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We report on the experimental observation of dynamic localization of a Bose-Einstein condensate in a
shaken optical lattice, both for sinusoidal and square-wave forcing. The formulation of this effect in terms of
a quasienergy band collapse, backed by the excellent agreement of the observed collapse points with the
theoretical predictions, suggests the feasibility of systematic quasienergy band engineering.
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I. INTRODUCTION

The seminal work by Dunlap and Kenkre �1� has led to
the recognition that an external uniform ac force can control
the spreading of the wave packet of a particle moving in a
spatially periodic potential. In particular, an initially local-
ized wave packet of a monochromatically driven particle on
a nearest-neighbor tight-binding lattice remains perpetually
localized for certain values of the driving amplitude �1�. This
phenomenon, termed “dynamic localization,” is a quantum
mechanical manifestation of the fact that a time-periodic
force sometimes can stabilize a system, as shown in classical
mechanics by the example of the driven, inverted pendulum
�2�. Dynamic localization is closely related to the coherent
destruction of tunneling experienced by a single particle in a
double-well potential under the influence of an ac force
�3–6�, and to the modification of atomic g factors in oscillat-
ing magnetic fields �7,8�. In view of possible applications to
electrons in terahertz-driven semiconductor superlattices, it
has been shown theoretically that dynamic localization sur-
vives in the presence of Coulomb interactions �9�. However,
experiments with such devices are difficult to perform, and
have to cope with a host of competing effects �10�. While
there exist clean visualizations of dynamic localization in
optical analogs of driven quantum systems, realized by
means of curved waveguide arrays for light �11,12�, the ob-
servation of dynamic localization of matter waves has long
remained a challenge.

The situation changed with the availability of ultracold
atoms in optical potentials. In 1998 Madison et al. obtained
evidence for band narrowing with cold sodium atoms in a
phase-modulated optical lattice, in good agreement with the-
oretical calculations going beyond both the tight-binding and
the single-band approximation �13�. More recently, the basic
mechanism responsible for dynamic localization, an effective
rescaling of the hopping matrix element induced by the ac
force, has been observed for single-particle tunneling in
strongly driven double-well potentials �14�. It had also been
pointed out that this mechanism remains effective even for
an interacting Bose-Einstein condensate, at least for suffi-
ciently high driving frequencies �15�. This has led to the

experimental demonstration of dynamic control of matter-
wave tunneling in an optical lattice �16�, and to the observa-
tion of photon-assisted tunneling of a condensate �17�. Since
the reduction of interwell tunneling increases the relative im-
portance of the particles’ repulsion, even the superfluid to
Mott-insulator transition of ultracold atoms in an optical lat-
tice can be induced by shaking the lattice in a time-periodic
manner, as has now been shown by Zenesini et al. �18�.

In the present paper we take up this line of investigation
and explore dynamic localization of a dilute Bose-Einstein
condensate in a time-periodically shifted optical lattice in
more detail. We proceed as follows: In Sec. II we cast the
concept of single-particle dynamic localization into a form
that lends itself in a particularly transparent manner to fur-
ther generalizations, relying on the idea of quasienergy bands
�19�. We then apply these general considerations in Sec. III
to optical cosine lattices, taking into account all couplings
that are omitted in the nearest-neighbor approximation. In
Sec. IV we report our experimental results, achieved with
condensates of 87Rb. Besides sinusoidal forcing, we also
consider the case of square-wave forcing, which is known to
produce exact single-particle dynamic localization for any
form of the energy dispersion �20,21�. The final section,
Sec. V, contains our conclusions.

II. THE PRINCIPLE UNDERLYING DYNAMIC
LOCALIZATION

We consider a time-dependent Hamiltonian

H�t� = H0 + H1�t� , �1�

where

H0 =
p2

2m
+ V�x� �2�

describes a single particle with mass m moving in a one-
dimensional periodic potential V�x�=V�x+d� with lattice
constant d, and
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H1�t� = − F�t�x �3�

introduces an external force F�t�, mediated by the position
operator x in a manner analogous to electromagnetic forces
on atoms within the dipole approximation. The energy eigen-
functions �n,k�x� of H0 are Bloch states with band index n
and wave number k,

�n,k�x� = eikxvn,k�x� , �4�

with functions vn,k�x�=vn,k�x+d� sharing the spatial lattice
period d. The solutions to the eigenvalue equation

H0�n,k�x� = En�k��n,k�x� �5�

provide the dispersion relations En�k� for the various energy
bands. It is of interest to observe that the external forcing
does not truly break translational symmetry: Introducing the
unitary transformation

U = exp�−
i

�
�

t0

t

d�F���x� , �6�

the transformed wave functions �̃�x , t�=U��x , t� are gov-
erned by the Hamiltonian

H̃�t� =
1

2m�p + �
t0

t

d�F����2

+ V�x� , �7�

which still remains invariant under spatial translations by d.
In the following, we assume band gaps so wide that, de-

spite the external force, the dynamics can be restricted to the
lowest band. Dropping the band index, we expand the Bloch
waves of that band with respect to the corresponding Wan-
nier states �22,23�,

�k�x� = �
�

w��x�eik�d, �8�

where w��x�=w0�x−�d� denotes a Wannier function centered
around the �th lattice site. We take the potential to be sym-
metric, V�x�=V�−x�, so that w0�x� can be chosen real and
symmetric �23�. Defining the time-dependent wave number

qk�t� = k +
1

�
�

t0

t

d�F��� , �9�

obeying �q̇k�t�=F�t� and containing a still unspecified lower
integration bound t0, the wave functions

�k�x,t� = �
�

w��x�eiqk�t��d exp�−
i

�
�

0

t

d�E„qk���…�
�10�

then are “weak” solutions to the time-dependent Schrödinger
equation with the full Hamiltonian �1�, in the following
sense: By construction, one has

i�
�

�t
�k�x,t� = E„qk�t�…�k�t� − F�t��

�
�dw��x�eiqk�t��d

�exp�−
i

�
�

0

t

d�E„qk���…� . �11�

If we stipulate that the lattice site labeled �=0 is situated at
x=0, implying

	0
x
0� =� dxx
w0�x�
2 = 0, �12�

then one has

	�
x
m� = ��d , if � = m

0, else
 , �13�

where 
�� is the Dirac ket corresponding to w��x�. Note that
this is an identity, which holds exactly even for shallow lat-
tices. Hence it follows that

	�
i�
�

�t
�k�x,t�� = 	�
E„qk�t�… − F�t�x
�k�x,t��

= 	�
H0 + H1�t�
�k�x,t�� �14�

for each �.
The above wave functions �10� can be regarded as Hous-

ton states �24�, also known as “accelerated Bloch states,” and
apply to any type of uniform forcing F�t�, provided the
single-band approximation remains viable. If we now require
that the forcing be periodic with period T and zero average,
so that F�t�=F�t+T� and

1

T
�

0

T

dtF�t� = 0, �15�

a further step can be made: In this case the transformed
Hamiltonian �7� is periodic in both space and time, thus giv-
ing rise to spatiotemporal Bloch waves

�̃k�x,t� = ṽk�x,t�exp�ikx − i��k�t/�� �16�

with quasimomenta �k, quasienergies ��k�, and time-
dependent Bloch functions obeying ṽ�x , t�= ṽ�x+d , t�
= ṽ�x , t+T�.

When deriving these states within the single-band ap-
proximation from the Houston states �10�, a slight subtlety
comes into play: The lower integration bound t0 in the defi-
nition �9� of qk�t� effectuates a shift of the wave number k. In
order to avoid this shift, and thus to make sure that the wave
number k labeling a spatiotemporal Bloch wave is the same
as the one which labels the Bloch state continuously con-
nected to it when the driving force vanishes, this lower
bound t0 has to be chosen such that the integrated force also
has zero average, requiring

1

T
�

0

T

dt�
t0

t

d�F��� = 0. �17�

With this specification of qk�t�, we set
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��k� =
1

T
�

0

T

dtE„qk�t�… , �18�

and write the Houston states �10� in the form

�k�x,t� = uk�x,t�exp�−
i

�
��k�t� . �19�

This formal-looking manipulation is of key significance: Af-
ter the average phase growth has been factored out, the re-
maining functions uk�x , t� acquire the temporal periodicity of
the force,

uk�x,t� = �
�

w��x�eiqk�t��dexp�−
i

�
�

0

t

d��E„qk���… − ��k���
= uk�x,t + T� . �20�

Thus these wave functions �19� are Floquet states �8,19�,
from which the spatiotemporal Bloch waves �16� are ob-
tained by applying the unitary transformation �6�. At times
t= t0+sT �with integer s� they coincide with the Bloch
waves �8�, apart from a phase factor. Any single-band wave
packet ��x , t� can be expanded with respect to these basis
states,

��x,t� = � d

2�
�1/2�

−�/d

�/d

dka�k�uk�x,t�exp�−
i

�
��k�t� ,

�21�

with some density a�k� which is time-independent despite
the presence of the ac force. The T-periodic nature of the
functions uk�x , t� directly reflects the short-term response of
such a packet to the force F�t�, whereas the quasienergy
dispersion ��k� governs its long-time averaged evolution in
the same manner as the original energy dispersion E�k� gov-
erns its evolution when F�t�=0. For example, the average
velocity v̄k0

of a wave packet initially centered around some
wave number k0 is given, in the presence of the forcing, by

v̄k0
=

1

�
� ���k�

�k
�

k=k0

. �22�

Moreover, the representation �21� directly leads to a quite
general and intuitive condition for dynamic localization: Ex-
act dynamic localization obviously occurs when the quasien-
ergy band collapses, so that all quasienergies coincide,
��k�=�0 for all k, implying that the effective mass of a
driven Bloch particle becomes infinite. All Floquet states
comprising the wave packet �21� then acquire exactly the
same phase in the course of one driving period, since

��x,t� = exp�−
i

�
�0t�� d

2�
�1/2�

−�/d

�/d

dka�k�uk�x,t� , �23�

so that the packet can neither move �apart from its residual
T-periodic motion� nor spread, but simply reproduces itself
T-periodically, regardless of the form of the density a�k�.
When this condition of zero width of the quasienergy band
cannot be met exactly, but there still is significant band nar-

rowing, wave packet spreading can at least be reduced sub-
stantially by the external force �19�.

III. APPLICATION TO OPTICAL LATTICES

For a lattice with inversion symmetry, the original energy
dispersion takes the form

E�k� = E0 + �
�=1

�

2	0
H0
��cos��kd� , �24�

with coefficients given by matrix elements of H0 between
Wannier states located � sites apart from each other. In par-
ticular, for an optical cosine lattice of the form �25�

V�x� =
V0

2
cos�2kLx� , �25�

where kL is the wave number of the lattice-generating laser
radiation and the depth V0 is proportional to the intensity of
that radiation �25�, the Wannier states can easily be com-
puted numerically �26,27�. Table I lists the resulting coupling
coefficients 	0
H0
�� for the lowest band as functions of the
scaled lattice depth V0 /Er, with

Er =
�2kL

2

2m
�26�

denoting the single-photon recoil energy of an atom with
mass m. The relative error committed when adopting the
commonly used nearest-neighbor approximation, i.e., when
neglecting all 	0
H0
�� with �	2, is on the order of 10% for
an optical lattice with V0 /Er=3, and reduces to 1% only
when V0 /Er�10 �27�.

A. Sinusoidal forcing

We now consider purely sinusoidal forcing, as specified
by F�t�=F0 cos�
t+�� with some arbitrary phase �. In this
case, Eq. �9� together with the requirement �17� yields

TABLE I. Hopping matrix elements c�= 	0
H0
�� /Er for the
lowest band of an optical cosine lattice �25�, as functions of the
scaled lattice depth V0 /Er. Observe that the sign of c� alternates
with �.

V0 /Er c1 c2 c3 c4

2.0 −0.14276 2.04�10−2 −4.83�10−3 1.40�10−3

4.0 −0.08549 6.15�10−3 −7.16�10−4 1.01�10−4

6.0 −0.05077 1.91�10−3 −1.15�10−4 8.31�10−6

8.0 −0.03080 6.35�10−4 −2.08�10−5 8.20�10−7

10.0 −0.01918 2.27�10−4 −4.25�10−6 9.57�10−8

12.0 −0.01225 8.66�10−5 −9.65�10−7 1.29�10−8

14.0 −0.00800 3.49�10−5 −2.39�10−7 1.96�10−9

16.0 −0.00533 1.47�10−5 −6.37�10−8 3.31�10−10

18.0 −0.00362 6.48�10−6 −1.81�10−8 6.09�10−11

20.0 −0.00249 2.95�10−6 −5.45�10−9 1.22�10−11
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qk�t� = k +
F0

�

sin�
t + �� , �27�

implying

1

T
�

0

T

dt cos�qk�t��d� = J0��K0�cos��kd� , �28�

where J0�z� is a Bessel function of order zero, and we have
introduced the scaled driving amplitude

K0 =
F0d

�

. �29�

Hence the quasienergy dispersion resulting from the Bloch
band �24� under sinusoidal forcing reads

��k� = E0 + �
�=1

�

2	0
H0
��J0��K0�cos��kd� . �30�

For the particular example of quasienergy bands originating
from the lowest Bloch band of an optical lattice �25�, char-
acterized by the matrix elements collected in Table I, the
quasienergy band widths are depicted in Fig. 1 as functions
of K0 for some typical depths V0. Due to the dominance of
the nearest-neighbor hopping matrix element 	0
H0
1� there
is strong band narrowing for values of K0 close to the zeros
of the Bessel function J0, but the nonvanishing longer-range
hopping elements prevent the band from collapsing com-
pletely, as emphasized by the inset. Thus one expects appre-
ciable, but incomplete dynamic localization in sinusoidally
driven shallow optical lattices.

B. Square-wave forcing

For square-wave forcing of the form

F�t� = � F0, 0 � t � T/2
− F0, T/2 � t � T ,

 �31�

Eqs. �9� and �17� yield

qk�t� = � k + F0�t − T/4�/� , 0 � t � T/2
k + F0�3T/4 − t�/� , T/2 � t � T

 , �32�

to be continued T-periodically to all t. This gives

1

T
�

0

T

dt cos�qk�t��d� = sinc���K0

2
�cos��kd� , �33�

with K0 being defined according to Eq. �29�, having set 

=2� /T. Moreover, we write sinc�z�=sin�z� /z. Correspond-
ingly, the quasienergy dispersion becomes

��k� = E0 + �
�=1

�

2	0
H0
��sinc���K0

2
�cos��kd� . �34�

Since all sinc functions adopt their zeros simultaneously,
there is a total collapse of this quasienergy band when
K0=2 with integer =1,2 ,3 , . . .. Thus we recover the
known fact that there is exact dynamic localization, regard-
less of both the values of the hopping matrix elements and
the form of the wave packet, for these particular driving
amplitudes �20,21�. Figure 2 shows the widths of quasien-
ergy bands originating from the lowest Bloch band of an
optical lattice under square-wave forcing; the total band col-
lapse at K0=2 is clearly visible in the inset.

IV. EXPERIMENTAL RESULTS

Our experimental setup is described in detail in Ref. �16�.
Briefly, we adiabatically load Bose-Einstein condensates
consisting of about 6�104 atoms of 87Rb into the lowest
band of a one-dimensional optical lattice. The lattice is gen-
erated by focusing two counter-propagating linearly polar-
ized laser beams of wavelength �=2� /kL=842 nm onto the
condensate, resulting in the periodic potential �25� along the
beam direction. Each beam passes through an acousto-optic
modulator, allowing us to introduce a frequency difference
��t� between the beams that can be used to accelerate or
shake the lattice. In the laboratory frame of reference, the
condensate then experiences a time-dependent potential

2.2 2.4 2.6
0.000

0.002

0.004

0 5 10
K0

0.00

0.02

0.04
∆ si

n
/E

r

FIG. 1. Width �sin of the lowest quasienergy band of an optical
cosine lattice under sinusoidal driving as function of the dimension-
less amplitude �29�, for V0 /Er=2 �dots�, 3 �long dashes�, 5 �short
dashes�, and 10 �full line�. The inset quantifies the extent of band
narrowing for values of K0 close to the first zero j0,1=2.405 of the
Bessel function J0.

1.8 2.0 2.2
0.000

0.002

0.004

0 5 10
K0

0.00

0.02

0.04

∆ sq
w

/E
r

FIG. 2. Width �sqw of the lowest quasienergy band of an optical
cosine lattice under square-wave driving as function of the dimen-
sionless amplitude �29�, for V0 /Er=2 �dots�, 3 �long dashes�, 5
�short dashes�, and 10 �full line�. The inset illustrates that an exact
band collapse occurs when K0 is a nonzero integer multiple of 2.
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Vlab�x,t� =
V0

2
cos�2kL�x −

�

2
�

t1

t

d������� . �35�

By means of a unitary transformation to the comoving frame
of reference, the single-particle Hamiltonian is brought into
the form

H =
p2

2m
+

V0

2
cos�2kLx� + m

�

2

d��t�
dt

x . �36�

Hence prescribing an oscillating frequency difference

��t� = �max sin�
t� �37�

with amplitude �max, one obtains sinusoidal forcing with
strength F0=m
��max /2, amounting to the scaled driving
amplitude

K0 =
�2

2

��max

Er
. �38�

On the other hand, the triangular protocol

��t� = �2�maxt/T , 0 � t � T/2
2�max�1 − t/T� , T/2 � t � T

 �39�

results in square-wave forcing with strength
F0=m��max /T, giving

K0 =
�

2

��max

Er
. �40�

We first study the in situ expansion of a condensate under
both kinds of forcing �16�. To this end, initially an aniso-
tropic, elongated harmonic trap with trapping frequencies of
20 Hz �longitudinally� and 80 Hz �radially� was superim-
posed on the lattice. After switching off the laser beam ef-
fectuating the longitudinal confinement, the condensate was
free to expand in the direction of the shaken lattice. After
some time, it was illuminated by a resonant flash, the shadow
cast by which was imaged onto a charge-coupled device
chip.

We work with lattices possessing a fairly large depth be-
tween V0=6Er and V0=9Er, so that the effect of longer-range
hopping is not discernible at the scale of our experimental
accuracy, and we may employ the nearest-neighbor approxi-
mation, keeping only the hopping matrix element J=
−	0
H0
1� connecting adjacent lattice sites. Thus the unper-
turbed energy band is well described by the cosine dispersion
relation

E�k� = − 2J cos�kd� , �41�

assuming that interparticle interactions remain negligible.
Accordingly, the quasienergy band of the driven system is
approximated by

��k� = − 2Jeff cos�kd� , �42�

where the effective hopping matrix element Jeff is given by

Jeff = JJ0�K0� �43�

for sinusoidal forcing, as follows from Eq. �30�, whereas
Eq. �34� gives

Jeff = Jsinc��K0/2� �44�

for a square-wave drive. The measured expansion rate
d�x /dt of the condensate width �x along the lattice direction
is then to a good approximation proportional to the hopping
element Jeff which effectively describes nearest-neighbor
tunneling when the forcing is present �16�. This is a working
example of our general philosophy: The time-averaged evo-
lution of the driven system proceeds in close analogy to that
of an undriven one, with ��k� replacing E�k�. In practice,
rather than extracting Jeff from the expansion data, for each
experiment we also measure the bare expansion rate �which
is proportional to J� in the undriven system, from which the
normalized effective hopping element Jeff /J is then calcu-
lated.

In Fig. 3 we plot our results for both types of forcing
versus the scaled driving amplitude K0, obtained with a sinu-
soidal drive of frequency 
 /2�=1.0 kHz, and a square-wave
one with 
 /2�=1.5 kHz. Evidently, the single-particle ex-
pectations are matched quite well, with the data obtained for
square-wave driving scattering a bit more strongly around
the prediction �44� than those for sinusoidal driving around
the graph of Eq. �43�.

An alternative method for determining the points of maxi-
mum band collapse is to measure the phase coherence of the
condensate in the shaken lattice �16�. Switching off the con-
fining potential and letting the condensate fall under gravity
for 20 ms, we obtain an interference pattern whose visibility
reflects the condensate coherence. Recording this visibility
as a function of time, we extract the decay time constant �deph
of the resulting near-exponential function. In general, we find
dephasing times on the order of 100 ms in the presence of
even strong sinusoidal driving, while they are somewhat
shorter for the square-wave drive, as shown in Fig. 4. In the
immediate vicinity of the band collapse points, however, the
dephasing times are strongly reduced: When the quasienergy
band width approaches zero, the individual lattice sites are

1.0

0.8

0.6

0.4

0.2

0.0

|J
ef

f/
J|

43210
K0

FIG. 3. �Color online� Absolute value of the effective hopping
matrix element Jeff for a condensate in an optical lattice with depth
V0 /Er=6 under the influence of sinusoidal �open boxes� and square-
wave �triangles� driving, normalized to the “bare” hopping element
J which governs the condensate spreading in the undriven lattice.
The lines correspond to the approximations �43� and �44�. The driv-
ing frequencies 
 /2� were 1.0 kHz for sinusoidal driving, and
1.5 kHz for the square-wave case.
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effectively decoupled, so that the local phases evolve inde-
pendently due to interatomic collisions, resulting in a rapid
dephasing of the array. This effect leads to sharply pro-
nounced dips in plots of �deph vs K0, allowing us to confirm
the theoretically predicted first collapse points to fairly good
accuracy: K0=2.4 for sinusoidal forcing, whereas K0=2.0 for
the square-wave drive.

While in the present work we are mainly concerned with
identifying the conditions for partial or complete dynamic
localization, useful insight can also be obtained by studying
the time evolution of the width of the driven matter-wave
packet away from the collapse points. In general, if the ex-
tension �x of a Floquet wave packet �21� narrowly centered
in k space around some k0 is given by �x=a at time t=0, that
wave packet spreads in time according to

�x�t� = a�1 + ����k0�t
�a2 �2

� �a�k0�t , �45�

with asymptotic, large-t expansion rate

�a�k0� =

���k0�


�a
�46�

determined by the second derivative of the quasienergy dis-
persion at k0. According to Eqs. �30� and �34�, here the hop-
ping elements 	0
H0
�� enter with weights proportional to �2,
each depending in a different manner on the driving ampli-
tude. Hence precise measurements of the expansion rate
could yield information both on the state of the driven
packet, i.e., on the wave number k0, and on the next-to-

nearest neighbor couplings. Furthermore, while we have
worked with condensate densities so low that interparticle
interactions can be ignored and the single-particle picture
remains applicable, it would be interesting to identify signa-
tures of interparticle interactions in dynamic localization.

V. CONCLUSIONS AND OUTLOOK

In this work we have pointed out that wave packet motion
and spreading in time-periodically forced spatially periodic
potentials are governed by quasienergy bands ��k� in a man-
ner which exactly parallels the description of quantum dy-
namics in unforced lattices in terms of their energy bands
E�k�, and have experimentally demonstrated dynamic local-
ization, i.e., “freezing” of the dynamics due to a quasienergy
band collapse, with dilute Bose-Einstein condensates in op-
tical lattices subjected to either sinusoidal or square-wave
driving. Seen from a conceptual viewpoint, this experimental
confirmation of the ideas developed in the context of dy-
namic localization can be regarded as a proof of principle for
the notion of quasienergy band engineering: Different types
of forcing, applied to the same energy band, can lead to
substantially different quasienergy dispersion relations, and
hence can be employed for realizing band structures which
even might not have an analog in traditional solid-state sys-
tems.

In order to make contact with previous theoretical works
�1,5,19–21�, we have restricted our investigation here to
forces with parameters which do not lead to significant cou-
pling of several energy bands. In this case the construction of
the quasienergy dispersion merely involves taking the aver-
age �18� and thus is an easy exercise, since one is essentially
dealing with just a free Bloch particle. However, such
quasienergy bands, reflecting the existence of spatiotemporal
Bloch waves �16�, originate from nothing more than the si-
multaneous presence of a spatially periodic potential and a
temporally periodic force. Accordingly, they also exist when
several unperturbed energy bands are coupled by the force;
the quasienergy bands then exhibit fairly nontrivial features
�8�. The exploration of these further options for band engi-
neering which result from deliberate interband coupling, to-
gether with the inclusion of interparticle interaction, should
open up further interesting avenues.
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