
Cooling ultracold bosons in optical lattices by spectral transform

David L. Feder
Department of Physics and Astronomy and Institute for Quantum Information Science, University of Calgary, Calgary,

Alberta, Canada T2N 1N4
�Received 19 August 2008; published 6 January 2009�

It is shown theoretically how to directly obtain the energy distribution of a weakly interacting gas of bosons
confined in an optical lattice in the tight-binding limit. This is accomplished by adding a linear potential to a
suitably prepared lattice, and allowing the gas to evolve under the influence of the total potential. After a
prescribed time, a spectral transform is effected where each �highly nonlocal� energy state is transformed into
a distinct site of the lattice, thus allowing the energy distribution to be �nondestructively� imaged in real space.
Evolving for twice the time returns the atoms to their initial state. The results suggest efficient methods to both
measure the temperature in situ, as well as to cool atoms within the lattice: after applying the spectral transform
one simply needs to remove atoms from all but a few lattice sites. Using exact numerical calculations, the
effects of interactions and errors in the application of the lattice are examined.
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I. INTRODUCTION

Despite the strong interest in the properties of ultracold
bosons confined in optical lattices �1–5�, the accurate deter-
mination and efficient control of the temperature remains a
persistent problem. The initial loading of the atoms into op-
tical lattices can cause significant heating if it is not per-
formed adiabatically �6� which becomes increasingly diffi-
cult as the lattice deepens �7�. Likewise, adiabatic changes to
the lattice potential itself can both increase or decrease the
temperature �8–10�. Instrinsic problems such as laser motion
�11�, atomic motion �12�, or impurities �13,14� can also ad-
versely affect the temperature. The inability to achieve very
low temperatures in optical lattices is one of the primary
obstacles to achieving and controlling interesting quantum
states in these systems �15–17�.

There is currently no efficient way to directly measure the
temperature of the bosons when quantum-mechanical tunnel-
ing within the lattice is appreciable. This weakly correlated
regime is applicable for sufficiently shallow lattices, weak
interactions, or large numbers of atoms at each site �18�. The
standard method is to release the atoms from the trap, and is
fully destructive �19�. The shadow image of the fully ex-
panded cloud then corresponds approximately to the momen-
tum distribution in the trap, though the presence of atomic
interactions modifies this simple picture somewhat �20,21�.
In contrast, in the weak tunneling �strongly correlated� limit
there are several proposed methods for inferring the tempera-
ture, including measuring the density distribution of doubly
occupied sites �22� and the atomic number fluctuations �23�.

Unfortunately, directly cooling weakly correlated atoms in
an optical lattice is not straightforward. Only one procedure
has been proposed, based on a combination of sophisticated
quantum optics and many-body effects �24�. In contrast, un-
der conditions of weak tunneling several techniques have
been proposed �25�. The standard evaporative cooling tech-
nique for bosons in harmonic traps �26� is predicated on the
correspondence between the energy and spatial extent of the
single-particle quantum states. Atoms far from the trap center
tend to have a higher energy, so their gradual removal com-

bined with rethermalization can rapidly cool the particles.
This approach unfortunately cannot be applied to optical lat-
tices even if they are shallow, however, because all single-
particle energy states span the length of the lattice.

This work proposes that optical lattices can be suitably
prepared in order to allow for the direct measurement of the
temperature of a weakly correlated Bose gas, and also to
efficiently cool it. The main idea is that if one could vary the
depth of the optical lattice quadratically along its length, then
to an excellent approximation the low-energy single-particle
states of the system are the discrete-space analogs of the
harmonic oscillator Hermite polynomials, known as Kraw-
tchouk functions �27,28�. As discussed in detail below, this
could be accomplished using at least two distinct and readily
available methods. First, one could change the focal length
of one of the optical lattice lasers, so that the intensity
maxima of the two beams are displaced relative to one an-
other. Second, one could add an additional optical lattice at a
small angle relative to the first. In both cases, if the tempera-
ture is already relatively cold, then an in situ nondestructive
image will reveal a bimodal density distribution very similar
to those found for bosons in harmonic traps �29�. Evapora-
tive cooling can then be performed directly.

For larger temperatures where the tight-binding band is
close to full �30� and all single-particle states are strongly
overlapping, the energy distribution of the gas can be ob-
tained by performing a full spectral transformation. This is
accomplished by adding a small linear potential �31�, and
allowing the system to evolve in time. Single-particle states
with low energies will evolve with high probability into the
occupation of lattice sites on the left, while high-energy
states will migrate to sites on the right. Thus, after a pre-
scribed evolution time the spatial profile of the atomic den-
sity yields the initial energy distribution. Further cooling can
then be effected simply by preferentially removing atoms
toward the right by imaging with a resonant laser. Time
evolving further performs the reverse transformation, map-
ping the single-particle states back to their original represen-
tation.

While this approach is exact in the limit of noninteracting
particles �and therefore much in the spirit of evaporative
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cooling ideas in harmonic traps� and only for a particular
choice of tight-binding Hamiltonian, it is robust with respect
to both atomic interactions and to errors in the application of
the optical lattice, as shown in detail toward the end of this
paper. It is equally applicable to one-, two-, or three-
dimensional systems.

The paper is organized as follows. The basic formalism
for atoms in optical lattices and the tight-binding approxima-
tion are reviewed in Sec. II. The conditions under which it is
possible in principle to perform a spectral transform are dis-
cussed in Sec. III. The Krawtchouk functions are introduced
in Sec. IV, and the condition under which these may effect a
spectral transform is also shown. The robustness of the re-
sults to the presence of interactions and approximations to
the optical lattice potential are explored in Sec. V, and the
results are discussed and summarized in Sec. VI.

II. ATOMS IN OPTICAL LATTICES

Optical lattices are standing waves formed by overlap-
ping, focused lasers. In the case of a one-dimensional �1D�
lattice, the lasers can be considered to be counterpropagat-
ing. Assuming that the lattice is oriented along the axial ẑ
direction and is axisymmetric, the lattice potential is �32�

Vl�r,z� = − V�z�exp�− r2/r0
2�sin2�kz� , �1�

where r is the transverse coordinate, V�z��0 is the lattice
depth that may depend on the axial coordinate, r0 is the
transverse beam radius, and k=2� /� is the wave number of
the light with wavelength �. This expression assumes that
the confinement is strongest �the potential is most negative�
at points of largest laser intensity �i.e., when the frequency
c /� of the laser is smaller than that of the main atomic reso-
nance, known as red detuning �26��. Allowing for the possi-
bility of an additional external potential Ve�z� aligned along
the lattice axis, the Hamiltonian for interacting bosons is

H =� d3r�†�r,z��−
�2

2m
�2 + Vl�r,z� + Ve�z����r,z�

+
g

2
� d3rd3r��†�r,z��†�r�,z����r�,z����r,z� , �2�

where �†�r ,z� creates a boson field at position �r ,z�, g
=4��2a /m is the two-body coupling constant �26�, and a is
the s-wave scattering length. For 87Rb, for example, the
value of the scattering length is a�100a0=5.29 nm �33�,
with a0 the Bohr radius. It is convenient to express all ener-
gies in terms of the atomic recoil energy ER	�2k2 /2m
=2�2�2 /m�2. The coupling constant is then g= �2�2a /��ER.

In the limit of very strong transverse confinement �34�, all
of the boson fields will occupy the lowest-energy eigenstate
of the confining potential in the transverse direction. Ne-
glecting the possible z dependence of the lattice potential for
the time being, one obtains Vl�r��−V�1−r2 /r0

2�=−V
+Vr2 /r0

2 which is approximately harmonic with effective
frequency �=
2V /mr0

2 and harmonic oscillator length
l=
� /m�. Making the substitution �†�r ,z��
2 /�l2

�exp�−r2 /2l2��†�z� and integrating over the radial coordi-

nate gives a rescaled coupling constant g1D=g /�l2

=4�a��=4
V̄�a� /r0�ER, where V̄=V /ER is the lattice
depth in recoil energies.

Focusing the optical lattice lasers generally leads to an
axially dependent lattice depth V�z� that varies over the Ray-
leigh length. As a result, the lattice depth is usually largest at
the center and exponentially decreasing on either side V�z�
=V0 exp�−z2 /z0

2�, though with a very long beam waist z0.
Beam waists for optical potentials as long as 125 	m �35�
and for optical lattices as small as 60 	m �36� have been
employed in recent experiments.

An excellent description of ultracold atoms in optical lat-
tice potentials of the moderate depth discussed above is pro-
vided by the Bose-Hubbard Hamiltonian �37�. The Bose field
operators are expanded ��z�=�ibiw�z−zi� in a basis of Wan-
nier functions w�z−zi� that are highly localized near a lattice
site i. Assuming that the energies related to the particle dy-
namics and the temperature kBT are both small compared
with the bandgap, one obtains the Bose-Hubbard Hamil-
tonian �38�

H = − �
�ij


Ji,jbi
†bj +

U

2 �
i

ni�ni − 1� + �
i


ibi
†bi, �3�

where �ij
 denotes a sum over nearest neighbors �i.e., j
= i�1�, bi

† creates a boson at site i, and ni=bi
†bi is the density

operator for site i. For sufficiently deep lattices V0�5ER,
one need only consider tunneling of atoms between nearest-
neighbor sites and interactions of atoms within the same lat-
tice site; the amplitudes for hopping between next-nearest-
neighbor sites and the strength of interactions between atoms
on neighboring sites are smaller by at least an order of mag-
nitude, respectively �37�.

If the external potential Ve�z� is slowly varying over the
lattice spacing, the hopping coefficient is

Ji,j =� dzw*�z − zi��−
�2

2m
�2 + Vl�z��w�z − zj� . �4�

In the very deep lattice limit where the value of the lattice

depth at site i �in recoil energies� is large V̄i	Vi /ER
1, the
Wannier functions can be approximated by the ground-state
Gaussian wave functions for each separate well w�z�

�e−z
2/2d

2
/
d
� with d= �kV̄i

1/4�−1. Then the hopping ampli-

tudes �4� are given by Ji,j /ER= ��2 /4�V̄i exp�−�2
V̄i /4�. A
better approximation for the Wannier functions instead gives
�5,22�

Ji,j

ER
�
16

�
V̄i

3/4 exp�− 2
V̄i� . �5�

Meanwhile, the on-site interaction term is

U = g1D� dz�w�z��4. �6�

Again approximating the Wannier functions by harmonic os-
cillator functions, one obtains
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U

ER
=
 8

�

a�k

r0
V̄3/4 = 
32�

a

r0
V̄3/4. �7�

Finally, the site-dependent local energy is


i =� dzw*�z − zi��−
�2

2m
�2 + Vl�z� + Ve�z��w�z − zi� .

�8�

This latter term is a constant energy offset for homogeneous
lattice potentials and no exernal potential, and is usually
dropped. In the present case, however, the lattice amplitude
will vary slowly over the lattice spacing � /2. This will give
rise to a spatial variation of 
i, which for large lattices is
equivalent to a smoothly varying external potential even in
the absence of any Ve�z�. Again using the local harmonic
oscillator solutions for the Wannier functions, one obtains


i /ER�
V̄i.
The onset of strong correlations for bosons in quasi-1D

optical lattices with an average of �n

1 atoms per site oc-
curs when U /J�2.2�n
 �5,39,40�. Combining Eqs. �5� and
�7�, one obtains the criterion


2�
a

r0
e2
V̄ � 2.2�n
 . �9�

The value of r0 is set by imposing the quasi-1D criterion

��� V̄ER or r0 /�� ��
V̄�−1. This condition is in fact much
more restrictive than necessary because at low temperatures
T�J �for example, the BEC transition temperature for a 3D
lattice is kBTc=5.59J �5�� only the first band is occupied, and
the bandwidth in the 1D tight binding limit is w=2J�V.

With ��= V̄ER, a=5.29 nm, and �=800 nm, and a typical

value �n
=1000 one obtains V̄max�16 and r0�32 nm to en-
sure that the atoms remain in the weakly correlated regime.
This transverse length scale corresponds to a confining fre-
quency � /2��100 kHz, a typical value in current experi-

ments �5�. With �n
=10000 instead, one obtains V̄max�25.
Far in the weakly correlated regime, the amplitude for

nearest-neighbor tunneling from site to site tends to be larger
�and therefore more important� than the strength of particle
interactions. As a first approximation, we may therefore set
U=0; the consequences of U�0 will be explored in Sec. V.
Furthermore, it will be assumed that Ve�z� can be chosen in
such a way to ensure that 
i is approximately constant, so
that it can be ignored �this assumption will be further justi-
fied in Sec. V A�. The resulting noninteracting tight-binding
Hamiltonian can then be written

H0 = − �
�ij


Ji,j�i
�j� , �10�

where the site state kets are defined by �i
	bi
†�0
 and �0
 is

the vacuum state.
In principle, the position indices i and j are unrestricted,

but in practice the lattice has a finite number of occupied
sites. This could arise naturally because of the inherent spa-
tial variation of the lattice potential discussed above, in
which larger number of atoms will occupy the central region

where the potential is deepest. To enforce occupation of a
specific part of the lattice, one can apply “end-cap” potentials
formed from tightly focused blue-detuned lasers �34,35�. In
this case, one can effectively enforce the “hard-wall” bound-
ary conditions i� �0,N� with j= i�1 when 0� i�N, but j
=1 only for i=0 and j=N−1 only when i=N.

III. SPECTRAL TRANSFORM

A. Introduction

As is well known from elementary quantum mechanics,
an arbitrary quantum state ���j�
 defined on N+1 discrete
sites labeled by index j can always be expressed in terms of
an arbitrary basis of dimension N+1

���j�
 = �
n=0

N

cn��n�j�
 , �11�

where the cn are generally complex coefficients. The set of
states ���n�j�
 ,n�0,N� is assumed to be both orthonormal

�
j=0

N

��m�j���n�j�
 	 ��m��n
 = �m,n �12�

and complete

�
n

��n�j���n�k�
 = � j,k, �13�

where the Kronecker delta is defined as � j,k=1 only if j=k
and is zero otherwise. Multiplying both sides of Eq. �11� on
the left by ��m�j�� and summing over j, one obtains the co-
efficients using Eq. �12�:

cn = �
j

��n�j����j�
 	 ��n��
 . �14�

One could have obtained this directly simply by inserting the
complete set ��
=�n��n
��n ��
.

The relevance of the above discussion to the present work
is that the coefficients cn can be considered as the represen-
tation of the original wave function in the “spectral basis”
rather than the original site basis. While the elements of the
original wave function in the site basis are

�j��
 	 ��j� = �
n

cn�j��n
 = �
n

cn�n�j� , �15�

the elements of the same wave function in the spectral basis
are

��n��
 	 cn = �
j

��n�j
�j��
 = �
j

��j��
n
*�j� . �16�

Equations �15� and �16� are transforms of each other through
the basis functions �n�j�; the second can be immediately
obtained from the first from their orthonormality �12�, and
the converse follows from their completeness �13�. These
generalize the Fourier transforms that are specific to the
regular lattice case, in which case �n�j��exp�i2�nj / �N
+1��.

The purpose of the current work is to show that the coef-
ficients cn in Eq. �11� can be obtained directly in experiments
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without having to explicitly carry out the transformation
�16�. In particular, if one could implement the spectral trans-
form

��n
 → ei�n�n
 �17�

with arbitrary phases �n, then all particle densities would be
transformed as ���j��2→ �cj�2:

���j��2 = �j��
���j
 = �
n

cn�j��n
�
m

c
m
*��m�j


→ �
m,n

cnc
m
*ei��n−�m��j�n
�m�j
 = �cj�2. �18�

Thus after the spectral transformation, the magnitude of the
coefficients in the expansion �11� would be obtained simply
from the values of the density at each lattice point.

B. Transform by Hamiltonian evolution

Consider a single particle hopping on N+1 sites of a 1D
lattice with hard-wall boundary conditions, as defined by the
non-interacting tight-binding Hamiltonian �10� with Ji,j =Jj,i
and J−1,0=JN,N+1=0. This Hamiltonian has N+1 eigenvectors
�v j
 with eigenvalues � j. Now consider the perturbed Hamil-
tonian H=H0+H1 with completely local �i.e., onsite� poten-
tial

H1 = �
j=0

N

Vj�j
�j� �19�

with real Vi. �Note that the Vi is an external local potential
that is applied in addition to the Ve�z� chosen above to ensure
constant 
i.� The objective is to determine the Vj for a given
choice of Ji,j such that time-evolution governed by the full
Hamiltonian H effects the desired spectral transformation
�17�, but now with �vn
 taking the place of the ��n
 above:

exp�− iHts/���v j
 = ei�j�j
 , �20�

where ts is some fixed time satisfying the condition for any
j� �0,N� and � j is a possible arbitrary phase.

It is insightful to write the desired unitary U
=exp�−iHts /�� in its spectral decomposition

U = �
k=0

N

exp�− i�k�ts/���vk�
�vk�� , �21�

where �k� and �vk�
 are the eigenvalues and eigenvectors of H,
respectively. The transform �20� can then be written

U�v j
 = �
k=0

N

exp�− i�k�ts/���vk�
�vk��v j
 = ei�j�j
 . �22�

Clearly, if

�vk��v j
 = exp�i�k�ts/��ei�j�vk��j
 �23�

then one would guarantee that

U�v j
 = ei�j��
k=0

N

�vk�
�vk����j
 = ei�j�j
 , �24�

where the term in parentheses is unity because the eigenbasis
of H is complete.

It would be preferable if the system would evolve back to
the original eigenbasis after an additional time ts, at least up
to an overall phase. This is equivalent to requiring that

U2 = �
k=0

N

exp�− i2�k�ts/���vk�
�vk�� = Iei�, �25�

where I is the identity matrix of dimension N+1 and � is
some phase. This condition is most generally obtained when
2�k�ts /�=2�n−� for any k,n. Suppose that we choose n
=km with m some arbitrary integer �m=1 implies the spec-
trum is linear, m=2 gives a quadratic spectrum, etc.�. Then
�k�=�0�+ckm, with �0�=−�� /2ts and c=�� / ts. Equation �22�
can now be written

U�v j
 = e−i�0�ts/��
k=0

N

e−ickmts/��vk�
�vk��v j


= ei�/2�
k=0

N

e−i�km
�vk�
�vk��v j


= ei�/2�
k=0

N

�− 1�k�vk�
�vk��v j
 = ei�j�j
 . �26�

Thus, in order to perform a spectral transform that is invert-
ible by repetition, one requires

�vk��v j
 = �− 1�kei��j−�/2��vk��j
 ∀ k, j � �0,N� . �27�

In short, the overlap of the eigenvectors of the full Hamil-
tonian H with those of the unperturbed Hamiltonian H0 must
be trivially related to their overlap with the site basis vectors.
Furthermore, the perturbation to H0 must be local �i.e., be
strictly an externally applied spatially dependent potential�,
and the spectrum of the full Hamiltonian must be an integer
power in the quantum number.

Consider the homogeneous optical lattice with Ji,j =J on N
sites. Hard-wall boundary conditions force all functions to
zero at the sites labeled by i=−1 and i=N+1. The unper-
turbed eigenvalues in ascending order are �k=−2J cos���k
+1� / �N+2�� with k� �0,N�, and the eigenvectors are similar
to Chebyshev polynomials �vk
=
2 / �N+2�sin���k+1��j
+1� / �N+2��, where k is the eigenvalue index and j� �0,N�
corresponds to the lattice site. It is straightforward to verify
that choosing Vk=�k, i.e., where the perturbation corresponds
to the eigenvalues of the original unperturbed Hamiltonian in
ascending order, indeed yields perturbed eigenvectors �vk�

that satisfy the desired overlap relation �vk� �v j

= �−1�k+j�vk� � j
. Unfortunately, the spectrum of the perturbed
Hamiltonian is not of the desired special form �k�=�0�+ckm.
Conversely, if a perturbation is chosen to enforce the eigen-
value criterion, then the overlap criterion cannot be satisfied.
The unfortunate conclusion is that no perturbation to a uni-
form optical lattice can be chosen in order to effect a spectral
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transform. The remainder of this work is devoted to showing
that both of these conditions can be nevertheless simulta-
neously satisfied with atoms in specially prepared optical
lattices.

IV. KRAWTCHOUK LATTICE

Consider the site-dependent tunneling amplitudes

Ji,i+1 	 J
�i + 1��N − i� , �28�

where i� �0,N−1� and J is a bare tunneling coefficient with
units of energy. The associated weighted lattice Hamiltonian
has been recently investigated in the context of quantum
walks �41–44�, the quantum-mechanical generalization of
the classical random walk �45,46�. In particular, with these
coefficients in the governing Hamiltonian, a quantum state
initialized in the left-most lattice site will evolve with perfect
probability to the rightmost lattice site after a fixed amount
of time. For this reason, this Hamiltonian and its generaliza-
tions have been denoted a perfect quantum wires �47�.
Propagating further for the same amount of time returns the
state to the first site. Likewise, states at any site will be
transferred to sites symmetrically located around the lattice
center, so time evolution effects a perfect reflection of any
state about the midpoint. Much of the interest in this and
related systems stems from their potential uses for quantum
computation and communication, because of their ability to
perfectly distribute quantum states and entanglement �48,49�.

In the present context the Hamiltonian �10� with tunneling
coefficients �28� is useful because it possesses both a linear
spectrum and exhibits periodic behavior. Indeed, the eigen-
functions turn out to be Krawtchouk functions, which are the
discrete-space analogs of the Hermite polynomials. Further-
more, it will be shown below that perturbing the quantum
wire by a linear potential will yield a full Hamiltonian whose
states satisfy the criterion �27�, thereby yielding a full spec-
tral transformation between energy and coordinate space.

A. Unperturbed Hamiltonian

The spectrum of the unperturbed Hamiltonian �10� is ob-
tained by solving H0�vk
=�k�vk
. Expanding the eigenfunc-
tions in the site basis �vk
	� jaj

�k��j
 with aj
�k� some unknown

expansion coefficients, one can write the eigenvalue equation
as

�
i,j

aj
�k��Ji+1,i�i + 1
�i�j
 + Ji−1,i�i − 1
�i�j
 − �k�j
� = 0,

�29�

which can be conveniently rewritten as the three-term recur-
rence relation

Jj,j−1aj−1
�k� + Jj,j+1aj+1

�k� − �kaj
�k� = 0. �30�

In terms of the quantum wire tunneling amplitudes �28� this
becomes


j�N − j + 1�aj−1
�k� + 
�j + 1��N − j�aj+1

�k� − �̃kaj
�k� = 0,

�31�

where the eigenvalues �̃ j 	� j /J are now dimensionless.

The recurrence relation �31� defines the normalized Kraw-
tchouk polynomials � j

�p��z� �27,28�


j�N − j + 1�� j−1
�p� �k� + 
�j + 1��N − j�� j+1

�p� �k�

+
Np + �1 − 2p�j − k


p�1 − p�
� j

�p��k� = 0, �32�

where the Krawtchouk polynomials can be expressed in
terms of either hypergeometric or Jacobi functions

� j
�p��k� = � p

1 − p
��k+j�/2

�− 1� j�1 − p�N/2
 j!�N − j�!
k!�N − k�!

� �N

j
�2F1�− j,− k;− N;

1

p
� ,

=� p

1 − p
��k+j�/2

�− 1� j�1 − p�N/2
 j!�N − j�!
k!�N − k�!

� Pk
�N−j−k,−N−1��2

p
− 1� , �33�

with p�R a free parameter. Comparison of Eqs. �31� and
�32� immediately requires p=1 /2 to eliminate the j �posi-
tion� dependence of the last coefficient. The spectrum of the
unperturbed Hamiltonian is therefore linear, �̃k=−N+2k. The
eigenvectors are

�vk�j�
 =
�− 1� j

2N/2 
 j!�N − j�!
k!�N − k�!

Pk
�N−j−k,−N−1��3� , �34�

where the position dependence is now included explicitly.
In the limit of large N and small k, the Krawtchouk poly-

nomials reduce to Hermite polynomials �27,50�, reflecting
the fact that the Hamiltonian for the quantum wire is the
discretized version of the harmonic oscillator. This is easy to
verify directly from the recurrence relation �31� in the limit
N→� and j�N:


jNaj−1
�k� + 
�j + 1�Naj+1

�k� + �N − 2k�aj
�k� = 0, �35�

which is equivalent to the recurrence relation for the normal-

ized Hermite polynomials H̃j�x� �51�


jH̃j−1 + 
j + 1H̃j+1 − x
2H̃j = 0. �36�

Evidently, x=
2k neglecting the overall constant term. The
effective trapping �oscillation� frequency is therefore �
=2J /�.

B. Full Hamiltonian

The j dependence of the third coefficient appearing in the
recurrence relation �32� indicates that adding a linear poten-
tial Vj � j in Eq. �19� to the unperturbed Hamiltonian would
still yield eigenstates that are Krawtchouk functions. In this
case the potential would need to be of the form

Ṽj =
1 − 2p


p�1 − p�
j , �37�

yielding the softened linear spectrum
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�k� =
1


p�1 − p�
�− Np + k� �38�

and the full expression �33� for the eigenvectors �vk��j�

=� j

�p��k�.
It remains to be shown that there is a choice of p for the

full Hamiltonian that can satisfy the main condition �27�. In
fact, as will be proven below, there is indeed a choice of p
that ensures

�vk��vm
 = �− 1�k+m�vk��m
 , �39�

which effects the spectral transformation U�vm
= �−1�m�m

for all m, and another choice that performs the mirror-
symmetric version U�vm
= �−1�m�N−m
. In terms of the
Krawtchouk functions, condition �39� can be written as

�
j=0

N �N

j
�−1 �− 1�k+m

2N/2 �N

m
�Pj

�N−j−m,−N−1��3�

� � p

1 − p
� j/2�N

k
�Pj

�N−j−k,−N−1��2

p
− 1�

= � p

1 − p
�m/2�N

k
�Pm

�N−m−k,−N−1��2

p
− 1� . �40�

Equation �40� can be thought of as an �N+1�-dimensional
matrix equation K1K2=K3, with the sum over j on the left-
hand side effecting the product of the two Krawtchouk ma-
trices �52,53�

K1
�N� =

�− 1�k

2N/2 �N

m
�Pj

�N−m−j,−N−1��3� , �41�

K2
�N� = �− 1�m� p

1 − p
� j/2�N

k
�Pj

�N−j−k,−N−1��2

p
− 1� , �42�

which are clearly symmetric under the interchange of row
and column indices j↔m or j↔k, respectively, and the
right-hand side given by the symmetric Krawtchouk matrix

K3
�N� = � p

1 − p
�m/2�N

k
�Pm

�N−m−k,−N−1��2

p
− 1� . �43�

The factor � N
j � in the sum �40� serves as a “metric tensor,” as

described in greater detail below. The Krawtchouk matrix
elements are found by fixing N and treating the two variables
in the superscript of the Jacobi polynomials as the row and
column indices, respectively. Thus, the columns of the sym-
metric Krawtchouk matrices K1

�N� and K2
�N� correspond to the

eigenvalue-ordered eigenvectors of the unperturbed and per-
turbed Hamiltonians H0 and H1 on N+1 sites, respectively.

As has been recently discussed in Ref. �53�, Krawtchouk
matrices correspond to the “Hamming contraction” of tensor
products of identical matrices. The hierarchy of Krawtchouk
matrices is mathematically expressed as K�N�=r��K�1���N�,
where K�N� is the Nth-order Krawtchouk matrix of dimension
N+1, and r is an operator effecting the Hamming contrac-
tion. The contraction is effected by labeling the rows and
columns of the contracted matrix by the Hamming weight of
the row and column index �written in binary� for the original

matrix, and summing all matrix elements whose row �col-
umn� indices share the same Hamming weight. For example,
the first-order Krawtchouk matrix K1

�1� is the Hadamard op-

erator H̄

K1
�1� =

1

2

�1 1

1 − 1
� = H̄ , �44�

and the second-order Krawtchouk matrix K1
�2� is the contrac-

tion of the tensor product of two Hadamard operators

K1
�2� = r�H̄ � H̄� = r�1

2�
1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1
��

=
1

2�1 2 1

2 0 − 2

1 − 2 1
� . �45�

Equation �40� can therefore be interpreted as the product
of uncontracted tensor products of first-order Krawtchouk
matrices

�K1
�1���N�K2

�1���N = �K3
�1���N, �46�

which can be alternatively expressed as

�K1
�1�K2

�2���N = �K3
�1���N. �47�

The “weight factor” � N
j � appearing in the sum of Eq. �40� can

now clearly be understood as accounting for the multiplici-
ties for each Hamming weight on the integers between 0 and
2N, and therefore serves as a “metric” for matrix-matrix mul-
tiplications in contracted space. Thus, to prove the equality
�40� for arbitrary N one need only find the value of p satis-
fying the N=1 case

1

2

�1 1

1 − 1
�� 1 1


 p

1 − p
−
1 − p

p
�

=
1

2� 1 − 1


 p

1 − p

1 − p

p
� , �48�

which yields the unique solution

p =
1

4
�2 − 
2� . �49�

It is easy to verify that this solution indeed satisfies Eq. �40�
for arbitrary choices of N. Inserting this result into Eqs. �37�
and �38� gives the linear potential

Ṽj = 2j �50�

and the resulting linear spectrum for the perturbed Hamil-
tonian
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�k� = 
2�− N + 2k� . �51�

Because c=2
2 in Eq. �26�, the time to effect the spectral
transform is

ts =
�

2
2
��

J
� . �52�

Equations �28�, �50�, and �52� constitute the main results of
this work.

To perform the mirror-symmetric spectral transform
U�vm
= �N−m
 one needs to obtain the value of p that en-
sures

�vk��vm
 = �− 1�k+m�vk��N − m
 , �53�

In this case, one obtains

K3
�N� = �− 1�k+m� p

1 − p
�m/2�N

k
�PN−m

�m−k,−N−1��2

p
− 1� .

�54�

Following the same procedure as discussed above, it is
straightforward to show that to satisfy condition �53� one
requires p= 1

4 �2+
2�. This yields the same prefactor as the
solution above, namely, 1 /
p�1− p�=2
2. The spectrum is
therefore the same, but the applied potential now has the

opposite sign Ṽj =−2j. Thus, to perform an inverted spectral
transform where the ground state is transformed to the right-
most site rather than the leftmost, one simply requires the
same linear potential but with a negative slope.

C. Discussion of main results

One might be surprised that neither the applied linear po-
tential �50� nor the required time �52� depend explicitly on
the number of lattice sites. Clearly, as N grows, the initial
wave packet must traverse an increasing number of lattice
sites during the implementation of the spectral transform. It
is important to recall, however, that the actual tunneling am-
plitudes �28� do indeed increase with N. That said, it is not
obvious that their values are just what are required to ensure
that ts remains constant. Consider the time it takes on aver-
age to tunnel between adjacent lattice sites ti,i+1�� /Ji,i+1.
The total time required for a wave packet to propagate from
one end of the lattice to the other is then approximately

T̄ �
�

J
�
i=0

N
1


�i + 1��N − i�
. �55�

In the large-N limit, one obtains the asymptotic result

limN→�T̄= �� /J��=h /2J. This is exactly the period for one
oscillation of the original Krawtchouk oscillator: the eigen-
values �̃k=2k are equivalent to the frequency 2J /�=2� /T,
which yields T=h /2J.

The fact that the Krawtchouk matrices represent contrac-
tions of tensor products of identical matrices has in fact been
anticipated in the literature, though in a completely different
context. The quantum wire tunneling amplitudes �28� are ob-
tained by “collapsing” the hypercube graph to a weighted

linear graph, by rendering indistinguishable vertex labels
with the same Hamming weight �41�. The hypercube is con-
structed by tensor �Cartesian� products of two-site linear
graphs. The eigenvectors are therefore tensor products of the
two solutions for the two-site graph. These solutions are rep-

resented by the Hadamard matrix H̄. The Hamiltonian and its
eigenvectors for the quantum wires �the collapsed hyper-
cubes� are therefore contractions of the associated hypercube
quantities.

It should be pointed out that the relationship between
Krawtchouk functions and spectral transforms has been dis-
cussed previously in the literature, primarily in the context of
optical and digital filtering �54,55�. These ideas were ex-
tended to quantum-mechanical systems, where the Kraw-
tchouk transform can be considered as a fractional Fourier
transform �50�.

It is also important to mention that the discrete nature of
the Hamiltonian is a crucial ingredient that enables the spec-
tral transform to be performed simply by turning on a linear
potential. Suppose we attempted the same approach in the
continuum limit N→� in which the Krawtchouk functions
reduce to Hermite polynomials. In this limit, the inhomoge-
neous tight-binding Hamiltonian is replaced by a harmonic
oscillator Hamiltonian with a potential V�z�= 1

2m�2z2 with
�=2J /� as discussed at the end of Sec. IV A. Adding a
linear potential V�z�=2J�z / �� /2��=4Jz /�, the continuum

limit of the discrete linear potential Ṽj =2j required to effect
the spectral transform, the total potential becomes

V�z� =
1

2
m�2�z +

4J

m�2�
�2

−
8J2

m�2�2 . �56�

The linear potential simply shifts the origin of the effective
oscillator potential to the left, so the eigenstates of the un-
perturbed Hamiltonian are instantaneously placed at the clas-
sical turning points of the shifted potential. The subsequent
evolution is simple harmonic motion, with all wave packets
initially propagating to the left. Under no circumstances will
certain eigenstates propagate to the right.

One more note should be made before discussing the fea-
sibility of performing this spectral transform in actual optical
lattices in the next section. The potential that must be applied
�V�j�=2Jj� in order to effect the spectral transform corre-
sponds exactly to the eigenvalues of the original �unper-
turbed� Hamiltonian, listed along the diagonal in increasing
order. Curiously, this was exactly the same criterion found to
satisfy the condition �27� for the uniform lattice, discussed at
the end of Sec. III, though in that case the full spectral trans-
form could not be implemented because the resulting eigen-
value spectrum was not an integer power law. This observa-
tion could provide a tantalizing clue to generalizing the
spectral transform by Hamiltonian evolution for other dis-
crete systems.

V. APPROXIMATIONS AND INTERACTIONS

The implementation of a spectral transform by Hamil-
tonian evolution described in the previous section assumed
that there is only one particle in the entire lattice. This is, of
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course, not generally the case in real experiments, where
there are many atoms and collisions between pairs of par-
ticles is not negligible. It is therefore important to investigate
the efficacy of the approach including the effects of particle
interactions. This is accomplished by including the interac-
tion term proportional to U in the Bose-Hubbard Hamil-
tonian �3�, which has so far been neglected.

Likewise, it has been assumed that the site-dependent tun-
neling coefficients Ji,i+1 in Eq. �28� could be implemented in
actual experiments. In practice, the tunneling amplitudes can
be made to vary continuously over the length of the lattice,
as discussed in Sec. II, but this variation is unlikely to yield
exactly the correct values of the Ji,i+1. This section considers
separately the robustness of the spectral transform when the
exact conditions discussed in Sec. III are no longer satisfied.

A. Quadratic optical lattice

The exact tunneling coefficients �28� required for the
spectral transform would not be straightforward to imple-
ment experimentally. As discussed in Sec. II, a natural varia-
tion of the lattice depth arises from the laser beam waists z0,
V�z�=V0 exp�−z2 /z0

2�. With the substitution z= �� /2�i, the
axial variation for the discrete case is Vi
=V0 exp�−�� /2z0�2i2�. Inserting this into the tight-binding
expression for the hopping coefficients �5� and assuming that
z0
� one obtains

Ji,i+1

ER
� J0�1 + � �

2z0
�2�
V̄0 −

3

4
�i2� , �57�

where J0=
16
� V̄0

3/4e−2
V̄0 and terms of order �� /2z0�4 have

been neglected. Assuming z0=100 	m, �=0.8 	m, and V̄0
=30, this quadratic approximation gives Ji,i+1 /ER�J0�1
+7.5�10−5i2�. Can such a quadratic variation of the tunnel-
ing coefficients reproduce the desired values �28�?

In the vicinity of the lattice center i= �N−1� /2+ j with j a
small integer j�N, the tunneling coefficients �28� are indeed
approximately quadratic:

Jj,j+1 = J
�N + 1

2
�2

− j2 �58�

�
N + 1

2
J�1 −

2j2

�N + 1�2� , �59�

neglecting terms of order O�j4�. While this is an excellent
approximation near the lattice center, the tunneling coeffi-
cients decrease more quickly near the lattice edges; clearly, if
j= �N−1� /2 in the expression above one obtains
J�N−1�/2,�N+1�/2�N /4, which is much larger than the exact tun-
neling coefficient J�N−1�/2,�N+1�/2=
N. An alternative approxi-
mation that reproduces the desired values at both j=0 and
j= � �N−1� /2 would be

Jj,j+1 =
N + 1

2
J�1 −

4j2

�N + 1��
N + 1�2� . �60�

Comparison of Eqs. �57� and �60� reveals a problem,
however: the coefficients of the site-dependent term have

opposite signs. This is because the actual tunneling coeffi-
cients for a focused laser beam �57� are smallest when the
lattice depth �laser intensity� is greatest. In contrast, the de-
sired coefficients �60� are supposed to be largest at the cen-
ter, so that the lattice depth must be shallowest at this point.

1. Axially displacing lattice beams

In order to prepare an optical lattice with the desired prop-
erties, one could axially displace the lattice beams relative to
the each other, so that the intensity maxima are located a
distance d
z0 apart. The lattice potential would then be

V̄�z�= 1
2 V̄0�e−z2/z0

2
+e−�z − d�2/z0

2
�. Written in terms of the new

variable x=z−d /2 centered midway between the two
maxima, the potential becomes

V̄�x� = V̄d/2e−x2/z0
2

cosh� xd

z0
2 � , �61�

where V̄d/2= V̄0e−d2/4z0
2

is the zeroth-order potential depth at
the lattice center equidistant from the centers of the two
beam maxima. Expanding about x=0 gives an approximate
quadratic envelope

V̄�x� � V̄d/2 + V̄d/2
x2

2z0
2�d2

z0
2 − 2� �62�

corresponding to tunneling coefficients

J�x� � Jd/2�1 −
x2

2z0
2�d2

z0
2 −

1

2
��
V̄d/2 −

3

4
�� , �63�

where Jd/2=
16
� V̄d/2

3/4e−2
V̄d/2. Comparison of Eqs. �60� and
�63� immediately gives J=2Jd/2 / �N+1� and

�2

z0
2 �d2

z0
2 −

1

2
��
V̄d/2 −

3

4
� =

32

�N + 1��
N + 1�2
, �64�

where the substitution x= �� /2�j has been made. Of course,
to enforce the hard-wall boundary condition, end caps
�34,35� must also be applied transversally at the optical lat-
tice amplitude maxima located at z=0 and z=d.

According to Eq. �8�, the spatial variation of the potential
depth �62� would yield a site-dependent energy shift that is
not included in the assumed hopping Hamiltonian �10�. Us-
ing the harmonic oscillator approximation to the Wannier

functions yields 
�x� /ER�
V̄d/2x2d2 /4z0
4 ignoring the con-

stant offset energy 
V̄d/2. It is therefore necessary to manu-
ally apply an inverted parabolic potential, centered at the
depth minimum, that can serve to cancel this effective qua-
dratic potential energy contribution.

Let us consider what these results imply for actual experi-
ments, assuming 87Rb atoms confined in a red-detuned opti-
cal lattice with wavelength �=0.8 	m. With V0=50ER and
z0=100 	m, one could obtain a lattice with N=201 sites
choosing d�255 	m. The potential depth at the midpoint
between beam maxima is Vd/2�10ER, deeply within the
tight-binding limit. The coupling constant is then calculated
to be J�2.3�10−4ER, though the actual coupling constants
vary from 0.01ER at the edge to 0.02ER at the midpoint be-
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tween laser maxima. An external potential must be applied at

all times V̄e
0�x��−5.1�x /z0�2 so that the magnitude of the

external potential reaches almost one recoil energy at the
lattice edges. Applying the additional linear potential Ve

1�x�
=4J�x /�� then allows for the implementation of the spectral
transform in a time ts=�� /2
2J�210 ms.

Likewise, for a lattice with N=301 sites and V0=20ER,
one requires d�223 	m which yields Vd/2�5.8ER. The ex-

ternal quadratic potential that needs to be applied is V̄e
0�x�

�−3�x /z0�2. With J=4.6�10−4ER �the actual coupling con-
stants vary between 0.036ER and 0.069ER�, the time required
is faster than for the example above, ts=107 ms. It might at
first glance appear paradoxical that the N=301 case should
be faster than the N=201 case, but recall that the total time ts
is set by the parameter J, which for the latter case is twice as
large as the value for the former case.

In order to verify that the quadratic optical lattice is in-
deed able to perform the spectral transform, an explicit nu-
merical simulation of the time evolution was performed. The
governing tight-binding Hamiltonian is the unperturbed H0
defined in Eq. �10�, but with the approximate tunneling co-
efficients Ji,j =J�j�=J�x� given in Eq. �63�; its eigenvalues
and eigenvalues and eigenvectors are �k and �vk
, respec-
tively. For simplicity, the initial state was chosen to be a
Boltzmann distribution

� = �
k

exp�− �k/kBT��vk
�vk� , �65�

where � is the thermal density matrix, T is the temperature in
K, and kB�1.38�10−23 J /K is Boltzmann’s constant. The
time evolution of the density matrix is obtained in principle
by numerically integrating the equation of motion i��� /�t
= �H0+4Jx /� ,�� where �…,…� denotes the commutator and
the correct linear potential has been explicitly added. Equiva-
lently, because the particles are assumed to have no interac-
tions, one may simply allow each eigenvector of the unper-
turbed Hamiltonian to evolve separately under the influence
of the Schrödinger equation, and then add their contributions
to obtain the time-dependent density matrix

��t� = �
k

exp�− �k/kBT��vk�t�
�vk�t�� . �66�

The spatially dependent particle density is then readily ob-
tained using the relation n�j , t�= �j���t��j
 or n�x , t�
= �x���t��x
.

The numerical results for the representative set of param-
eters kBT=40ER, z0=100 	m, V0=50ER, and N=100 are
shown in Fig. 1, for the choices d=200 and 300 	m. Two
cases were considered. In the first, the tunneling coefficients
were chosen to be the exact ideal tunneling coefficients �28�.
As expected, the initial thermal distribution over energies is
exactly reproduced after a time t=� /2
2J as a spatial distri-
bution over lattice sites j, shown as the dashed lines in the
figure. In the second case, the tunneling coefficients were
obtained for the actual lattice by inserting the spatially de-
pendent optical lattice potential �61� into the general expres-
sion �5� appropriate in the tight-binding limit. The results are
shown as solid lines in the figure. It is clear that for both

values of d, the actual optical lattice does an excellent job of
reproducing the spectral transform. This indicates that a care-
ful adjustment of the separation of the intensity maxima for
the two optical lattice lasers �subject to d
z0� is not neces-
sary to ensure a successful implementation of the spectral
transform. These general conclusions are also found to be
independent of temperature.

It is also worthwhile to point out that the ability to per-
form the spectral transform directly in the optical lattice
greatly simplifies both the measurement of temperature and
the ability to cool the atoms. The initial particle density
�shown as insets in Fig. 1� is very broad, with tails that are
strongly truncated by the lattice edges. This would make a
direct measurement of temperature, obtained by fitting the
tails to an exponential function, quite unreliable. Further-
more, while one could attempt to cool the initial cloud di-
rectly by ejecting particles far from the lattice center, one
would have little control over the actual energies that were
removed from the system. In contrast, the particle density
after the time propagation is almost an exact spatial map of
the initial energy distribution. The exponential tail �at least
for kBT�V0� is well resolved, allowing an excellent deter-
mination of temperature. Furthermore, evaporative cooling
on this state simply requires the removal of all atoms occu-
pying sites with index j�1, followed by another spectral
transform back to the energy basis.

2. Spatial variation by interference

While the approach described above of offsetting the fo-
cal distances of the two laser beams is able to reproduce the
desired spectral transform, many experiments are performed
under the assumption that the hopping amplitudes are ap-
proximately constant over the region of interest. It would be
preferable to employ a homogeneous optical lattice �with
hard-wall boundary conditions� for experiments, and then to
only introduce the spatial inhomogeneity when temperature
measurements or cooling is desired. Unfortunately, changing
the focal length in the middle of an experiment is not fea-
sible.
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FIG. 1. Numerical results for the spectral transform. The param-
eters for the simulation are kBT=40ER, z0=100 	m, V0=50ER, and
N=100. The left and right graphs correspond to d=200 and
300 	m, respectively. The results for the perfect tunneling coeffi-
cients �28� are given by dashed lines, while those based on tunnel-
ing coefficients �5� derived from the actual lattice potential �61� are
given by solid lines. The insets depict the density profile of the
initial thermal distribution for the actual lattice.
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An alternative approach to modulate the optical lattice is
through interference. Suppose that the homogeneous lattice
is formed from two counterpropagating laser beams each
with amplitude A and frequency � in the standard lin-�-lin
configuration, i.e., where the two polarizations �� perpendicu-
lar to one another. The electric field is then

E� �z� = A�xe
i2�z/�e−i�t + A�ye

−i2�z/�e−i�t

= Aei2�z/�e−i�t��x + �ye
−i4�z/�� . �67�

The spatial variation of the polarization vector gives rise to a
periodic atomic polarizability, which in turn yields the lattice
potential V�z��cos2�2�z /��. If one now introduces a second
beam with electric field amplitude B�A oriented in the yz
plane at a small angle � with respect to the z axis,

E� 2�z� = Be−i�t��xe
i2��z cos���+y sin����/� + �ye

−i2��z cos���+y sin����/��
�68�

then the total lattice potential becomes

V�z� = V0�cos�2�z

�
� + � cos�2�z

�
cos�����2

, �69�

where �� �B�2 / �A�2�1 is the relative depth of the second
lattice beam.

For small angle ��2� so that cos����1−�2 /2, Eq. �69�
can be rewritten as

V�z� � V0�cos�2�z

�
� + � cos�2�z

�
−

2�z

�b
��2

, �70�

where the ‘beat wavelength’ has been defined as �b
	2� /�2
�, for reasons that will be clear shortly. The po-
tential then becomes

V�z� � V0�1 + � cos�2�z

�b
��2

cos2�2�z

�
�

+ � sin�4�z

�
�sin�2�z

�b
� . �71�

If � is small then the last term in the above expression is
small and can be neglected. The potential is therefore de-
scribed by a spatially varying depth V0�1+� cos�2�z /�b��2

which is periodic at the beat wavelength. Unlike the case �
=1 often encountered in physics, however, the potential
depth never vanishes: the maximum depth Vmax�V0�1
+2�� corresponds to z�0, while the minimum depth for z
��b /2=� /�2 is Vmin�V0�1−2��.

Expanding about the minimum z=x+�b /2 in the regime
x��b one obtains

V̄�x� � V̄0�1 − 2� +
4�2�

�b
2 x2�cos2�2�x

�
� , �72�

where as usual V̄	V /ER. Thus, again the lattice depth is
approximately a quadratic function of the lattice position.
This leads to a quadratic site-dependent energy contribution
�8�:


̄�x� �
 V̄0

1 − 2�

2�2�x2

�b
2 �73�

neglecting site-independent energies. Substituting this ex-
pression into Eq. �5� yields the site-dependent tunneling co-
efficients in vicinity of the depth minimum

J�x� � J�b/2�1 − 4��2 x2

�b
2�
V0 −

3

4
�� , �74�

where

J�b/2 = J0�1 + 2��
V0 −
3

4
�� �75�

is the tunneling amplitude at the lattice minimum in terms of
the bare tunneling amplitude J0.

Comparison with Eq. �60� gives J=2J�b/2 / �N+1� and

4

�N + 1��
N + 1�2
= ����

�b
�2�
V0 −

3

4
� . �76�

It is again useful to insert numbers that would be relevant to
experiments with ultracold atoms. With �=� /25, the beat
wavelength is �b=126.6� or approximately 253 lattice spac-
ings. One should therefore be able to effect a spectral trans-
form with N�201. Choosing V0=10 ER and N=101, condi-
tion �76� yields ��0.216, giving J�9�10−4 ER and
therefore ts�54 ms. Note that an inverted parabolic potential

V̄e
0�x��−18�x /�b�2 must be applied at all times to cancel the

site-dependent energy contribution �73�. Likewise, choosing
N=201 requires ��0.058 and ts�170 ms. For larger values
of N, one would require smaller values of � to ensure that
�b
N�� /2�.

The main advantage of this approach is that temperature
measurements and/or cooling can be effected at any stage of
an experiment with ultracold atoms in optical lattices: one
simply adds the second lattice beam and the appropriate qua-
dratic and linear potentials. Of course, these must be added
adiabatically in order to avoid heating the system in the pro-
cess. A conservative estimate of the adiabaticity timescale
would correspond to the time taken by a wave packet to
propagate fully across the lattice a few times tadiab�2� /J
from Eq. �55�. For the N=101 example above, one obtains
tadiab�100 ms so that a ramp-up of the additional beam and
the external quadratic potential over 200 to 300 ms would
ensure that the system would be minimally perturbed.

B. Effect of interactions

Until now the interaction term in the Bose-Hubbard
Hamiltonian �3� has been completely neglected. In principle,
the strength of particle interactions can be adjusted close to
zero through the use of Feshbach resonances �56�, but in
general the gas will not be perfectly ideal. Unfortunately, a
full numerical simulation of the spectral transform, as was
discussed in the subsection above, is not straightforward in
the presence of interactions. The interactions lead to mixing
among the energy levels during the time propagation that are
impossible to model in an average way without introducing
additional assumptions.
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Instead, the spectral transform was numerically simulated
by exact propagation of the many particle Hamiltonian, but
for a smaller number of lattice sites N=10. The tunneling
coefficients corresponded to the ideal expression �28�, and
the values of U in Eq. �3� and the number of particles 1
�Np�10 were varied independently. The largest number
Np=10 for N=10 corresponds to a Hilbert space dimension
of �N+Np−1�! / �Np−1�!N!=92378; the computational time
for the simulation of the spectral transform became unpleas-
antly long for larger Np. The goal was to determine the fi-
delity F of the spectral transform, i.e., if the initial state was
the kth eigenvector of the unperturbed �but interacting�
Hamiltonian, then F is the particle density in the kth site of
the lattice at the time ts.

In practice, one need only consider the fidelity of the
�v0
↔ �0
 spectral transformation, because this is representa-
tive of all the eigenstates. The results of the numerical simu-
lation are shown in Fig. 2. When U=0.1J, the fidelity has
dropped to only 0.98 when Np=N=10, i.e., at unit lattice
filling �	Np /N=1. The best fit to the data indicates that the
fidelity drops as a power law F�1−0.023�3.3. As the on-site
interaction strength is increased the fidelity drops; when �
=1 one obtains F�0.92 when U=0.2J and only F=0.63
when U=0.5J. The best fits in the U=0.2J and U=0.5J cases
are F�1−0.088�3.3 and F�1−0.43�3.1, respectively, both
power laws with a similar exponent. Though it is impossible
to confidently extrapolate to large system sizes with N and
Np comparable to those in a future experiment, the numerical
results suggest that the ability to perform a spectral transform
to 90% accuracy or better would require ��0.6 and/or U
�0.5J. While this value of U /J ensures that the system is in
the superfluid regime �57�, it is smaller than the value one
would generally obtain in the 1D lattice case �see Sec. II�.

VI. CONCLUSIONS

The scheme described above to perform the spectral trans-
form with ultracold atoms has assumed that the optical lattice
is strictly one dimensional. While this assumption has sim-
plified the mathematical analysis and the numerical simula-

tions, it is not necessary. In practice, many Bravais lattices
are generated by two counterpropagating laser beams in dif-
ferent �not necessarily perpendicular� spatial directions. One
could envisage that the lattice beams along each different
axis would be suitably prepared so that their intensities were
varying quadratically, using either approach discussed in
Sec. V. The tunneling amplitudes would then vary along each
axis, so that the eigenstates of the lattice �in the noninteract-
ing limit� would correspond approximately to the product of
Krawtchouk functions for each direction.

Performing a full three-dimensional spectral transform
would not necessarily require a linear potential applied in
each direction simultaneously, a task which might be difficult
in practice. Instead, one could simply apply the linear ramps
for each dimension in sequence, separately cooling the at-
oms’ motions in each spatial degree of freedom. For the cu-
bic lattice for example, eliminating atoms from large site
values in one direction would not perturb the atoms in the
perpendicular directions, and cooling can be efficiently per-
formed. The presence of interactions will modify this picture
somewhat, but if the interaction strength is kept at suffi-
ciently small �U�J based on the one-dimensional simula-
tions� then this should not present much of a problem.

In addition to the obvious benefits of temperature mea-
surement and cooling, the ability to perform a spectral trans-
formation in situ has other possible future applications. For
example, the technique could be used to probe the excitation
spectrum and heating mechanisms of strongly interacting
systems. At any given moment, the interactions could be
quickly tuned to approximately zero through the application
of Feshbach resonances, and the system’s energy spectrum
monitored by spectral transform followed by nondestructive
imaging; subsequently the system would be returned to its
original state by inverting the process. Of course, care would
need to be taken to ensure that the ramp on and off of the
interactions were slow enough that this process itself would
not greatly perturb the system.

As a second example, it is conceivable that the technique
could be extended to produce a greater variety of overall
phases than the 0 and � in the present case �39�. In particu-
lar, if a suitable choice of tunneling parameters and external
potential could be found such that the resulting phases would
be of the form �km /N, then the spectral transform would be
equivalent to a quantum Fourier transform, a central opera-
tion in several efficient quantum algorithms including factor-
ing �58,59�. In this case, each lattice site �out of a total N
=2n� would label a possible state in the n-qubit Hilbert space.
Though inefficient in terms of resources, this notion could
pave the way toward implementation of interesting quantum
algorithms using ultracold atoms in optical lattices with
minimal external controls.
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FIG. 2. Fidelity F as a function of the number of particles Np

obtained by exact numerical simulation of the spectral transform.
With the initial state the ground state of the unperturbed interacting
Hamiltonian, the fidelity is defined as the density in the first site at
time ts=� /2
2J. The solid, dashed, and dot-dashed lines corre-
spond to U=0.1J, 0.2J, and 0.5J, respectively.
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