fact that one of the unstable solutions ap-
proaches the 100%-efficiency stable solution causes the latter
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FIG. 6. (Color online) Bifurcation diagram showing the
harmonic-generation efficiency of the stable (solid red lines) and
unstable (dashed blue lines) steady-state solutions as a function of
a/ B, for a fixed 73/ 71=0.7, corresponding to the line ACF in Fig. 4
(see inset). The input power is the critical power P, so there is
always a 100%-efficiency stable solution, but as «/f3; increases
new stable and unstable solutions appear at lower efficiencies.

to have a smaller and smaller basin of attraction as a/
increases, making it harder to excite as described in the next
section. The next two plots, in Fig. 7, both show the solu-
tions with respect to changes in 73/ 7; at two different values
of a/B,. They demonstrate that at 7;=73, a Hopf bifurcation
occurs where the 100%-efficiency solution becomes unstable
for 73=7, and limit cycles appear, intuitively seeming to
“bounce between” the two nearby unstable fixed points. (The
actual phase space is higher dimensional, however, so the
limit cycles are not constrained to lie strictly between the
efficiencies of the two unstable solutions.) It is worth noting
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that the remaining nonzero-efficiency stable solution (which
appears at a nonzero 73/ 7;) becomes less efficient as 73/ 7,
increases.

The above analysis and results were for the steady-state
solutions when operating at the critical input power to obtain
a 100%-efficiency solution. However, one can, of course,
operate with a different input power—although no other in-
put power will yield a 100%-efficient steady-state solution,
different input powers may still be useful because (as noted
above and in the next section) the 100%-efficiency solution
may be unstable or practically unattainable. Figure 8 (left) is
the bifurcation diagram with respect to the input power
P;,/P.; at fixed a/B; and fixed 73/7, corresponding to
point C in Fig. 4. This power bifurcation diagram displays a
number of interesting features, with the steady-state solu-
tions transitioning several times from stable to unstable and
vice versa. As we will see in the next section, the stability
transitions in the uppermost branch are actually supercritical
(reversible) Hopf bifurcations to/from limit cycles. Near the
critical power, there is only a small region of stability of the
near-100% efficiency solution, as shown in the inset of Fig. 8
(left). In contrast, the lower-efficiency stable solutions have
much larger stable regions of the curve while still maintain-
ing efficiencies greater than 70% at low powers comparable
to P~ V/Q? which suggests that they may be attractive
regimes for practical operation when «/ 3, is not small. This
is further explored in the next section, and also by Fig. 8
(right) which shows the bifurcation diagram along the line
ACF in Fig. 4 [similar to Fig. 6], but at 135% of the critical
input power. For this higher power, the system becomes at
most doubly stable as «/f; is increased, and the higher-
efficiency stable solution becomes surprisingly close to
100% as a/B;—0.

IV. EXCITING HIGH-EFFICIENCY SOLUTIONS

One remaining concern in any multistable system is how
to excite the desired solution—depending on the initial con-

stable e

0.‘2 0.‘4 0.‘6 0.‘8 i 112 14
T/

FIG. 7. (Color online) Bifurcation diagram showing the harmonic-generation efficiency of the stable (solid red lines) and unstable
(dashed blue lines) steady-state solutions as a function of 73/ 7, for a fixed a/B;=3 (left) or=8 (right), corresponding to the lines BCD or
EFG, respectively, in Fig. 4 (see insets). The input power is the critical power |s;+|?> , so there is always a 100%-efficiency steady-state
solution, but it becomes unstable for 73> 7; (a Hopf bifurcation leading to limit cycles as in Fig. 5).
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FIG. 8. (Color online) Left: Bifurcation diagram showing the harmonic-generation efficiency of the stable (solid red lines) and unstable
(dashed blue lines) steady-state solutions as a function of P;,/ P at fixed a/B;=3 and 73/ 7;=0.7, corresponding to point C in Fig. 4; the
inset shows an enlarged view of the high-efficiency solutions. Right: Bifurcation diagram as a function of «/ 3 for fixed P;,/ P;=1.35 and
fixed 73/ 7=0.7; in this case, because it is not at the critical power, there are no 100%-efficiency solutions.

ditions, the system may fall into different stable solutions,
and simply turning on the source at the critical input power
may result in an undesired low-efficiency solution. If a/ B is
small enough, of course, then from Fig. 4 the high-efficiency
solution is the only stable solution and the system must in-
evitably end up in this state no matter how the critical power
is turned on. Many interesting physical systems will corre-
spond to larger values of a/8;, however [1], and in this case
the excitation problem is complicated by the existence of
other stable solutions. Moreover, the basins of attraction of
each stable solution may be very complicated in the phase
space, as illustrated by Fig. 9, where varying the initial cav-
ity amplitudes A 5 from the 100%-efficiency solution causes
the steady state to oscillate in a complicated way between the
three stable solutions (at point C in Fig. 4). We have inves-
tigated several solutions to this excitation problem, and
found an “adiabatic” excitation technique that reliably pro-
duces the high-efficiency solution without unreasonable sen-
sitivity to the precise excitation conditions.

First, we considered a simple technique similar to the one
described in Ref. [2] for exciting different solutions of a
bistable filter: as shown in Fig. 10, we “turn on” the input
power by superimposing a gradual exponential turn-on (as-
ymptoting to P;=P;) with a Gaussian pulse of amplitude
Py and width 6T. The function of the initial pulse is to “kick”
the system into the desired stable solution. We computed the
eventual steady-state efficiency (after all transient effects
have disappeared) as a function of the pulse amplitude P at
point C in Fig. 4, where there are three stable solutions. The
results are shown in Fig. 11 (left), and indeed we see that all
three stable solutions from point C in Fig. 6: one at near-zero
efficiency, one at around 47% efficiency, and one at 100%
efficiency. Unfortunately, the 100% efficiency solution is ob-
viously rather difficult to excite, since it occurs for only a
very narrow range of P, values. One approach to dealing
with this challenge is to relax the requirement of 100% effi-
ciency (which will never be obtained in practice anyway due

to losses), and operate at a P} <P;. In particular, Fig. 8
(left) shows that there is a much larger stable region for P,
=~(.8P,;, with efficiency around 90%, leading one to suspect
that this solution may be easier to excite than the 100%-
efficiency solution at P;=P_;. This is indeed the case, as is
shown in Fig. 11 (right), plotting efficiency vs P, at point C
with P;=0.8P;. In this case, there are only two stable so-
lutions, consistent with Fig. 8 (left), and there are much
wider ranges of P that attain the high-efficiency (=90% )
solution.

1
\Cg

efficiency

FIG. 9. (Color online) Asymptotic steady-state efficiency at
point C (triply stable) in the phase diagram (Fig. 4), with the initial
conditions perturbed from the 100%-efficiency stable solution. The
initial amplitudes Ay and Aj, are perturbed by A, and A,
respectively, with 6A,o/AS™=6A30/AS™. The oscillation of the
steady-state efficiency with the perturbation strength is an indica-
tion of the complexity of the phase space and the shapes of the
basins of attraction of each fixed point.
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FIG. 10. (Color online) One way of exciting the system into a
controlled stable solution: the input power is the sum of an expo-
nential turn-on (the blue curve, P;) and a Gaussian pulse with am-
plitude P, and width 6T. The amplitude P, is altered to control
which stable solution the system ends up in.

There are also many other ways to excite the high-
efficiency solution (or whatever steady-state solution is de-
sired). For example, because the cavity is initially detuned
from the input frequency, as described in Sec. II, much of the
initial pulse power is actually reflected during the transient
period, and a more efficient solution would vary the pulse
frequency in time to match the cavity frequency as it de-
tunes. One can also, of course, vary the initial pulse width or
shape, and by optimizing the pulse shape one may obtain a
more robust solution.

In particular, one can devise a different (constant-
frequency) input pulse shape that robustly excites the high-
efficiency solution, insensitive to small changes in the initial
conditions, by examining the power-bifurcation diagram in
Fig. 8 (left) in more detail. First, we observe that for P;,
=1.45P_; there is only one stable solution, meaning that
this stable solution is excited regardless of the initial condi-
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tions or the manner in which the input power is turned on.
Then, if we slowly decrease the input power, the solution
must “adiabatically” follow this stable solution in the bifur-
cation diagram until P;,=~0.95P;, is reached, at which point
that stable solution disappears. In fact, by inspection of Fig.
8 (left), at that point there are no stable solutions, and solu-
tion jumps into a limit cycle. If the power is further de-
creased, a high-efficiency stable solution reappears and the
system must drop into this steady state (being the only stable
solution at that point). This process of gradually decreasing
the power is depicted in Fig. 12 (left), where the instanta-
neous “efficiency” is plotted as a function of input power, as
the input power is slowly decreased. (The efficiency can ex-
ceed unity, because we are plotting instantaneous output vs
input power, and in the limit-cycle self-pulsing solution the
output power is concentrated into pulses whose peak can
naturally exceed the average input or output power.) Already,
this is an attractive way to excite a high-efficiency (>90%)
solution, because it is insensitive to the precise manner in
which we change the power as long as it is changed slowly
enough—this rate is determined by the lifetime of the cavity,
and since this lifetime is likely to be subnanosecond in prac-
tice, it is not difficult to change the power “slowly” on that
timescale. However, we can do even better, once we attain
this high-efficiency steady state, by then increasing the
power adiabatically. As we increase the power, starting from
the high-efficiency steady-state solution below the critical
power, the system first enters limit-cycle solutions when the
power becomes large enough that the stable solution disap-
pears in Fig. 8 (right). As we increase the power further,
however, we observe that these limit cycles always converge
adiabatically into the 100%-efficiency solution when P
— P This process is shown in Fig. 12 (right). What is
happening is actually a supercritical Hopf bifurcation at the
two points where the upper branch changes between stable
and unstable: this is a reversible transition between a stable
solution and a limit cycle (initially small oscillations, grow-
ing larger and larger away from the transition). This is pre-
cisely what we observe in Fig. 12, in which the limit cycle

1

0.2- 1

I L

20 30 40 50
PO/ |:c’:rit

FIG. 11. (Color online) Left: Steady-state efficiency at point C in Fig. 4 as a function of the transient input-pulse amplitude P, from Fig.
10, showing how all three stable solutions can be excited by an appropriate input-pulse amplitude. Right: Same, but for an asymptotic input
power P;=~0.8P;, for which the maximum efficiency is =90% from Fig. 8 (right), but is easier to excite.
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FIG. 12. (Color) Left: Green line with arrows indicates instantaneous “efficiency” (harmonic output power / input power) as the input
power is slowly decreased, starting at Pj,=~ 1.7P ;. For comparison, Fig. 8 (left) is superimposed as solid-red and dashed-blue lines. The
solution “adiabatically” follows a steady state until the steady state becomes unstable, at which point it enters limit cycles, and then returns
to a high-efficiency steady state, and finally drops to a low-efficiency steady state if the power is further decreased. Right: Similar, but here
the power is increased starting at the high-efficiency steady state solution for P < P;. In this case, it again enters limit cycles, but then it
returns to a high-efficiency steady-state solution as the power is further increased, eventually reaching the 100%-efficiency stable solution.
If the power is further increased, it drops discontinuously to the remaining lower-efficiency steady-state stable solution.

amplitudes become smaller and smaller as the stable solu-
tions on either side of the upper branch are approached, lead-
ing to the observed reversible transitions between the two.
The important fact is that, in this way, by first decreasing and
then increasing P;, toward P.;, one always obtains the
100%-efficiency solution regardless of the precise details of
how the power is varied (as long as it is “slow” on the time
scale of the cavity lifetime).

V. CONCLUDING REMARKS

We have shown that a doubly resonant cavity not only has
high-efficiency harmonic conversion solutions for low input
power, as in our previous work [1], but also exhibits a num-
ber of other interesting phenomena. We showed under what
conditions the high-efficiency solution is stable, how to com-
pensate for self-phase modulation, the existence of different
regimes of multistable solutions and limit cycles controlled
by the parameters of the system and by the input power, and
how to excite the desired high-efficiency solution. Although
we did not observe chaos, it seems possible that this may be
obtained in future work for other parameter regimes, e.g., for
pulsed input power as was observed in the y® case [4,5].
These dynamical phenomena depend only on certain dimen-
sionless quantities a/ B, w3/ w,, 3/ 71, and s1,/s{', although
the overall power and time scales depend upon the dimen-
sionful quantities 7; 3 and so on.

All of the calculations in this paper were for an idealized
lossless system, as our main intention was to examine the
fundamental dynamics of these systems rather than a specific
experimental realization. However, we have performed pre-
liminary calculations including both linear losses (such as
radiation or material absorption) and nonlinear two-photon
absorption, and we find that these losses do not qualitatively
change the observed phenomena. One still obtains multista-

bility, limit cycles, bifurcations, and so on, merely at reduced
peak efficiency depending on the strength of the losses. In a
future manuscript, we plan to explore these effects in more
detail in realistic material settings, and propose specific ge-
ometries to obtain the requisite doubly resonant cavities. In
particular, to obtain widely spaced resonant modes w and 3w
in a nanophotonic (wavelength-scale) context (as opposed to
macroscopic Fabry-Perot cavities with mirrors), the most
promising route seems to be a ring resonator of some sort
[48], rather than a photonic crystal [30] (since photonic band
gaps at widely separated frequencies are difficult to obtain in
two or three dimensions). Although such a cavity will natu-
rally support more than the two w; and w; modes, only two
of the modes will be properly tuned to achieve the resonance
condition for strong nonlinear coupling.

Finally, we should mention that similar phenomena
should also arise in doubly and triply resonant cavities
coupled nonlinearly by sum or difference frequency genera-
tion (for x'?) or four-wave mixing (for x®). The advantage
of this is that the coupled frequencies can lie closer together,
imposing less stringent materials constraints and allowing
the cavity to be confined by narrow-bandwidth mechanisms
such as photonic band gaps [30], at the cost of a more com-
plicated cavity design.
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APPENDIX

As explained in the text, enforcing the steady state condi-
tion on Egs. (1) and (2) yields a set of coupled polynomial
equations, whose roots we compute using MATHEMATICA.
However, some transformations were required in order to put
the equations into a solvable form.

In particular, we eliminated the complex conjugations by
writing A,=r,e’ and assuming (without loss of generality)
that s,, is real. Multiplying Eq. (1) by ¢7**! and Eq. (2) by
e 3% allows us to simply solve the system for ¢~'#1 and
ei(b3=31).

: 3
oi3 = iw3 57
1
“("{“’5‘“[1 - a(r}+ )] - @} - 7)
3
4
#3301 — 013,557
s1: L0 = 03— 05alri+ 1)) = 1y

+i[™ — o+ S a4+ 1) + 1/71} . (A1)

Requiring the magnitude of these two quantities to be
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unity yields two polynomials in x:rf and y=r§, which
MATHEMATICA can handle:

0= w350 = (/7 +{05"[1 - alx + )] - 031)y
0= 1/7§ +{oP1 - alx+y)] - w3} - %[ (— w038 B5x°
I+

C S = a4 )] - o™ - alx + )]

T3
n o1 —alx+y)] - w;
(.01} + ( Tl
, o —abc+y)] - o ﬂ | a2
73

The resulting polynomial is of an artificially high degree,
resulting in spurious roots, but the physical solutions are eas-
ily identified by the fact that x and y must be real and non-
negative. (We should also note that this root-finding process
is highly sensitive to roundoff error [49], independent of the
physical stability of the solutions, but we dealt with that
problem by employing 50 decimal places of precision.)
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