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We employ an effective discrete model for the study of wave propagation in a photonic crystal waveguide
side-coupled to a cavity with Kerr-type nonlinearity. Taking into account the linear coupling between guided
and localized states and applying the time-dependent version of a Green’s function formalism, we study and
characterize analytically the scattering of continuous waves. The resonant reflectivity, which is tunable via the
nonlinearity, takes the form of a nonlinear Fano resonance because the output field is composed of a linearly
transmitted wave and a resonantly reflected contribution from the localized cavity. By studying the stability of
the nonlinear Fano resonance, we reveal that the continuous-wave scattering may exhibit modulational insta-
bility near the resonance when the light intensity in the cavity starts growing in time. However, we demonstrate
that this instability may be suppressed for Gaussian pulses, such that the bistable transmission curve can still
be recovered in accordance with the analysis of the steady-state transmission. We demonstrate that our ana-
lytical results based on an effective discrete model are in excellent agreement with numerical results obtained
by direct finite-difference time-domain simulations.
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I. INTRODUCTION

One of the simplest bistable optical devices that might be
employed in future photonic integrated circuits is a nonlinear
two-port structure which is connected to other parts of a
circuit by one input and one output waveguide. The trans-
mission properties of this nonlinear device depend on the
light intensity coupled into the input waveguide. One of the
realizations of such a device is provided by a waveguide
side-coupled to an optical cavity. This system is known to
exhibit a Fano resonance in reflection, and it also demon-
strates optical bistability when the cavity is made of a non-
linear material �1,2�.

In such systems the Fano resonance originates from the
coupling between discrete �localized� and continuum �ex-
tended� states, and it manifests itself as constructive or de-
structive interference phenomena. It is widely known across
different branches of physics as the appearance of resonant
asymmetric profiles in transmission or absorption spectra ob-
served in numerous physical systems, including light absorp-
tion by atomic systems �3�, the Aharonov-Bohm interferom-
eter �4,5�, quantum dots �6–8�, light propagation through a
variety of configurations in photonic circuits �1,9–21�, pho-
non scattering by time-periodic scattering potentials �22–24�.

Possible realizations of photonic crystal devices based on
Fano resonances have been demonstrated in recent experi-
ments with both linear and nonlinear light transmission in
two-dimensional photonic crystal slab structures where a lat-
tice of cylindrical pores is etched into a planar waveguide. In
particular, the Noda group demonstrated coupling of a pho-
tonic crystal waveguide to a leaky resonator mode consisting

of a defect pore of slightly increased radius �25,26�. Notomi
et al. �27� and Barclay et al. �28� observed all-optical bista-
bility in directly coupled photonic-crystal waveguide-
resonator systems. More recently, Yang et al. �29� demon-
strated experimentally Fano-resonance-enhanced bistability
in a side-coupled geometry.

The main objective of this paper is to study the dynamics
and instabilities of the nonlinear Fano resonance in photonic
crystals. First, we develop a time-dependent version of the
Green’s function formalism and study the temporal dynamics
in the photonic-crystal structure composed of a straight
waveguide and a side-coupled cavity with Kerr-type nonlin-
earity. In particular, we reveal the existence of modulational
instability near the resonance that is manifested as a growth
of the light intensity inside the cavity. Second, we study, both
analytically and numerically, the manifestation of the nonlin-
ear Fano resonance for pulse propagation. In particular, we
demonstrate that, in spite of the predicted modulational in-
stability of the continuous waves, the instability can be sup-
pressed for pulse propagation, such that it becomes possible
to recover the bistable transmission curves of the stationary
scattering with an excellent agreement with numerical results
obtained by finite-difference time-domain �FDTD� simula-
tions, where Maxwell’s equations are discretized in space
and time without further approximations �30�.

The paper is organized as follows. In Sec. II we general-
ize the Green’s function formalism for describing photonic
crystal circuits in the nonstationary case, in order to analyze
both instabilities and pulse scattering. Section III is devoted
to the derivation of the effective discrete equations for the
resonant interaction between a straight waveguide and an
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isolated side-coupled nonlinear defect, where we also intro-
duce and discuss the appropriate boundary conditions. In
Sec. IV we analyze the stability of the nonlinear Fano reso-
nance scattering and reveal that the system shows a modula-
tional instability near the resonance. The problem of pulse
scattering is analyzed in Sec. V where we also compare our
analytical solutions to the numerical results obtained by
FDTD calculations. Finally, Sec. VI concludes the paper.

II. GREEN’S FUNCTION FORMALISM

As already shown earlier �31,32�, the Green’s function
approach allows one to obtain very accurate results com-
pared to more time-consuming direct numerical FDTD simu-
lations, even for rather complex geometries of the photonic
circuits. Here we develop a generalization of this approach,
taking into account the explicit temporal dependences, which
permits the study of pulse propagation and scattering.

We consider a periodic square lattice of infinite cylindri-
cal rods parallel to the z axis. We neglect the material dis-
persion and assume the dielectric constant ��r�� to be periodic
in two transverse directions with period a, r�= �x ,y�. In this
geometry, the evolution of the E-polarized electric field
propagating in the �x ,y� plane is governed by the scalar wave
equation

�2Ez�r�,�� −
1

c2��
2���r��Ez�r�,��� = 0, �1�

where �2=�x
2+�y

2. The light field propagating in such struc-
tures can be separated into fast and slow components,
Ez�r� ,��=e−i��E�r� ,� ���, where E�r� ,� ��� is a slowly varying
envelope of the electric field—i.e., ��

2E�r� ,� ���
���tE�r� ,� ���. This allows one to simplify Eq. �1� to the
form

��2 + ��r����

c
�2	E�r�,���� 
 − 2i��r��

�

c2

�E�r�,����
��

. �2�

Both the straight waveguide and the side-coupled cavity
are created by introducing defect rods into a perfect two-
dimensional periodic structure, as shown in Fig. 1�a�. There-
fore, the dielectric constant can be represented as a sum of
two contributions, describing the periodic and defect struc-
tures ��r��=�pc+��. We employ the Green’s function of the
two-dimensional periodic structure without defects, which
can be found from the equation

��2 + �pc�r����

c
�2	G�r�,r����� = − ��r� − r��� , �3�

and rewrite Eq. �2� in the integral form

E�r�,���� =� d2r��G�r�,r�����L̂E�r��,���� , �4�

where we have introduced the linear operator

L̂ = ��

c
�2

���r�� + 2i��r��
�

c2

�

��
, �5�

and consider the time evolution of the slowly varying enve-
lope as a perturbation to the steady state.

The defect rods introduced into the periodic structure can
formally be described as follows:

���r�� = �
n,m

���m,n
�0� + ��3��E�r�,�����2���r� − r�n,m� , �6�

where we use the � function to describe the position of a
defect rod at site n ,m, where ��r��=1 for r� inside the defect
rods and ��r��=0 otherwise, and ��m,n

�0� is the variation of the
dielectric constant of the defect rod �m ,n�. Importantly, this
approach allows us to incorporate a nonlinear response in a
straightforward manner, which is assumed as a Kerr nonlin-
earity described by ��3��E�2.

Substituting Eq. �6� into the integral equation �4� and as-
suming that the electric field does not change inside the di-
electric rods, we can evaluate the integral on the right-hand
side of Eq. �4� and derive a set of discrete nonlinear equa-
tions

i�
�

��
En,m − En,m + �

k,l
Jn−k,m−l������k,l

�0� + ��3��Ek,l�2�Ek,l = 0,

�7�

for the amplitudes of the electric field En,m�� ���
=E�r�n,m ,� ��� calculated at the defect rods. The parameters �
and Jk,l��� are determined by using the corresponding inte-
grals of the Green’s function, where the whole information
about the photonic crystal dispersion is now hidden in their
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FIG. 1. �Color online� Schematic view of �a� the photonic crys-
tal waveguide with an isolated side-coupled nonlinear cavity and
�b� the effective discrete system �8�. �c� Typical profile of the linear
Fano resonance in such a system. The resonant frequency is 	
=0.3765. Here and in the following we introduced the normalized
frequency 	=a /
.
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specific frequency dependencies, which can be found in
Refs. �2,33�. In this way, the Green’s function �3� needs to be
calculated only once for a given photonic structure—e.g., by
employing the approach outlined in Ref. �34�—and then it
can be used to study any photonic circuit in that structure.

III. WAVEGUIDE WITH A COUPLED DEFECT

We study the transmission properties of a photonic crystal
waveguide with a side-coupled nonlinear defect, as shown in
Fig. 1�a�. This problem was studied earlier for the stationary
resonant transmission �2,35�, and it was demonstrated that
this structure exhibits bistable transmission even for low in-
put powers. In this paper, we reexamine this problem by
considering the time-dependent evolution. For this geometry,
the dynamical equations �7� can be written as follows:

− i�
�

�T
En = �

k=1

L

V0,k�	��En−k + En+k� − Dn�	�En

+ �
l=n1

n2

�n,lVl−n1,�E�,

− i�
�

�T
E� = ���	��E��2E� − D��	�E� + �

l=n1

n2

V�,l−n1
El,

�8�

where Vn,m�	�=��mJn,m�	�, Dn�	�=1−��nJ0,0�	�, D��	�
=1−���J0,0�	�, and ���	�=��

�3�J0,0�	� and the normalized

frequency and time have been introduced as 	=a /
, and T
=2
c /a�, respectively. The side-coupled defect is situated in
the middle of the structure near the site n=0, where we take
into account the nonlocal coupling to the straight PC wave-
guide with n1=−1 and n2=1 �see Fig. 1�b��.

To study the transmission properties of the system, we
impose the scattering boundary conditions

En�T�	� = 
Ieiq�	�n + r�T�e−iq�	�n, n � 0,

t�T�eiq�	�n, n � 0,
� �9�

which depend slowly on time.
It is known that in photonic-crystal waveguides the effec-

tive interaction between defect rods is long range �32,36�
and, thus, in general, we should have L�1. However, the
coupling strength decays exponentially with the distance
and, as a result, for coupled-resonator optical waveguides
�CROWs� the specific discrete array with nearest-neighbor
interactions �L=1� gives already excellent agreement with
direct FDTD simulations �32�. Therefore, we will use this
approximation for our dynamical model �8� taking L=1.

We use the linear substitution En=ei�TẼn with �
=−Dn��� /� in Eq. �7� to eliminate Dn��� and obtain

− i�
�

�T
Ẽn = V0,1�	��Ẽn−1 + Ẽn+1� + �

l=n1

n2

�n,lVl−n1,�E�,

− i�
�

�T
Ẽ� = ���	��Ẽ��2Ẽ� + �Dn�	� − D��	��Ẽ�

+ �
l=n1

n2

V�,l−n1
El. �10�

Accordingly, the scattering boundary conditions for the elec-
tric fields take the form
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FIG. 2. �Color online� �a� Nonlinear transmission coefficient and
�b� imaginary part of eigenvalues of the linearized system vs input
power. The permittivities of the side-coupled defect and defect rods
are �n=��=2.56. The frequency of the incoming continuous wave is
	=0.3785 �see Fig. 1�c��. It shows that near the nonlinear Fano
resonance the continuous wave becomes dynamically unstable.
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FIG. 3. �Color online� �a�,�c� Temporal evolution of the electric
field in the cavity and �b�,�d� transmission coefficient for two dif-
ferent values of the input power: �a�,�b� at resonance, Pin=0.1252,
and �c�,�d� far from the resonance, Pin=0.01. Near the resonance
the dynamics of the field in the cavity shows the development of a
modulational instability of continuous-wave scattering.
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Ẽn�T�	� = e−i�T
Ieiq�	�n + r�T�e−iq�	�n, n � 0,

t�T�eiq�	�n, n � 0.
� �11�

By using the fact that Eqs. �10� for the straight waveguide
are linear and that the expression for the continuous-wave
excitation is known, Iei�q�	�n−�T�, we can rewrite the system
�10� after some algebraic manipulation in the form

− i�
�

�T
Ẽn = V0,1�	��Ẽn−1 + Ẽn+1��

l=n1

n2

�n,lVl−n1,�Ẽ�,

n � − 1, n � 0,

− i�
�

�T
Ẽ−1 = V0,1�	��Ẽ−2 + Ẽ0� − V0,1�	�Ie−i�T,

− i�
�

�T
Ẽ0 = V0,1�	��Ẽ−1 + Ẽ1� + V0,1�	�Ie−iq�	�−i�T,

− i�
�

�T
Ẽ� = ���	���

�3��Ẽ��2Ẽ� + �Dn�	� − D��	��Ẽ�

+ �
l=n1

n2

V�,l−n1
Ẽl, �12�

with the explicit time-periodic parametric excitations at the
sites n=−1,0, which mimic the continuous-wave mode
propagating to the right, n�0. As a result, the rescaled elec-

tric field Ẽn describes now the reflected �n�0� and transmit-
ted �n�0� waves only.

In such a form, the system �12� can be solved numerically,
with a high efficiency, by using the discrete transparent
boundary conditions method �37�. The main advantage of
this method is that it allows one to reduce significantly the

spatial domain of the system to a few sites, thus reducing
drastically the required computation time.

IV. MODULATIONAL INSTABILITY

The system we have derived above is rather general, and
it can be applied to many types of low-loss waveguide-
resonator structures under the assumption of a weak cou-
pling. As a specific example, below we consider a two-
dimensional photonic crystal created by a lattice of dielectric
rods of radius rrod=0.18a with permittivity �r=11.56, where
a is the lattice period. This structure is known to support a
large TM band gap �32�.

We study the so-called on-site geometry �2� with three
coupling terms describing the interaction with the nonlinear
cavity, with n1=−1 and n2=1 in Eqs. �7�–�11�, as shown in
Fig. 1�b�.

The steady-state solutions of Eq. �8� were obtained earlier
in Ref. �2�. Figure 1�c� represents the typical shape of the
linear Fano resonance for small input intensities. In this pa-
per, we are interested in the dynamics of the scattering pro-
cess. First, we perform a stability analysis of the continuous-
wave scattering near the nonlinear Fano resonance. We
linearize the system �8� near the steady-state solutions, En
=En�+�n, by adding a small perturbation ��n�� �En��, and
study the eigenvalue spectrum of the linearized system �n.
The real eigenvalues correspond to stable solutions, while
the presence of complex conjugated pairs indicates that a
given solution is dynamically unstable and will diverge ex-
ponentially with time. Our analysis suggests that even in the
case when there is no bistability the continuous wave can
become dynamically unstable near the nonlinear Fano reso-
nance, as indicated in Fig. 2�b� by the complex eigenvalues.
A similar scenario was predicted in Ref. �38�, where it was
shown that it corresponds to generic modulational instability
in nonlinear systems.

0
0.002
0.004
0.006
0.008
0.01

Po
w
er

0
0.002
0.004
0.006
0.008
0.01 output

input

0 0.005 0.01
0

0.5

1

1.5

Tr
an
sm
is
si
on

0 0.005 0.01
0

0.5

1

1.5 analytical
up
down

time
0

0.05

0.1

0.15

0.2

|E
α
|2

0

0.05

0.1

0.15

0.2

0 0.005 0.01
Pin

0

0.05

0.1

0.15

0.2

0
0

0.05

0.1

0.15

0.2

(a)

(c)

(d)

(b)
1 2 3

1 2 3
x105

x105

FIG. 4. �Color online� �a� Time evolution of the input �dashed
line� and output �solid line� pulses. �b� Transmission coefficients,
derived from �a� �red and blue curves� and the analytical one for
this system �2�. �c� Time evolution of the nonlinear cavity excita-
tion. �d� The effective pumping rate of the cavity, derived from �c�.
The parameters of the system are �n=��=2.56, the frequency is
	=0.373 �see Fig. 1�c��. The parameters of the Gaussian pulse are
I1=0.1, t0=2�105, and w=5�104.
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FIG. 5. Results of the direct FDTD simulations of the structure
described in the text. These results should be compared to Fig. 4. �a�
Shape of the input �dashed� and output �solid line� pulses. �b� Out-
put power Pout versus input power Pin derived from �a�. �c� Tem-
poral evolution of the side-coupled nonlinear cavity excitation. �d�
The effective pumping rate of the cavity, derived from �c�.
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In Fig. 3 the temporal evolution of the electric field in the
cavity is displayed, for two cases: �i� at resonance, Pin
=0.1252 �see Figs. 3�a� and 3�b��, and �ii� far from reso-
nance, Pin=0.01 �see Figs. 3�c� and 3�d��. The development
of modulational instability of the electric field in the cavity
near the resonance condition is clearly visible �see Fig. 3�a��,
where the intensity of the field starts to grow with time.
Initially this is an exponential growth, but after a transition
the growth is even faster. The transition time can be esti-
mated from the maximum value of the imaginary part of the
unstable eigenvalue �see Fig. 2�b��. Far from resonance, we

observe saturation of the field in the cavity, as shown in Fig.
3�c�. It corresponds to a stable regime.

It is interesting to look at the temporal evolution of the
transmission coefficient for both cases �see Figs. 3�b� and
3�d��. Even in the presence of modulational instability, the
transmission coefficient is well defined. It shows the transi-
tion from 0 �resonant condition� to 1 �see Fig. 3�b��. Despite
the fact that the field in the cavity grows, the system is al-
most transparent. In the stable case, far from resonance �see
Fig. 3�d��, the transmission coefficient simply reaches the
steady-state value predicted theoretically �2�.
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FIG. 6. �Color online� Output power Pout �left� and pumping rate of the cavity �right� versus input power Pin for two detuning
wavelengths, 
=1647 nm �optimal� and 
=1640 nm. For the optimal case �
=1647 nm� electric field profiles near the nonlinear resonance
�Pin=0.0121� are given for the two stable branches �A and B�.
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V. PULSE SCATTERING

To address the question whether a bistable transmission is
possible in this system, we consider the same problem for a
nonstationary, pulsed excitation. This issue is important be-
cause the modulational instability we found above requires a
certain time to develop �see Fig. 3�a��. We expect that in the
nonstationary transmission regime the instability may be
suppressed or even eliminated. We notice that for very short
pulses, we may enter the regime of chaotic dynamics of the
system, and we use relatively broad Gaussian pulses,

I = I1 exp�−
�T − T0�2

w2 � , �13�

where w is the pulse width.
Our results are presented in Fig. 4, and they show that for

long pulses we are able to reproduce the whole bistable curve
predicted by the stationary scattering analysis �2�. The input
and output profiles are shown in Fig. 4�a�. From these tem-
poral profiles we can obtain the transmission coefficient, as
shown in Fig. 4�b�. The results of the dynamical simulations
�red and blue curves� are in a perfect agreement with the
theoretical �analytical� results shown by black curves. The
oscillations in the transmission come from the fact that one
of the stable solutions ceases to exist, and the system jumps
to another stable state. This switching is accompanied by a
critical slowing down close to the critical points of the bifur-
cation curve. Such a dynamical sweeping of the input param-
eter leads to an increased area of the hysteresis loop, depend-
ing on the modulation speed, as was earlier discussed in Ref.
�39� in a different context. Figures 4�c� and 4�d� show the
time evolution of the cavity excitation and effective pumping
rate, respectively. The excitation of the cavity varies up to
two orders of magnitude within the hysteresis loop.

Finally, we have performed direct FDTD simulations to
check our theoretical predictions. For this purpose we con-
sider a two-dimensional square photonic crystal of silicon
rods in air of radius rrod=108 nm with �r=11.56. The period
of the structure is a=600 nm. We construct a photonic crys-
tal waveguide by removing one row of rods. For the side-
coupled cavity one rod at 2a distance from the waveguide is
replaced by a polymer one with the same rod radius rrod,
whose permittivity is ��=2.56. In the linear regime, such a
structure supports a Fano resonance �total reflection� at 

=1628 nm, with a quality factor Q=118.

In Fig. 5, our FDTD results for Gaussian pulse propaga-
tion in the nonlinear regime are presented for detuned wave-
length at 
=1647 nm. These results are in excellent agree-
ment with the theoretical ones, presented in Fig. 4.

In Fig. 6 we show how the bistable region changes for
different detuning wavelengths 
=1647 nm �optimal� and

=1640 nm. Moreover, the electric field profiles near the
nonlinear resonance are plotted for two stable branches at a
given power Pin=0.0121.

VI. CONCLUSIONS

We have studied analytically the dynamics of nonlinear
Fano resonances observed in the propagation of linear
guided modes coupled to a localized mode of a nonlinear
resonant cavity. We have revealed the existence of modula-
tional instability for the nonlinear Fano resonance that mani-
fests itself in a growth of the light intensity in the cavity. For
the specific case of a photonic crystal created by a two-
dimensional lattice of dielectric rods in air, we have derived
the effective discrete equations for the nonlinear scattering
problem, employing the time-dependent version of the
Green’s function formalism, and studied analytically the re-
flectivity of continuous waves and linear stability of the cor-
responding stationary scattering problem. We have found
that modulational instability that occurs near the nonlinear
Fano resonance is largely suppressed for Gaussian pulses and
that is why it is readily possible to recover the bistable trans-
mission curves in the pulse regime. Our analytical predic-
tions are in excellent agreement with the numerical results
obtained by FDTD simulations. Although derived in the con-
text of photonic-crystal-based waveguides and cavities, the
approach developed here can be useful for the study of other
types of low-loss waveguide-resonator structures.
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