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We study the effects associated with spatiotemporal light localization near the edge of a semi-infinite array
of weakly coupled nonlinear optical waveguides. It was shown earlier that such a system can support the
existence of a novel class of �2+1�-dimensional continuous-discrete spatiotemporal solitons, which are stable
in a broad region of their parameters. We analyze the collisions between this type of spatiotemporal optical
solitons and demonstrate that such collisions are strongly affected by the presence of the surface. In particular,
since these solitons can be located at different distances from the edge of the waveguide array, we observe a
variety of collision scenarios and different outcomes. In addition to well-known scenarios of soliton fusion and
symmetric scattering, we get strongly asymmetric outcomes that can be understood as soliton switching.
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I. INTRODUCTION

The comprehensive theoretical studies performed in the
1980s on the propagation of electromagnetic waves along the
boundaries between two continuous dielectric media �where
at least one of them is nonlinear� resulted in the unique pre-
diction that optical solitons can be guided by dielectric inter-
faces when the nonlinear change of the refractive index is of
an appropriate sign and of sufficient magnitude to overcome
the linear �low power� refractive index difference between
the adjacent media �1–8�. It was then shown that the corre-
sponding self-trapped surface states or surface solitons
would have a power threshold proportional to the linear re-
fractive index difference between the two media and in-
versely proportional to the strength of the nonlinearity re-
quired to compensate for this difference. Because of the huge
difficulties in finding suitable dielectric media with large
enough optically induced refractive index changes to com-
pensate for the refractive index differences between currently
available materials, no successful experiments have been re-
ported to the present date.

However, the interest in the study of nonlinear optical
surface waves has been renewed recently, and a series of
theoretical predictions �9–18� and subsequent experiments
�19–24� demonstrated nonlinearity-induced light localization
near the edge of a truncated one-dimensional waveguide ar-
ray that can lead to the formation of the so-called discrete
surface solitons. The formation of this soliton can be under-
stood with the help of simple physics �11� as a trapping of a
localized surface wave �25� near the repulsive edge of the
lattice when the beam power exceeds some threshold value.
The specific features of discrete optical surface solitons in
several relevant physical settings and other related phenom-
ena that may occur at the surfaces of photonic structures

have been recently reviewed in Refs. �26–28�.
The concept of surface solitons has been recently ex-

tended to the case of spatiotemporal light localization �29,30�
at the edge of semi-infinite waveguide arrays �31,32� or at
the surface of two-dimensional photonic lattices �33�. One-
parameter families of continuous-discrete spatiotemporal op-
tical solitons in truncated one- and two-dimensional photonic
lattices, the so-called discrete surface spatiotemporal soli-
tons, were found to exist provided that their power exceeds
some threshold values and were found to be stable in certain
parts of their existence domains �31,33�.

The effect of gain and loss �e.g., due to optical amplifiers
and saturable absorbers in such truncated periodic photonic
structures� has been also investigated and the corresponding
dissipative surface spatiotemporal solitons in one- and two-
dimensional photonic lattices were introduced �34,35�. Simi-
lar to other types of discrete dissipative solitons in both one-
and two-dimensional lattices �36–39�, dissipative surface
solitons exhibit novel features that, as a result of both dis-
creteness and gain �loss� effects, have no counterpart in ei-
ther the continuous limit or in other conservative discrete
models for both cubic and quadratic nonlinear media
�40–45�. Discrete surface spatiotemporal solitons are ad-
equately described by continuous-discrete nonlinear evolu-
tion equations similar to those investigated earlier for cubic
�46–49� and quadratic �50� nonlinear optical media, which
are subject to specific boundary conditions due to the pres-
ence of the surface through the lattice truncation.

In this paper, we analyze the outcomes of collisions be-
tween continuous-discrete spatiotemporal surface solitons in
truncated waveguide arrays. We demonstrate that such colli-
sions are strongly affected by the presence of the waveguide
truncation �an effective surface�, and in particular, for both
collision of solitons initially set at equal distances from the
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surface and collision of solitons propagating in two neigh-
boring waveguides, we observe strongly asymmetric out-
comes with soliton jumping to the neighboring waveguides
that can be understood as novel types of soliton switching
via soliton fusion or scattering.

II. DISCRETE SPATIOTEMPORAL SURFACE SOLITONS

We consider an array of weakly coupled nonlinear optical
waveguides described, in the tight-binding approximation �or
coupled mode theory�, by effective discrete nonlinear
Schrödinger equations �25�. We take into account the spa-
tiotemporal evolution of light, but also assume that our
waveguide array is truncated so that the light localization
occurs near its edge �31�. The model investigated in this
work is a �2+1�-dimensional one, with two transverse di-
mensions �the spatial transverse dimension is discrete, while
the other transverse dimension is continuous and corresponds
to time�. The corresponding discrete nonlinear Schrödinger
model can be written in the form

i
�E1

�z
− �

�2E1

�t2 + E2 + ��E1�2E1 = 0,

i
�En

�z
− �

�2En

�t2 + �En+1 + En−1� + ��En�2En = 0, n � 2,

�1�

where n=1 designates the edge of the waveguide array. In
this semi-infinite continuous-discrete model �1� the propaga-
tion coordinate z and the dispersion coefficient � are normal-
ized to the intersite coupling V. In deriving Eqs. �1� the ac-
tual electric field in the nth guide, En, has been decomposed
into the product of the vectorial guided mode profile of the
isolated channel waveguide e�x ,y� and the respective mode
amplitude En, which can be finally normalized to give
En

��eff /VEn, where the effective nonlinear coefficient is
�eff=

�
c

n2

Aeff
. Here n2 is the nonlinear refractive index of the

material, Aeff is the effective mode area, and �= �1 defines
focusing or defocusing nonlinearity of the waveguide mate-
rial, respectively.

The one-parameter families of stationary spatiotemporal
soliton solutions of the coupled nonlinear Schrödinger equa-
tions �1� are looked for as En�t ;z�=exp�i�z�En�t�, where the
family parameter � is the nonlinearily induced shift of the
waveguide propagation constant and the envelope En�t� de-
scribes the temporal evolution of the solitonlike pulse in the
nth waveguide. For the sake of clarity we restrict ourselves
here to the case of anomalous dispersion ���0�, self-
focusing nonlinearity ��= +1� and in-phase solitons. If we
scale out the dispersion parameter by the transformation
t→	����, we obtain

d2E1

d	2 − �E1 + E2 + �E1�2E1 = 0,

d2En

d	2 − �En + �En+1 + En−1� + �En�2En = 0, n � 2. �2�

By using a standard band-matrix algorithm �51� to deal
with the corresponding two-point boundary-value problem,
we found numerically localized solutions En�t� of the
coupled equations �2� assuming that the amplitude of the
pulses in each waveguide, max�En�, decays rapidly far from
the edge of the waveguide array, so that the corresponding
solution describes a mode localized near the surface. The
nonlinear modes are characterized by two conserved quanti-
ties: the total power P and the system’s Hamiltonian H �31�.
In Fig. 1 we show both the P= P��� curves of different sur-
face modes located at distances d=0, d=1, and d=2 from the
edge of the array and the corresponding H=H�P� depen-
dences. Stable spatiotemporal surface solitons are expected
to correspond to positive slopes of the P= P��� curves and to
lower branches of the H=H�P� curves; see Figs. 1�a� and
1�b�. If we compare the corresponding power curves of dif-
ferent spatiotemporal surface modes, we notice that the
threshold power of the mode localized at the edge of the
waveguide array �d=0� is the lowest one while increasing
with the distance d from the surface. Therefore, in sharp
contrast to the case of one-dimensional surface solitons
�10,11�, the surface of a truncated waveguide array creates an
effective attractive potential for the spatiotemporal localized
modes that reduces the threshold power for mode localiza-
tion. Figures 2�a�–2�c� show several examples of stable non-
linear spatiotemporal continuous-discrete localized states
�“discrete surface spatiotemporal solitons”� located at differ-
ent distances d from the surface for the case of the focusing
nonlinearity and for �=4. The corresponding powers of
these stationary solitons are as follows: P=8.293 �d=0�, P
=8.500 �d=1�, and P=8.565 �d=2�.

III. OUTCOMES OF THE SOLITON COLLISIONS

Once stable discrete spatiotemporal surface solitons are
available, a problem of great interest is to consider collisions
between them. In this work, we aim at investigating this
issue in the framework of the nonlinear coupled continuous-
discrete evolution equations �1�, focusing on finding the ge-
neric outcomes of collisions between discrete surface spa-
tiotemporal solitons located at different distances d from the
edge of the semi-infinite waveguide array. Thus to study ge-
neric outcomes of collisions between discrete surface soli-

FIG. 1. �a� Normalized power vs propagation constant for the
discrete surface light bullets located at distances d=0, d=1, and d
=2 from the edge of the array. �b� Hamiltonian vs power for the
localized surface modes.
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tons, one should take a pair of stable solitons with typical
shapes shown in Fig. 2, separated by a large temporal dis-
tance t2− t1=T. Thus we solve Eqs. �1� with the initial con-
dition �at z=0� corresponding to collisions between two
stable surface solitons: En�t ,0�=En�t+T /2�exp�i�t /2�+En�t
−T /2�exp�−i�t /2�, where � is the kick parameter. Below we
take the anomalous group-velocity dispersion �=−1 and
consider collisions between discrete spatiotemporal solitons
located at different distances d from the surface of the semi-
infinite waveguide array for various values of the kick pa-

rameter � and for two representative values of the propaga-
tion constant � corresponding to both relatively low and
relatively high soliton amplitudes �powers�.

We solve the coupled equations �1� with the initial condi-
tion �at z=0� corresponding to collisions between two stable
discrete solitons located either at the same distance d1=d2
=d �d=0,1 , . . . � from the surface or at two different dis-
tances d1�d2 from the edge of the semi-infinite array. We
employ a Crank-Nicholson finite-difference numerical
scheme, with typical transverse and longitudinal step sizes

t=0.02 and 
z=0.0005. The standard transparent boundary

FIG. 3. �Color online� Contour plots display the evolution of the
field �En� in the plane �t ,z� for the collision scenarios of input soli-
tons located at d=0, at different values of kick �: �a� merger into a
single soliton located at the distance d=1 from the surface, at �
=1, �b� and �c� spreading of the input solitons, at �=2, and �=4,
respectively, and �d� quasielastic collision, at �=8. Here �=4.

FIG. 4. The field structure at input �z=0� �a�, at z=2000 ��
=1� �b�, and at z=7.5 ��=8� �c�, corresponding to the two collisions
scenarios shown in panels �a� and �d� in Fig. 3.

FIG. 5. �Color online� Same as in Fig. 3, but for input solitons
located at d=1: �a� merger into a single soliton located at the dis-
tance d=1 from the surface, at �=1, �b� and �c� spreading of the
input solitons, at �=2, and �=4, respectively, and �d� quasielastic
collision, at �=12. Here �=4.

FIG. 2. Examples of stable spatiotemporal surface solitons lo-
calized at distances of �a� d=0, �b� d=1, and �c� d=2 from the edge
of the waveguide array. Here �=4.
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conditions �52� were implemented in our numerical code.
The resulting nonlinear finite-difference equations were
solved using the Picard iteration method �53�, and the ensu-
ing linear system was then dealt with using the Gauss-Seidel
elimination procedure. To achieve good convergence, five
Picard and six Gauss-Seidel iterations were needed. Typi-
cally, we used 4001 grid points for the continuous variable t
and 31 grid points for the discrete spatial coordinate.

A. Collisions between identical discrete spatiotemporal
surface solitons

Next we carry out a series of systematic numerical studies
of collisions between two identical discrete spatiotemporal
surface solitons initially set at equal distances d1=d2
=0 ,1 , . . ., from the edge of the truncated waveguide array.
First, we consider the collision of solitons of relatively low
power �amplitude�. In this case, by gradually increasing the
initial kick �, we observe the following three generic out-
comes.

�a� Merger of two identical solitons into a single soliton at

FIG. 6. The field structure at input �z=0� �a�, at z=2000 ��
=1� �b�, and at z=5 ��=12� �c�, corresponding to the two collisions
scenarios shown in panels �a� and �d� in Fig. 5.

FIG. 7. �Color online� Same as in Fig. 3, but for input solitons
located in the center of the lattice: �a� merger into a single soliton
located in the center of the lattice, at �=0.5, �b� and �c� spreading of
the input solitons, at �=1, and �=9, respectively, and �d� quasielas-
tic collision, at �=16. Here �=4.

FIG. 8. �Color online� Same as in Fig. 3, but for high amplitude
solitons corresponding to �=8, located at distances d1=d2=0: �a�
�=0.5, �b� �=1, and �c� �=2.

FIG. 9. The field structure at input �z=0� �a�, at z=100 ��
=0.5� �b�, at z=80 ��=1� �c�, and at z=18 ��=2� �d� corresponding
to the collisions scenarios shown in panels �a�, �b�, and �c� in Fig. 8.
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relatively small values of the kick parameter �. The single
output soliton may be either located at the same distance
from the interface as the input solitons or, more interestingly,
it may jump into a neighboring waveguide located at a larger
distance from the surface.

�b� Spreading of solitons at intermediate values of the
kick parameter �.

�c� Quasielastic soliton interactions at large values of �
and the corresponding passage of solitons through each
other.

These three distinct collision scenarios are illustrated in
Figs. 3–7, showing the field evolution in the plane �t ,z�, and
by plots of the corresponding field profiles both at input and
long after the collision. Surprisingly enough, we find that for
the solitons initially set in motion exactly at the edge of the
truncated array �d=0� the merger process is accompanied by
the hopping of the solitons onto the next waveguide situated
at a distance d=1 from the interface �see Fig. 4�b��, whereas
the solitons, which are initially located in the neighboring
waveguides �i.e., at distances d=1 and d=2 from the sur-
face�, remain in the same waveguides upon the merging pro-
cess �see Fig. 6�b� for the case of the solitons located initially
at the distance d=1 from the lattice edge�. Moreover, for
solitons located deep inside the lattice �center solitons c�, we
get similar collision scenarios as for solitons located near the
lattice edge; see Fig. 7.

By increasing the input power �amplitude� of colliding
solitons, we observe the disappearance �see Figs. 8–11� of
the soliton spreading regime for intermediate values of the
kick parameter; in this case, by increasing the collision mo-
mentum the solitons gradually “switch” from the merging
regime to the quasielastic one �see Figs. 8�b�, 8�c�, 10�b�, and
10�c��. It is to be mentioned that for both small and interme-
diate values of the kick parameter, the solitons emerging af-
ter collision may have output amplitudes greatly differing

from their input ones. Figure 12 shows a typical example
when the output amplitude of the soliton can be either larger
�in the case of the soliton merging process� �see Fig. 12�a��
or smaller �see Fig. 12�b�� than the input one.

B. Collisions between nonidentical discrete spatiotemporal
surface solitons

Next we report results of systematic simulations of colli-
sions between two nonidentical discrete surface spatiotempo-
ral solitons initially set in motion at different distances �d1
�d2� from the edge of the semi-infinite waveguide array.
First we consider the case of low amplitude �power� input
solitons. Gradually increasing the initial kick �, we have
observed the following three generic collision scenarios.

�a� Merger of the two distinct solitons into one of them at
relatively small values of the kick parameter �. This soliton
fusion process is accompanied by a drastic change of the
velocity of the surviving soliton.

FIG. 10. �Color online� Same as in Fig. 3, but for high ampli-
tude solitons corresponding to �=8, located in the center of the
lattice: �a� �=0.5, �b� �=1.5, and �c� �=4.

FIG. 11. The field structure at input �z=0� �a�, at z=100 ��
=0.5� �b�, at z=42 ��=1.5� �c�, and at z=9 ��=4� �d� corresponding
to the collisions scenarios shown in panels �a�, �b�, and �c� in Fig.
10.

FIG. 12. �Color online� Evolution of the soliton amplitudes cor-
responding to the collision scenarios shown in Figs. 8�a� and 8�b�.
Here �=8, �=0.5 �a�, and �=1 �b�.
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�b� Spreading of solitons at intermediate values of the
kick parameter �.

�c� Elastic interactions at large values of �, and a corre-
sponding passage of solitons through each other.

In Figs. 13�a�, 13�b�, 14�b�, and 14�c� we illustrate a typi-
cal soliton fusion scenario in the case of collision of rela-
tively low-amplitude surface solitons located at distances
d1=0 and d2=1 from the interface and for relatively small

kick parameters �. Only the soliton located at distance d2
=1 survives during this collision process; however, its input
velocity is greatly changed after collision �see panels �a� and
�b� in Fig. 13�. Similar soliton fusion processes are illustrated
in Figs. 15�a�, 15�b�, 16�b�, and 16�c� for the case of colli-
sions between relatively low-amplitude solitons located at
distances d1=1 and d2=2 from the interface, when, as be-
fore, only the soliton located at distance d1=1 survives.

FIG. 13. �Color online� Same as in Fig. 3, but for input solitons
located at distances d=0 and d=1 from the edge of the array. �a�
Merger into a single moving “upwards” soliton located at the dis-
tance d=1 from the surface, at �=0.2, �b� merger into a single
moving “downwards” soliton located at the distance d=1 from the
surface, at �=1, �c� spreading of the input solitons, at �=4, and �d�
quasielastic collision, at �=8.

FIG. 14. The field structure at input �z=0� �a�, at z=350 ��
=0.2� �b�, at z=135 ��=1� �c�, and at z=7.5 ��=8� �d� correspond-
ing to the three collisions scenarios shown in panels �a�, �b� and �d�
in Fig. 13.

FIG. 15. �Color online� Same as in Fig. 3, but for input solitons
located at distances d=1 and d=2 from the edge of the array. �a�
Merger into a single moving “upwards” soliton located at the dis-
tance d=1 from the surface, at �=0.2, �b� merger into a single
moving “downwards” soliton located at the distance d=1 from the
surface, at �=0.7, �c� spreading of the input solitons, at �=4, and
�d� quasielastic collision, at �=10.

FIG. 16. The field structure at input �z=0� �a�, at z=215 ��
=0.2� �b�, at z=140 ��=0.7� �c�, and at z=6 ��=10� �d� correspond-
ing to the three collisions scenarios shown in panels �a�, �b�, and �d�
in Fig. 11.
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When the input colliding solitons are much more separated
spatially—for example, when we consider the input solitons
located at distances d1=0 and d2=2 from the interface—the
single output soliton resulting from the fusion process may
be either one of the two input solitons �see Figs. 17�a� and
17�b� and Figs. 18�b� and 18�c��. In this case, for relatively
low kick parameter � the output soliton is that centered at the
very interface �d1=0� �see Fig. 17�a� and Fig. 18�b��,
whereas for a larger value of the kick parameter the output

soliton is that centered at d2=2, deep in the waveguide array.
Spreading of the solitons at intermediate values of the kick
parameter � is displayed in Figs. 13�c� and 15�c�. By sub-
stantially increasing the kick parameter, elastic interactions
and a corresponding passage of solitons through each other
occur �see Figs. 13–18�. As in the case of collision between
identical discrete spatiotemporal solitons, by increasing the
input power �amplitude� of nonidentical colliding solitons we
have observed the disappearance of the spreading soliton re-
gime found for intermediate values of the kick parameter
�see Figs. 19 and 20 for a typical example of the collision
between solitons located at distances d1=0 and d2=1 from

FIG. 17. �Color online� Same as in Fig. 3, but for input solitons
located at distances d=0 and d=2 from the edge of the array. �a�
Merger into a single moving “upwards” soliton located at the dis-
tance d=0 from the surface, at �=0.2, �b� merger into a single
moving “downwards” soliton located at the distance d=2 from the
surface, at �=1, and �c� quasielastic collision, at �=4.

FIG. 18. The field structure at input �z=0� �a�, at z=195 ��
=0.2� �b�, at z=67 ��=1� �c�, and at z=15 ��=4� �d�. The output
fields shown in panels �b�, �c�, and �d� correspond to the three
collision scenarios shown in panels �a�, �b�, and �c� in Fig. 17.

FIG. 19. �Color online� Same as in Fig. 3, but for high-
amplitude solitons corresponding to �=8, located at distances d1

=0 and d2=1. �a� �=0.1, �b� �=0.2, �c� �=1, and �d� �=3.

FIG. 20. The field structure at input �z=0� �a�, at z=120 ��
=0.1� �b�, at z=250 ��=0.2� �c�, and at z=12 ��=3� �d� correspond-
ing to the collisions scenarios shown in panels �a�, �b�, and �d� in
Fig. 19.
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the interface�. In this case, for relatively low values of the
kick parameter only one soliton survives after the collision
process; the surviving soliton may be either one of the two
input objects �see Figs. 19�a� and 19�b� and Figs. 20�b� and
20�c��.

IV. CONCLUSIONS

We have studied the collision of the continuous-discrete
spatiotemporal solitons near the edge of a semi-infinite array
of weakly coupled nonlinear optical waveguides. Since these
surface spatiotemporal optical solitons can form at different
distances from the edge of the waveguide array, we have
identified several different collision outcomes and have dem-
onstrated that such collisions are strongly affected by the
presence of the surface. We have shown that the outcomes of

the collisions strongly depend on the initial surface soliton
parameters, such as the distance of their centers from the
surface and their transverse velocities. In particular, in addi-
tion to well-known scenarios of soliton fusion and symmetric
scattering, we have observed strongly asymmetric collision
outcomes. We have pointed out that this novel type of soliton
collisions can be understood as a selective soliton switching
into the neighboring waveguide via soliton fusion or scatter-
ing. We believe that these novel collision scenarios can be
found for other types of surface solitons too.
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