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Recently it has been suggested that fermions whose hopping amplitude is quenched to extremely low values
provide a convenient source of local disorder for lattice bosonic systems realized in current experiment on
ultracold atoms. Here we investigate the phase diagram of such systems, which provide the experimental
realization of a Bose-Hubbard model whose local potentials are randomly extracted from a binary distribution.
Adopting a site-dependent Gutzwiller description of the state of the system, we address one- and two-
dimensional lattices and obtain results agreeing with previous findings, as far as the compressibility of the
system is concerned. We discuss the expected peaks in the experimental excitation spectrum of the system,
related to the incompressible phases, and the superfluid character of the partially compressible regions char-
acterizing the phase diagram of systems with binary disorder. In our investigation we make use of several
analytical results whose derivation is described in appendixes, and whose validity is not limited to the system
under concern.
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I. INTRODUCTION

Since the seminal paper by Fisher et al. �1�, disordered
bosonic lattice systems have been the subject of active inves-
tigation. The recent impressive advances in cold atom trap-
ping allowed the experimental realization of the prototypal
bosonic lattice model, i.e., the Bose-Hubbard model �2�. Dif-
ferent techniques have been devised for the introduction of
disorder in the system �3�, such as speckle field patterns �4�,
incommensurate bichromatic optical lattices �5�, and local-
ized fermionic impurities �6�. In particular Ref. �5� provides
experimental evidences of the hallmark phase of the disor-
dered Bose-Hubbard model, i.e., the compressible and non-
superfluid Bose glass �1�.

At the theoretical level very diverse techniques have been
employed in the study of the disordered Bose-Hubbard
model. A nonexhaustive list includes field-theoretical tech-
niques �1,7�, quantum Monte Carlo simulations �8,9�, mean-
field schemes �10–16�, and others �17–20�.

Here we are interested in the case of fermionic impurities.
Bose-Fermi systems have been studied by several authors
�21�. If the kinetic energy of the fermionic atoms is negli-
gible, e.g., due to a strong suppression of the relevant hop-
ping amplitude, the impurities localize at random sites of the
optical lattice �6,22,23�. The system can be hence described
by a Bose-Hubbard model with random local potential char-
acterized by a binary distribution. An early partial discussion
of the phase diagram of this model �24� has been recently
complemented by several authors �23,25–27�. A characteris-
tic feature evidenced by these works consists in the presence
of incompressible phases corresponding to noninteger fill-
ings. Mering and Fleischhauer �23� provide simple argu-
ments showing that the phase diagram of the 1D disordered
model does not depend on the impurity density and can be
straightforwardly derived by that of the homogeneous case,
at least as far as compressibility is concerned. In particular

one can recognize fully compressible, fully incompressible,
and partially compressible regions. While the first and the
second are clearly superfluid and insulating, respectively, the
question arises about the superfluidity of the partially com-
pressible regions, at least on high dimensional lattices. In-
deed, as discussed in Refs. �23,26�, the partially compress-
ible phase is bound to be insulating, and hence Bose glass,
on 1D lattices.

In this paper we describe the zero-temperature mean-field
phase diagram of the Bose-Hubbard model with binary-
distributed disorder. First of all, we show that the above
compressibility scenario independent of the impurity density
�23� is also confirmed by our site-dependent Gutzwiller ap-
proach. Moreover, the analytical tractability and the compu-
tational affordability of this technique allows us to investi-
gate the superfluidity of the partially compressible phase
both in one and two dimensional systems. In particular, we
address the issue of quantum percolation which, as already
pointed out in Ref. �6�, is expected to play a crucial role in
this problem. While we confirm that on one-dimensional sys-
tems the partially compressible phase is substantially insulat-
ing, we find that in higher dimensions the system always
exhibits a finite superfluid fraction due to quantum tunneling.
However, this superfluid fraction can be so small that the
system can be considered virtually insulating. Although
phase diagrams make rigorous sense in the thermodynamic
limit, it should be taken into account that the linear dimen-
sion of current experimental realizations of the system under
concern is of the order of a few hundred sites. It is hence
important to consider finite-size effects, which we demon-
strate to be quite relevant especially in the partially com-
pressible phases, and to depend significantly on the impurity
density.

The plan of the paper is as follows. In Sec. II we describe
the model under investigation and introduce the superfluid
fraction as an important parameter in the characterization of
the phase diagram thereby. In Sec. III we recall the site-
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dependent Gutzwiller approach and provide analytic expres-
sions for the superfluid fraction and the flux induced by an
infinitesimal velocity field in this framework. Section IV is
devoted to the phase diagram of the system. First of all we
discuss how the compressibility scenario argued in Ref. �23�
is captured by the site-dependent mean-field approach. In
Sec. IV A we provide an analytical form for the boundaries
of the fully incompressible insulating lobes. Moreover, we
discuss how the excitation spectrum of the system �5� is
modified by the presence of the noninteger insulating phases
characterizing the Bose-Hubbard model with binary disorder.
Section IV B discusses the superfluidity of the partially com-
pressible phase, in relation to the quantum percolation phe-
nomenon. Finally, finite-size effects are investigated in Sec.
IV C for 1D and 2D systems. This paper also contains ap-
pendixes where several interesting analytical results are pro-
vided for the site-dependent Gutzwiller approach. In particu-
lar in Appendix A we clarify the connection between the
mean-field Hamiltonian and the dynamical Gutzwiller equa-
tions. In Appendix B the analytic formula for the boundaries
of the incompressible lobes is derived explicitly. Also, we
provide an useful inequality and clarify the connection be-
tween such a formula and similar results derived in effective
single site mean-field approaches �1,12,16,19,25�. Finally,
the superfluid fraction and the flux across neighboring sites is
derived analytically as a function of the mean-field order
parameters alone in Appendix C. A particularly simple ex-
pression applying in the 1D case is also provided. We em-
phasize that the results discussed in the appendices are not
limited to the case of binary distributed disorder considered
in Secs. II–V.

II. THE MODEL

The system under investigation is described by the Bose-
Hubbard Hamiltonian

H =
U

2 �
j=1

M

nj�nj − 1� + �
j

M

v jnj − t�
i,j

Ai,jai
†aj . �1�

The on-site bosonic operators aj, aj
† and nj =aj

†aj destroy,
create, and count particles at lattice site j, respectively. The
geometry of the M-site lattice is described by the adjacency
matrix A, whose generic element Aij equals 1 if sites i and j
are nearest neighbors, and 0 otherwise. The parameters U
and t are the on-site repulsive strength and the hopping am-
plitude across neighboring sites and, from the experimental
point of view, they are related to the scattering length of the
alkali-metal atoms forming the bosonic gas and the strength
of the optical lattice �28�. We will be considering a binary
random distribution for the local potential v j �29�, namely,

p�v j� = p0��v j − �� + �1 − p0���v j� . �2�

This choice is meant to account for the presence of Nimp
=Mp0 atoms of a second species trapped at randomly deter-
mined sites by a strong quench in the relevant hopping am-
plitude �6,22,23,30�. This requires that the hopping ampli-
tude of the bosonic species described by Hamiltonian �1� and
that of the species acting as a source of localized impurities

can be controlled independently �22,23,25,26,30�. In particu-
lar, the latter can be made virtually zero in order to ensure
that the impurities stay localized while the bosons can attain
their ground state configuration. The parameter � measures
the strength of the interaction between these frozen impuri-
ties and the bosons described by Hamiltonian �1�. In most of
the following discussion we assume ��U. The general case
can be worked out straightforwardly, and it is briefly dis-
cussed in Sec. IV A.

As is well known �1�, on a homogeneous lattice v j =0, the
zero-temperature phase diagram of the Bose-Hubbard model
described by Eq. �1� comprises an extended superfluid �SF�
region and a series of Mott-insulator �MI� lobes. The SF
phase is gapless, compressible, and characterized by nonva-
nishing superfluid fraction. Conversely, the MI phase is
gapped, incompressible, and characterized by vanishing su-
perfluid and condensate fractions. The presence of random
potentials is expected to induce a further Bose-glass �BG�
phase which, similar to MI is not superfluid, but, similar to
SF, is gapless and compressible �1�. Recently, it has been
shown that in the case of uniformly box-distributed disorder
such a phase can be captured by a multiple-site mean-field
approach �13–15�, both on one- �13,14� and two-dimensional
lattices �15�. In the latter case the presence of the harmonic
trapping potential typical of experimental systems was also
taken into account.

The superfluid fraction is estimated as the response of the
system to an the infinitesimal velocity field imposed on the
lattice. In the general case such a field is described by the
antisymmetric matrix Bij =−Bji having nonzero elements
only across neighboring sites. In the reference frame of the
moving lattice the Hamiltonian of the system has the same
form as Eq. �1� except that Aij is substituted by
Aij exp�i�Bij�, where � is a scalar related to the modulus of
the velocity field �see, e.g., Refs. �31,32��. The superfluid
fraction is often defined as the stiffness of the system under
the phase variation imposed by the velocity field �see, e.g.,
Refs. �33–35��

fs = lim
�→0

E� − E0

tN�2 , �3�

where E� and E0 are the ground-state energies of the system
when the lattice is moving and at rest, respectively, while N
is the total number of bosons in the system. It should be
noticed that Eq. �3� is properly a fraction, i.e., a quantity with
values in the interval �0, 1�, only in simple situations, such as
a homogeneous velocity field. More in general, the condition
max��Bij���1 ensures that the superfluid fraction does not
exceed 1. The imposition of a velocity field induces a flux
across neighboring sites i and j of the form

Jij = itAij���e−i�Bijaj
†ai − ei�Bijai

†aj��� , �4�

which clearly vanishes for �=0. In the following we will
show that fs=0 only if Jij =0 for any pair of neighboring
sites.
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III. MEAN-FIELD APPROXIMATION

The results we are going to illustrate are obtained in the
widely used site-decoupling mean-field approximation
�36,37�. Despite this approach cannot capture the correct be-
havior of the spatial quantum correlations, it provides a
qualitatively satisfactory picture of the phases of strongly
correlated systems, even in the presence of spatial inhomo-
geneities arising from the harmonic confinement typical of
experiments �38� or from superimposed disordered potentials
�10,13,15�.

In the strongly correlated regime the state of the system is
expected to be well approximated by a Gutzwiller product
state

��� = �
j

�� j�, �� j� = �
�=0

	

cj�

�aj
†��

	n!
�
� , �5�

where �
� is the vacuum state, aj�
�=0. A time-dependent
variational principle similar to that illustrated in Ref. �39�
results in a set of nonlinear dynamical equations for the ex-
pansion coefficients cj� �40�. It can be shown that finding the
minimum-energy stationary state �fixed-point� of such equa-
tions is equivalent to finding the ground state of the mean-
field Hamiltonian

H = � Hi + t�
ij

�
i
*Ai,j� je

i�Bi,j , �6�

Hi =
U

2
ai

†ai
†aiai + �vi − ��ai

†ai − t�iai
† + 

i
*ai� �7�

subject to the self-consistent condition

i = �
j

Ai,j� je
i�Bi,j, �i = ���ai��� = ��i�ai��i� . �8�

Such a mean-field Hamiltonian is usually derived by intro-
ducing the decoupling assumption ai

†aj 
ai
†� j +�

i
*aj −�

i
*� j

in Hamiltonian �1� �37�. These issues will be briefly dis-
cussed in Appendix A. The parameter � appearing in Eq. �7�
is the so-called “chemical potential,” which comes about due
to the fact that the mean-field Hamiltonian �6� does not pre-
serve the total number of bosons, unlike Eq. �1�.

The mean-field order parameters �i �with �=0� allow the
characterization of the quantum phases of the system, as far
as compressibility is concerned. In particular, on a homog-
enous system the �site-independent� �i is zero in the incom-
pressible insulator and finite in compressible superfluid
phase �37�. On inhomogenous lattices a further situation can
in principle occur, where �i�0 only on a fraction of the
lattice sites. Following Ref. �23� we will define such a situ-
ation as partially compressible, as opposed to the fully com-
pressible and fully incompressible phases corresponding to
the MI and SF.

We observe that in this framework the one-body density
matrix has a rather simple expression

�ij =
���ai

†aj���
N

=
�ij�� j�nj�� j� + �1 − �ij��i

*� j

N
�9�

so that the condensate fraction, i.e., the largest eigenvalue of
�ij �41�, can be estimated as

fc �
1

N
�

i

��i�2. �10�

Such a form shows that, at the mean field level, the conden-
sate fraction vanishes only for fully uncompressible MI
phases. Actually fc has been used as a convenient order pa-
rameter in Refs. �13–15,42�.

As one expects, the presence of the velocity field involved
in the evaluation of the superfluid fraction modifies the self-
consistently determined mean-field parameters defined in Eq.
�8�. It is easy to show that in the homogeneous case the
superfluid fraction defined in Eqs. �3� equals the right-hand
side of Eq. �10�. That is, the superfluid and condensate frac-
tions coincide and can be equivalently employed for charac-
terizing the phase diagram of the system. In the general case
a perturbative approach, carried out in Appendix C, shows
that the superfluid fraction is

fs =
1

2N
�
i,j

Aij�i
0� j

0�Bij − �i + � j�2, �11�

where the real and positive � j
0 are the mean-field order pa-

rameters for �=0, and the real phase factors � j depend on
the � j

0 according to Eq. �C7�. At the first perturbative order in
�, the mean-field order parameter are

� j = � j
0 exp�i�� j� , �12�

while the flux defined in Eq. �4� becomes

Jij = 2�t�i
0� j

0Aij�Bij − �i + � j� . �13�

Clearly, the superfluid fraction in Eq. �11� vanishes only if
each of the terms in the sum vanishes, i.e., if all of the fluxes
in Eq. �13� are zero. Expectedly, this happens in the MI
phase, where � j

0=0 at every site. The same can happen under
more general conditions. Indeed, it is sufficient that �i−� j
=Bi,j whenever �i

0� j
0�0. This is precisely what happens in a

BG phase, where fs=0 despite the system is compressible.
It is interesting to note that on 1D systems, owing to the

conservation of flux, the evaluations of Eqs. �13� and �11�
does not require the determination of the phases � j via Eq.
�C7�. Indeed, as illustrated in Appendix C, one gets

J j j+1 = − J j+1j = J = 2t���
�

1

��
0��+1

0 �−1

�14�

and

fs =
J

2�tN
. �15�

It is clear from Eq. �14� that J=0 and fs=0 as soon as one of
the local mean-field parameters vanishes. This explicitly
shows that the partially compressible phase is insulating, and
hence Bose glass, in the 1D system, as already mentioned
�23,26�.
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IV. PHASE DIAGRAM

As discussed in Ref. �23�, the zero-temperature phase dia-
gram of the system with binary disorder can be easily in-
ferred from that of a homogeneous system, at least as far as
compressibility is concerned. Indeed, independent of the im-
purity density Nimp /M, in the thermodynamic limit M→	 a
finite fraction of the disordered system consists of arbitrarily
large regions of uniform local potential �Lifschitz rare re-
gions, see Refs. �23,26��. The bulk of these regions will be-
have as a homogeneous lattice, undergoing a transition at the
analytically known critical value �1�

t

U
=

1

2d
B�� − v

U
�, B�x� =

�x − �x����x� − x�
x + 1

, �16�

where �x� denotes the largest integer smaller than x, �x�
= �x�+1, d is the lattice dimension, and v is the local potential
within the homogeneous regions, which can attain the values
0 and �. It is clear that the system is fully compressible or
fully incompressible only if all of the above regions exhibit
the relevant property. This means that the region of the phase
diagram

t

U
� B1��

U
,
�

U
� =

1

2d
maxB�� − �

U
�,B��

U
�� �17�

is fully compressible, while the incompressible lobes corre-
spond to the region

t

U
� B2��

U
,
�

U
� =

1

2d
minB�� − �

U
�,B��

U
�� . �18�

Figure 1 shows the phase diagram of the system for �
=0.5U. The fully compressible and fully incompressible re-
gions correspond to white and dark gray shading. As in the
homogeneous case, the fully incompressible lobes corre-
spond to plateaus of the system filling. Interestingly, the bi-
nary disorder causes the appearance of non-integer critical
fillings of the form �� /U�− p0, where p0 is the impurity den-
sity �23,25,26�. The incompressible MI phases will be dis-
cussed in detail in Sec. IV A. The light gray region of Fig. 1,
enclosed between the boundaries B1 and B2, is of course
compressible, yet it contains arbitrarily large incompressible
regions. Therefore it is referred to as partially compressible
�23�.

This apparently simple scenario requires some clarifica-
tions when the possible superfluidity of the system is con-
cerned. As it can be understood from Eq. �13�, the system
can sustain a superfluid flow only along a path where the
mean field parameters � j are not vanishing. Hence, as ex-
pected, the system is not superfluid in the incompressible
regions of the phase diagram. Conversely, in the fully com-
pressible region the mean-field parameters are nonzero al-
most everywhere, and a finite superfluid fraction is expected.
The most interesting regions are the partially compressible
ones, which can behave as BG phases, as will be discussed in
Secs. IV B and IV C.

Before getting into details, it is interesting to compare the
above-sketched incompressible domains with those obtained
for different choices of the disordered potentials. As is well
known �1�, in the presence of random potentials uniformly

distributed in �−� ,�� only integer-filling Mott-lobes appear,
as in the homogeneous case. One of the most evident differ-
ences with respect to this case is that the bases of such lobes
are not contiguous any more, being separated by Bose-glass
regions of width 2� centered at the discrete values of the
chemical potential �=kU, with k�N. We note that this situ-
ation is recovered by a straightforward generalization of the
arguments illustrated in Appendix B. As discussed in Refs.
�9,18�, incompressible phases at noninteger filling—referred
to as “incommensurate charge-density-wave” or “incommen-
surate band insulator” phases—appear also in the case of
quasiperiodic random potentials. One of the main differences
with respect to the present case is that the density plateaus
related to the above phases disappear in the limit of vanish-
ing hopping amplitude, reminiscent of what happens for su-
perlattice potentials �43�. Also, the quasiperiodic nature of
the local potentials rules out the Lifshitz regions which pro-
vide a profitable resource in the determination of the phase
boundaries in the present case and in its generalizations
�23,26�. Actually, the study of incommensurate incompress-
ible phases in quasiperiodic random lattices appears to be a
rather challenging task. For instance, the relation between
the critical fillings and the incommensurability parameter of
the quasiperiodic potential is well understood only in the
hardcore limit, while the situation is considerably less clear
in the case of softcore bosons �9,18,20�. In fact, the above-
discussed phases would elude the site-decoupling mean-field
approach employed here, and could be possibly captured by
more refined mean-field schemes such as those described in

FIG. 1. Expected phase diagram for a d-dimensional lattice. The
solid and dashed black curves are the �mean-field� boundaries in-
volved in Eq. �16�. These delimit three phases, as far as compress-
ibility is concerned. The uncompressible lobes �dark gray�, the par-
tially compressible regions �light gray�, and the fully compressible
region �white�. The uncompressible regions are labeled by the rel-
evant filling. The partially compressible regions are labeled by the
local potential of the favorable sublattice �see text for more details�.
The data points have been obtained as described in Sec. IV A for a
very large 1D lattice �M =105� and two impurity densities p0=0.2
�white circles� and p0=0.6 �black circles�. Note that both data sets
agree very well with the expected density-independent analytic re-
sult, �18�.
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Ref. �43�. In the following subsections we revert to binary-
distributed disorder, discussing the features of the phase dia-
gram in some detail.

A. Incompressible phases

The boundaries of the incompressible Mott lobes have
been derived in Ref. �25� based on a single-site mean-field
effective theory. Reference �23� reports more quantitative re-
sults ensuing from strong-coupling perturbative expansions,
which are further supported by density matrix renormaliza-
tion group simulations. Reference �26� also provides results
based on strong-coupling perturbative expansions, as well as
on exact diagonalization of small 1D systems. Here we dis-
cuss site-dependent mean-field results and show that, unlike
effective single-site mean-field theories, they do not depend
on the impurity density p0, as is expected.

We first of all observe that in the so-called “atomic limit”
t /U→0 the ground state of Hamiltonian �1� is a product of
on-site Fock states. That is, Eq. �5� applies exactly with cj�
=� j�j

, where � j =max�0, ���−v j� /U�� and the chemical po-
tential � is determined by the constraint on the total number
N=� j� j. Recalling that the local potential v j is � at Nimp
= p0M randomly placed lattice sites and 0 at the remaining
M −Nimp sites, it is easy to conclude that the total number of
bosons is zero for −	�� /U�0, and subsequently grows
stepwise with increasing chemical potential. The staircase
function is easily determined if 0�� /U�1. In this case the
rises of the steps occur at �k�x�=kU+x, with k=0,1 , . . . ,	
and x=0, �. The height of the steps is N=M�k+1�−Nimp for
�k�0�����k��� and N=M�k+1� for �k�������k+1�0�.
In the first case the wave function �5� is such that �� j�= �k� at
the Nimp sites with v j =�, and �� j�= �k+1� at the remaining
sites, where �k�= �aj

†�k�
� /	k! is the local k-th Fock state. In
the second case �� j�= �k+1� at every lattice site.

It is straightforward to check that these states diagonalize
the mean-field Hamiltonian �6� subject to the self-
consistency constraint �8� also for any t�0, although they do
not always represent the mean-field ground-state of the sys-
tem. As it is illustrated in Sec. B, this is true only within the
regions of the � /U− t /U phase plane described by 0� t /U
� ��max�−1, where �max is the maximal eigenvalue of the ma-
trix

� = DA, Dm,m� = �m,m�B
−1�� − vm

U
� , �19�

A is the adjacency matrix of the lattice, and the function B
appearing in the diagonal matrix D is defined in Eq. �16�.
The numerical diagonalization of � at different values of �
shows that the above discussed plateaus extend over lobelike
regions with alternatively noninteger and integer fillings.

Since in both cases � j =0 we classify these phases as in-
compressible Mott insulators. As we have discussed above,
the superfluid fraction expectedly vanishes. However,
integer- and fractional-filling insulating phases are distin-
guished by the correlation with the underlying local poten-
tial. The former are homogeneous despite the presence of
such a potential. The latter are clearly characterized by a
disorder directly related to that in the location of the impu-

rities described by the local potential v j. We observe that
these two incompressible phase are expected to exhibit dif-
ferent excitation spectra, which are relevant experimental
quantities �5�. More to the point, the excitation spectrum of
the integer-filling Mott phases will be characterized by three
peaks at U−�, U, and U+�. As to the noninteger-filling
lobes, the peaks are expected at �, U and, for fillings larger
than 1, at 2U−�.

The data points in Fig. 1 have been obtained by evaluat-
ing the maximal eigenvalue of the matrix � as a function of
the chemical potential for a 1D lattice comprising M =105

sites. Black and white circles correspond to different impu-
rity densities Nimp=0.2M and Nimp=0.6M. Both data sets
show a very good agreement with the analytic result in Eq.
�18� and, as expected �23,26�, exhibit no dependence on the
impurity density p0=Nimp /M. As briefly recalled in Appen-
dix B, the same result can be equivalently obtained by study-
ing the matrix �=	DA	D which, unlike �, is symmetric,
�=�t.

We emphasize that mean-field results based on effective
single-site results can be recovered by averaging the above
matrices over disorder. We first of all observe that the
disorder-averaged version of � results in the critical bound-
aries

t

U
=

1

2d
p0B−1�� − �

U
� + �1 − p0�B−1��

U
��−1

, �20�

i.e., precisely the same result obtained by the so-called
“simple man’s” mean-field theory of Ref. �25�. Note that Eq.
�20� is indeed a simplified result, in that it depends on the
impurity density p0, contrary to expectations �23,26�. We
also observe that equivalent simplified approaches have been
adopted in earlier papers �12,19�, albeit with a different dis-
order distribution, and date back to the seminal work by
Fisher et al. �1�. A perhaps more structured effective single-
site theory is obtained from the disorder averaged version of
the matrix � matrix defined above. Indeed the boundary of
the � j =0 phase ensuing from such matrix in the case of
uniformly distributed disorder p�v j�=��v j +� /2���� /2
−v j� is very similar to that provided by the stochastic mean-
field theory described in Ref. �16�. However, it is quite clear
that in the case of the binary distribution in Eq. �2� such
boundary again depends on the impurity density p0, just like
in Eq. �20�.

In the above general discussion we assume 0���U. For
��U the arrangement of the first few lobes changes
straightforwardly. For instance, for U���2U the unitary-
filling lobe disappears, the basis of the lobe at filling 1− p0
extends in the whole interval 0���U and the interval U
���� provides the basis for a lobe with filling 2−2p0.
Note that if p0=1 /2 this last lobe has unitary filling, although
this results from averaging sites at filling 0 and 2. Hence the
unitary-filling incompressible phase changes from homoge-
neous to disordered as � becomes larger than U. This was
observed in an early work, where, however, the disordered,
incompressible insulating phase is identified as a Bose-glass
phase �24�. Clearly, the phase diagram of the homogeneous
lattice is recovered for �=0, while the case ��0 can be
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mapped on the repulsive case with the suitable number of
impurities �→ ���, Nimp→M −Nimp.

B. Partially compressible phase, Bose glass

In order to discuss the situation in the partially compress-
ible regions it proves convenient to introduce the notions of
favorable and unfavorable sublattices for bosons added to the
system, as determined by the competition by the local boson-
boson interaction strength U and the local impurity potential
��U. Clearly, in the absence of bosons the impurity-free
sublattice v j =0 is energetically favorable. If some bosons are
introduced in the system, they will prefer the impurity-free
sites, as far as the local energy is concerned. However, at
some fillings, the presence of bosons in the impurity-free
sublattice could make the impurity sites more convenient
energetically. Thus the favorable sublattice coincides with
the impurity-free sublattice or with the impurity sublattice
depending on the filling or, equivalently, on the chemical
potential. Typically, the impurity sites are preferred in the
partially uncompressible regions to the left of the integer
filling uncompressible lobes �marked by � in Fig. 1�,
whereas the impurity-free sites are preferred in the remaining
regions �marked by 0 in Fig. 1�. We call “unfavorable” the
sites of the lattice not belonging to the favorable sublattice.

The partial compressibility of the regions we are consid-
ering arises from the presence of arbitrarily large unfavorable
regions behaving as homogeneous systems. Hence there are
arbitrarily large sublattices hosting an uncompressible phase
characterized by � j =0. However, owing to the hopping term,
not all of the unfavorable sites are characterized by vanishing
order parameter. This allows for the formation of a cluster of
� j �0 sites spanning the entire lattice, and therefore capable
of supporting a superfluid flow, even if the favorable sites do
not percolate throughout the lattice. That is to say, the super-
fluidity is not related to the percolation of the favorable sub-
lattice, but rather to the percolation of the sites where � j
�0. The latter is made possible by the quantum tunneling
effect, which allows for the bridging of possibly discon-
nected clusters of favorable sites. We have studied this phe-
nomenon at �=�=0.5, i.e., where the partially uncompress-
ible regions of the phase diagram extend down to vanishing
hopping amplitude. As it is shown in Fig. 2, both in 1D and
2D we observe a behavior of the form fs� �t /U�L, where L is
the �integer� percolation length, i.e., the length of the longest
“bridge” among those necessary to turn a disjoint impurity
distribution into the shortest cluster spanning the whole lat-
tice �see Fig. 3�. Note that the same p0 can give a different L
due to finite-size fluctuations. This is especially clear on 1D
system, where one expects L=	 in the thermodynamic limit,
independent of p0. However, once an L is determined by the
actual finite-size realization of the disordered system, it dic-
tates the behavior of fs as discussed above and demonstrated
in Fig. 2.

Now on one-dimensional lattices the percolation length
corresponds to the size of the largest homogeneous cluster in
the unfavorable lattice, which becomes arbitrarily large in
the thermodynamic limit, independent of the impurity den-
sity. Hence in 1D the partially compressible phase is ex-

pected to be insulating for any finite impurity density as
observed in Refs. �23,26�.

Conversely, on higher dimensional lattices the superfluid
fraction is finite at any impurity density, although it can be-
come extremely small. This is due to the fact that, unlike the
one-dimensional case, L never diverges in the thermody-
namic limit. This can be understood by observing that quan-
tum tunneling introduces a long-range connectivity between
the possibly disjoint clusters forming the favorable sublat-
tice, which effectively increases the density of favorable
sites. It is then clear that a sufficiently large hopping ampli-
tude can bring the effective density of favorable sites above
the �finite� percolation threshold, so that an effective span-
ning cluster is formed �44�. This concept is illustrated by the
light gray regions in Fig. 3.
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FIG. 2. �Color online� Power law decay of the superfluid frac-
tion as a function of t /U. The left panel refers to a 1D lattice
comprising M =400 sites. The different data sets have been obtained
by varying the impurity density between 0.4 and 0.7. The right
panel corresponds to a 2D system, also comprising M =400 sites,
where the impurity density varies between 0.005 and 0.1. In every
case the data sets are well described by a straight line having an
integer slope which is found to coincide with the percolation length
L �see Fig. 3�. In the 1D case �left� we observe lengths from 3 to 14.
In the 2D case L=3,4 ,5 ,6.

FIG. 3. A sketch illustrating the notion of percolation length. A
30 by 30 square lattice contains 14 favorable sites, signalled by the
black squares. Due to their very low density they do not form a
cluster spanning the lattice. The dashed line signals the shortest path
allowing to “wade” through the lattice by stepping on favorable
sites. The longest jump has to be taken between the first and the
second favorable site from the left. The gray shading demonstrates
the effective increase in the density of favorable sites caused by the
long-range connectivity introduced by quantum tunneling. The
range of such connectivity is 4 �left panel� or 5 �right panel� lattice
constants. The shading in the right-most panel shows that the long-
est jump in the dashed path measures ten lattice constants. Hence
L=10 for this favorable sublattice.
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C. Finite-size effects

The above discussion is valid in the thermodynamic limit.
As we illustrate in the following, strong deviations from the
expected behavior can be observed on finite-size lattices,
even for fairly large sizes. In particular, on 1D systems a
finite superfluid fraction can be observed in the partially
compressible regions of the phase diagram. Conversely, on
higher dimensional system, the expectedly finite superfluid
fraction in the same regions may become so small that the
phase can be considered insulating for any practical purpose.
This agrees with the intuitive notion of a glass as an ex-
tremely viscous fluid.

These observations are applicable to the experimental re-
alizations of the disordered Bose-Hubbard Hamiltonian
�1�—whose size is necessarily finite—provided that the ef-
fects of the further trapping potential possibly involved in the
experimental setup are negligible �45�. In order to demon-
strate the relevance of these effects we have carried out nu-
merical simulations for 1D and 2D lattices comprising M
=961 sites. In both cases we have adopted periodic boundary
conditions, and a constant velocity field parallel to a coordi-
nate direction. The resulting phase diagrams, where we took
into account that vanishingly small superfluid fractions can
be considered zero, are shown in Figs. 4 and 5. The first
thing to be noticed is that finite-size effects do not dramati-
cally affect the boundaries of the fully incompressible Mott
lobes, especially in one dimension. A slight dependence on
the impurity density p0 is observed, at variance with the ther-
modynamic limit result. In general, as is explained in Appen-
dix B, the finite size lobes “enclose” those in the thermody-
namic limit. Significant finite size effects are instead evident
in the partially compressible phase. As we mention above, in
the thermodynamic limit one expects this phase to be insu-
lating in 1D, and superfluid for d�1. Actually, as it is clear
from Figs. 4 and 5, these are the predominant characters of
the partially compressible phases also on finite-size lattices.
However, on 1D lattices significant portions of the partially
compressible phase are superfluid. Conversely, on 2D lattices

small partially compressible regions surrounding the Mott
lobes exhibit exponentially small superfluid fractions, so that
they can be considered virtually insulating. These deviations
of the partially compressible phase from the expected behav-
ior in the thermodynamic limit are strongly dependent on the
impurity density p0. In particular, for small impurity densi-
ties the partially compressible regions marked � in Fig. 1
tend to be more insulating than those marked 0. The con-
verse occurs at large impurity densities. We emphasize that
the favorable sublattice does not percolate at either of the
chosen impurity densities. Hence, the fact that fs�0 in the
partially compressible phases must be attributed to quantum
tunneling effects.

V. SUMMARY

In this paper we address the phase diagram of the Bose-
Hubbard model describing ultracold bosonic atoms loaded in
an optical lattice containing static random local impurities.
These are fermionic atoms whose hopping amplitude has
been quenched to extremely low values. We employ a site-
dependent Gutzwiller scheme, analyzing both 1D and 2D
lattices. On the one hand we show that this approach con-
firms that the phase diagram of the system does not depend
on the density of impurities and can be easily derived from
the phase boundary of the homogeneous case, at least with
respect to the compressibility of the system. We show that
the boundaries of the insulating fully incompressible region
of the phase diagram are strictly related to the spectral radius
of two �block� tridiagonal matrices. We discuss the expected
modifications in the structure of the experimental excitation
spectrum of the system occurring due to the presence of the
noninteger-filling incompressible lobes appearing in the
phase diagram in the presence of binary disorder. Also we
provide exact formulas for the superfluid fraction and the
fluxes induced by an infinitesimal velocity field, showing
that these quantities ultimately depend on the mean-field or-
der parameters alone. These formulas allow us to investigate
the superfluid nature of the partially compressible regions
appearing in the phase diagram of the system owing to the
binary disorder. We discuss finite-size effects relevant to ex-
perimental realizations of the system under investigation,
showing that they strongly depend on the impurity density
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FIG. 4. �Color online� Phase diagram as determined from a nu-
merical simulation on a 1D lattice comprising M =961 sites and
containing Nimp=200 �left� and Nimp=600 �right� randomly located
impurities. In both cases �=0.5U, as in Fig. 1. The density plot
represents the superfluid fraction as specified by the color bar. The
uniform dark grey areas enclose the region where fs is smaller than
1% of its largest value in the entire examined area. The uniform
light grey areas are the fully incompressible Mott lobes determined
as described in Sec. IV A. The solid and dashed black curves are the
boundaries involved in Eq. �16�. They are the same as in Fig. 1.
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FIG. 5. �Color online� Phase diagram as determined from a nu-
merical simulation on a 2D lattice comprising M =31�31=961
sites and containing Nimp=200 �left� and Nimp=600 �right� ran-
domly located impurities. In both cases �=0.5U, as in Figs. 1 and
4.
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and mainly affect the boundaries of the partially compress-
ible regions. We show that on one-dimensional system quan-
tum percolation causes the appearance of superfluid domains
within these regions. On the other hand, on higher dimen-
sional lattice the in-principle superfluid partially compress-
ible regions contain domains that can be considered virtually
insulating, due to the extreme smallness of the superfluid
fraction.

Last but not least, in the appendixes we provide the ex-
plicit derivation of the analytic results employed in the paper,
whose validity is not limited to the case of binary distributed
disorder. In particular, we discuss the relation the site-
dependent Gutzwiller approach and effective single site
mean-field theories.
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APPENDIX A: NORMAL MODES OF THE GUTZWILLER
DYNAMICS

As we mention in Sec. III, a variational principle analo-
gous to that described in Ref. �39� results in the set of dy-
namical equations for the expansion coefficients of the
Gutzwiller state �5� �10,40�:

iċj� =
U

2
��� − 1�cj� + v j�cj� − t�

j
*	� + 1cj�+1 +  j

	�cj�−1� ,

�A1�

 j = �
h

Ajh�h, �h = �
�=0

	

	� + 1c
j�
* cj�+1. �A2�

It is straightforward to check that the norm of each on-site
Gutzwiller factor, and the �average� total number of bosons
in the system

�� j�� j� = �
�=0

	

�cj��2, N = �
j

�
�=0

	

��cj��2 �A3�

are conserved by the dynamics.
The fixed-point condition ċj�=0 for Eq. �A1� results in the

set of equations

0 = − � j +
U

2
��� − 1� + �v j − ����cj�

− t�
j
*	� + 1cj�+1 +  j

	�cj�−1� , �A4�

where � and �� j� are M +1 Lagrange multipliers ensuring
that the total number of bosons and the norms of the

Gutzwiller factors �� j� equal the desired values.
But Eq. �A4� is nothing but the eigenvalue equation for

the on-site mean-field Hamiltonian �7� projected onto the
generic Fock state at site j, ���= �aj

†���
� /	�!,

���H j − � j�� j� = 0, �A5�

where we recall that ah�
�=0 for all h’s. Note indeed that
Eq. �A2�, which must be considered part of Eq. �A1�, is
exactly equivalent to the self-consistency constraint specified
by Eq. �8�. By comparing Eqs. �A4� and �A1� we see that the
solutions of the mean-field equations are normal modes of
the Gutzwiller dynamics such that cj��t�=e−it��j+���cj��0�.
The fixed-point nature of these solutions becomes clear when
one considers the relevant expectation values on Hermitian
operators, corresponding to observable quantities. It is easy
to verify that number-conserving Hermitian operators, such
as, for instance, ak

†ah+ah
†ak, produce time-independent ex-

pectation values, whereas non-number-conserving Hermitian
operators, such as ah

†+ah, produce expectation values oscil-
lating around 0. Note that the latter should be identically
zero, since the original Hamiltonian �1�—unlike its mean-
field counterpart—commutes with the total number of
bosons. This result is recovered after time averaging the ex-
pectation values.

Note finally that E= ���H���= ���H+�N���, and that H
can be obtained from H−�N by assuming that aj

†ak=aj
†�k

+�
j
*ak−�

j
*�k for j�k, where � j = ���aj���= �� j�aj�� j� �37�.

As is shown in Refs. �39,46� the time—dependent variational
principle approach based on Glauber’s and SU�M� coherent
states instead of those in Eq. �5� gives the discretized Gross-
Pitaevskii equations for the Bose-Hubbard model �1�. Inter-
estingly, the Gutzwiller mean-field states in Eq. in Eq. �5�
reduce to Glauber’s coherent states for U→0, as it is clear
from the form of the mean-field Hamiltonian �6� �40�.

APPENDIX B: MOTT PHASE BOUNDARY

In this appendix we show that the critical boundary of the
�mean-field� Mott phase, �� j =0 for every j� is the inverse of
the maximal eigenvalue of the matrix � defined in Eq. �19�.
Since � j =0 everywhere, we also have  j =0 at every site,
according to Eq. �8�. Hence the mean-field Hamiltonian �6�
is the sum of the on-site Hamiltonians in Eq. �7� and the
ground state �5� is bound to be a product of local Fock states

��� = ��� =
�a†��

�!
�0�, � = �� − v

U
� . �B1�

The relevant on-site energy is

�� =
U

2
��� − 1� + �v − ��� . �B2�

Hence ���aj���=0 at every site, and the self-consistency
constraint �8� is satisfied. Note that Eq. �8� defines a map,
since any set of �possibly nonzero� � j determines a set of
local ground states �� j� via Hamiltonian �6�, which in turn
determines a new set of � j. This is by definition a fixed point
of the map when it coincides with the original set, which is
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exactly what happens for the configuration under examina-
tion, � j =0, for any choice of the Hamiltonian parameters.
However, the stability of such a “trivial fixed point” does
depend on the Hamiltonian parameters. Specifically, the
fixed point is stable only if the maximal eigenvalue of the
linearized version of the map is smaller than 1. In order to
linearize the map we assume that �� j��1, which yields � j�
�1 and treat the �mean-field� kinetic term in Hamiltonian �6�
as perturbative. Dropping for a while the site label we get, up
to the first perturbative order,

��� = ���0�� + ���1�� , �B3�

���1�� = − t �
����

����a† + *a���
�� − ���

���� , �B4�

��� = ��� −
t	� + 1

�� − ��+1
�� + 1� −

t*	�

�� − ��−1
�� − 1� , �B5�

where ���, �, and �� are defined in Eqs. �B1� and �B2�. Hence

���a��� = − t� � + 1

�� − ��+1
+

�

�� − ��−1
�

= − 
t�U + � − v�

��U + v − ����U − U + v − ��
. �B6�

Restoring the site label, recalling the definition of m �Eq.
�8��, � �Eq. �B1��, and B �Eq. �16�� one gets

�am� =
t

U
B−1�� − vm

U
��

m�

Amm��am�� ,

=
t

U
�
m�

�mm��am�� , �B7�

where � is the same as in Eq. �19�. Recalling the criteria for
the stability of linear maps, the fixed point �am�=0 �equiva-
lent to m=0� is stable whenever

t

U
�

1

��max�
, �B8�

where �max is the eigenvalue of � with the largest magni-
tude.

We note that despite �t��, the spectrum of this matrix is
real. This can be explained by observing that the eigenvalue
problem �x=�x is equivalent to �y=�y, where yj =Dj,j

−1xj

and �=	DA	D=�t. Recalling that the maximal eigenvalue
of a matrix coincides with its two-norm one can derive a
lower bound for the critical hopping to interaction ratio. In-
deed

1

��max�
=

1

���2
�

1

�D�2�A�2
= 2d min

�vj�
B−1�� − v j

U
��−1

.

�B9�

Note that in the case of binary distributed disorder Eq. �B9�
coincides with Eq. �18�. Hence, the finite-size lobes always
enclose their thermodynamic counterparts.

It is interesting to observe that the above approach natu-
rally suggests two disorder-averaged effective theories. In-
deed, one could trade the matrix elements of � or � with
their averages over disorder. This would give

t

U
�

1

2d
� dvp�v�B−1�� − v

U
��−1

�B10�

for � and

t

U
�

1

2d
� dvp�v�B−1/2�� − v

U
��−2

�B11�

for �.
As mentioned in Ref. �13�, Eq. �B10� gives the zero-

temperature �analytical� phase diagram derived in Refs.
�1,12,19� in the case of v uniformly distributed in �−� ,��.
Interestingly, Eq. �B11� gives a different result, very similar
to that obtained by the stochastic mean-field theory recently
described in Ref. �16�.

The integrations in Eqs. �B10� and �B11� can be easily
carried out analytically in the case of a binary distributed
disorder Eq. �2�. In particular, it is quite straightforward to
show that Eq. �B10� is equivalent to Eq. �20�, which does not
exhibit the expected independence on the impurity density
p0=Nimp /M in the thermodynamic limit, as discussed in Sec.
IV. The same problem affects the boundary derived from Eq.
�B11�. These results seem to suggest that—at least in the
case of binary disorder—effective single-site mean-field
theories are not able to capture the thermodynamic limit.

APPENDIX C: SUPERFLUID FRACTION AND
MEAN-FIELD APPROACH

In this section we derive the analytic expression for the
phases �i introduced in Sec. III for the mean field study of
the currents present in the system. Also, we obtain the ana-
lytic mean-field expression �11� for the superfluid fraction
�3�.

We first of all observe that expanding the �-dependent
terms in Eq. �1� one finds that even and odd contributions are
purely real and imaginary, respectively �34�. As a result, this
is true also of the ground-state perturbative expansion, while
only even terms contribute to the ground-state energy.

In the Gutzwiller approximation, this implies that each
factor of the perturbative expansion in Eq. �5� has the same
alternating form: the even contributions are real and the odd
contributions are imaginary. Hence, the same property holds
also for the mean-field parameters �m defined in Eq. �8�.

Therefore, at first order in � we can write

� j = � j
0 exp�i�� j� , �C1�

where � j
0= �� j

0�aj�� j
0� is the local mean-field parameter for

�=0, and � j �R. Plugging the last result in Hamiltonian �7�
in and keeping only first-order contributions one gets

H j =
U

2
�nj − 1�nj + �v j − ��nj − taj

†rj exp�i� j� + c.c.,

�C2�

where we denote
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� j = �

�
i

Aji�i
0�Bji + �i�

�
i

Aji�i
0

, rj = �
i

Aji�i
0. �C3�

Let us define ãj =aj exp�−i� j�. The new creation and destruc-
tions operators ãj

† and ãj satisfy the same algebra of aj
† and aj

and moreover nj = ãj
†ãj. By introducing these new operators

the eigenvalue and the self-consistency equations become

Ej�� j� = U

2
�nj − 1�nj + �v j − ��nj − t�ãj

+ + ãi��
i

Aji� j
0��� j� ,

�C4�

exp�i� j��� j�ãj�� j� = � j
0 exp�i�� j� . �C5�

The solutions to Eqs. �C4� and �C5� can be directly obtained
from the solutions of order 0 in �. In particular if �� j

0�
=�ncj,n�aj

+�n�0� is the on site wave function for �=0, to the
first order in � the on site wave functions are

��̃ j
0� = �

n

cj,n�ãj
+�n�0� = �

n

cj,ne−in�j�aj
+�n�0� �C6�

with � j =�� j. Moreover, as expected, there are no first-order
contributions to the energy. Equation � j =�� j entails that

�
i
�� ji�

k

Ajk�k
0 − Aji�i

0��i = �
i

Bji�i
0. �C7�

Equations �C7� provide an expression for the phases �i,
which can be plugged into Eq. �13�, to obtain the currents to
the first order in �.

Let us consider the second order perturbation in �. The
contribution to the parameters � j can be written as � j = �� j

0

+�2� j�exp�i�� j�. Within such an approximation the on site
Hamiltonian is

H j = 1/2�nj − 1�nj + �v j − ��nj − taj
+rj� exp�i�� j� + c.c.

�C8�

with

rj� = �
i

Aji�i
0 + �2��

i

Aji�i −
1

2�
i

Aji�i
0�Bji + �i − � j�2� .

�C9�

Equation �C9� has been obtained by expanding in � and ex-
ploiting expression �C7�. Therefore we have to solve the self
consistency equations

H j
0 + �2V j

0�� j� = Ej�� j� �C10�

and

�� j�ãj�� j� = �� j
0 + �2� j� , �C11�

where

H j
0 = 1/2�nj − 1�nj + �v j − ��nj − t�ãj

+ + ãj��
i

Aji� j
0,

V j = − t�ãj
+ + ãj���

i

Aji�i −
1

2�
i

Aji�i
0�Bji + �i − � j�2� .

�C12�

Equations �C10� and �C11� are solved by a first order pertu-

bation theory in �2. In particular denoting �� j�= ��̃ j
0�+�2��̃ j

2�
and Ej =Ej

0+�2Ej
2 �with ��̃ j

0� given by Eq. �C6� and Ei
0 eigen-

value of the solution for �=0�, we have

Ej
2 = ��̃ j

0�Vj��̃ j
0� , �C13�

��̃ j
2� = − �HJ

0 − Ej
0�−1Vj��̃ j

0� , �C14�

and

��̃ j
0�ãj + ãj

+��̃ j
2� = � j . �C15�

inserting Eq. �C14� into �C15� we obtain

�
i

�AjiXj − �ij��i =
Xj

2 �
i

Aji�i
0�Bji + �i − � j�2 �C16�

with Xj = t��̃ j
0��ãj + ãj

+��HJ
0−Ej

0�−1�ãj + ãj
+���̃ j

0�. The quantities
� j are obtained from Eq. �C16� and Ej

2 is

Ej
2 = − 2t� j

0��
i

Aji�i −
1

2�
i

Aji�i
0�Bji + �i − � j�2� .

�C17�

We recall that the mean field Hamiltonian �6� is composed by
the sum of the on site terms Hi and of a diagonal term, which
has been so far neglected, since it does not provide any con-
tribution to the wave functions, and hence to the relevant
expectation values. However, such term is not negligible in
the evaluation of the system energy. In particular, it provides
a contribution of � jEj

d with Ej
d=�

j
*t /2�iAji�i exp�i�Bji�

+c.c. For small � we get Ej
d=Ej

d0+�2Ej
d2 with

Ej
d2 = t� j

0��
i

Aij�i −
1

2�
i

Aji�i
0�Bji + �i − � j�2� + t� j�

i

Aji�i
0

�C18�

from definition �3� it is clear that

fs =
1

tN
�

j

Ej
2 + Ej

d2 =

�
i,j

Aij�i
0� j

0�Bji + �i − � j�2

2N
.

�C19�

It is interesting to observe that on 1D systems there is no
need to evaluate the phases � j, the superfluid fraction being
determined by the � j

0 alone. This can be proved by observing
that on a 1D lattice the current in Eq. �13� is bound to have
the same value across any couple of neighboring sites j and
j+1. Recalling that Aij =�i,j+1+�i,j−1 and Bij =�i,j+1−�i,j−1,
one gets J j,j+1=−J j+1,j =J=−2�t� j

0� j+1
0 �� j −� j+1−1�. This

yields
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�
j=1

M
1

� j
0� j+1

0 =
2Mt�

J
�C20�

and

� j − � j+1 − 1 = −
J

2�t� j
0� j+1

0 = −
M

� j
0� j+1

0 ��
�=1

M
1

��
0��+1

0 �−1

.

�C21�

Plugging this result into Eq. �C19� gives

fs =
M2

N
��

j=1

M
1

� j
0� j+1

0 �−1

=
J

2t�N/M
. �C22�

We conclude by observing that the very same derivation
of Eq. �C19� can be carried out in the case of discrete Gross-
Pitaevskii equations, which, as described in Appendix A, en-
sue from assuming that the states in Eq. �5� are Glauber’s or
SU�M� coherent states. The resulting equations have exactly
the same form as Eqs. �C7� and �C19�, where the mean-field
order parameter � j is substituted by the corresponding
coherent-state label zj.
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