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We consider the control problem of generating unitary transformations, which is especially relevant to
current research in quantum information processing and computing, in contrast to the usual state-to-state or the
more general observable expectation value control problems. A previous analysis of optimal control landscapes
for unitary transformations from a kinematic perspective in the finite-dimensional unitary matrices is extended
to a dynamical one in the infinite-dimensional function space of the time-dependent external field. The under-
lying dynamical landscape is defined as the Frobenius square norm of the difference between the control
unitary matrix and the target matrix. A nonsingular adaptation matrix is introduced to provide additional
freedom for exploring and manipulating key features, specifically the slope and curvature, of the control
landscapes. The dynamical analysis reveals many essential geometric features of optimal control landscapes for
unitary transformations, including bounds on the local landscape slope and curvature. Close examination of the
curvatures at the critical points shows that the unitary transformation control landscapes are free of local traps
and proper choices of the adaptation matrix may facilitate the search for optimal control fields producing
desired unitary transformations, in particular, in the neighborhood of the global extrema.
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I. INTRODUCTION

A potential application of quantum optimal control theory
�OCT� �1–5� is to create specific unitary transformations �6�
for realization of quantum information processing �7–30�.
The efficiency and stability of generating unitary transforma-
tions rests on the topology and local structures of the under-
lying control landscape. This paper explores various aspects
of a family of landscapes specified as a square norm of the
difference between the controlled unitary transformation and
the target one. Given an N�N target unitary transformation
W, any kinematic landscape �26,31�—which is defined as a
smooth function on the unitary group U�N� �the group of
N�N unitary matrices, each composed of N2 independent
real variables�—with a global extremum at W can be con-
sidered a candidate landscape for generating W. These can-
didate landscapes can vary widely in their detailed features.
For example, some may have local extrama away from W,
others may not. In this paper, we examine a class of candi-
date landscapes for this problem �defined by a class of
norms, parametrized by an arbitrary nonsingular “adaptation
matrix” A�, showing that they exhibit a wide range of geo-
metrical features and critical topologies and that none of
them contain any local extrema �i.e., traps�.

The landscape properties of importance include the local
magnitude of the slope and curvature, the existence and dis-

tribution of critical points where the slopes are zero, and the
rank and signature of the curvature �Hessian, see Eq. �25�� at
these critical points, especially at the global extrema �maxi-
mum and minimum�. Significant insights have been gleaned
in landscape studies of controlled population transfer
�31–34�, the control of general observables �Hermitian op-
erators� in the context of the density matrix formulation
�35–37�, and the control of open quantum systems in the
Kraus operator formulation �38�. A detailed kinematic study
on one particular control landscape for generating quantum
unitary transformations for N-level quantum systems has
been performed �26,31�, revealing the landscape topological
features, including a lack of any local traps, which is of
special relevance to the practical construction of unitary
transformations. This paper extends the kinematic treatment,
based on the unitary group, to a dynamical analysis, based on
the control field E�t�, which brings in the time-dependent
Schrödinger equation governing the quantum system evolu-
tion �39�. Here, the dynamical landscape is specifically de-
fined as a functional of the control field E�t� that belongs to
the infinite-dimensional function space L2 of square-
integrable functions �40� in the time domain 0� t�T.
Whereas the kinematic landscape does not depend on how
the quantum system evolves over the course of time �i.e., it is
independent of the composition of the field-free Hamiltonian
and the couplings between the quantum system and the time-
dependent control fields�, the dynamical landscape is directly
related to how a specific quantum system evolves in the pres-
ence of an arbitrary time-dependent external field E�t�. Any
constraint imposed on the control fields, for example the
bandwidth, intensity, fluence, and pulse shape, will in general
make the control landscape analysis difficult and the subject
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is beyond the scope of this paper. By imposing no constraint
on the temporal behavior of the control field, many important
generic features of the unitary transformation landscape, in-
cluding no local traps, can be obtained analytically. To this
end, fully controllable N-level quantum systems �41–48� are
considered within the framework of the control field cou-
pling into the Hamiltonian through the electric dipole inter-
action. Specifically, a quantum system is fully controllable at
time t=T�0 if every unitary transformation W is dynami-
cally accessible from the identity I in the group U�N� via an
evolution propagator U�T ,0� that satisfies the underlying
time-dependent Schrödinger equation �46�,

ı�
�U�t,0�

�t
= �H0 − �E�t��U�t,0�, U�0,0� = I , �1�

over the duration �0,T�, where H0 is the field-free Hamil-
tonian, � is the dipole moment operator, and I is the N�N
identity matrix.

The paper is organized as follows. In Sec. II a generalized
unitary transformation landscape for an N-level quantum
system is defined in terms of the Frobenius square norm
��W−U�A�F

2 of the difference between the controlled unitary
transformation U=U�T ,0� and the target one W, in conjunc-
tion with a nonsingular adaptation matrix A. Qualitative fea-
tures, including bounds on the slope and curvature and the
robustness of the control landscape, are analyzed in Sec. III.
The landscape critical points, including the conditions for
their existence and their multiplicity, are examined in Sec.
IV. A qualitative description of the Hessian at the critical
points is presented in Sec. V. A procedure based on quadratic
forms is presented in Sec. VI for facilitating the analysis of
the rank and signature of the Hessian matrices at the critical
points. Finally, Sec. VII summarizes the findings. Appendix
A describes a phase-independent unitary transformation
landscape using a distance norm �to measure the fidelity be-
tween the controlled and target unitary matrices� defined up
to an arbitrary global phase �16,17� �i.e., in contrast to the
Frobenius norm that specifies the phase�, and Appendix B
addresses the optimal control robustness to control field
noise for generic p-qubit quantum systems, drawing on the
results from Appendix A.

II. DYNAMICAL LANDSCAPE OF UNITARY
TRANSFORMATIONS

Consider a fully controllable N-level quantum system
�41–48� and a preselected target unitary transformation W.
The underlying optimal control problem can be formally ex-
pressed as

min
E�t�

JF�E� , �2�

where the cost JF�E�, as a functional of the control field
E�t�, may be specified as �22,26�

JF�E� = �W − U�F
2 , �3�

which measures the magnitude and phase-specific difference
of the target unitary transformation W and the system propa-
gator

U � U�T,0� , �4�

at the end time T of the control pulse E�t�, t� �0,T�. Here
the notation

�B�F
2 � 	

i=1

N

	
j=1

N


bij
2 = tr�B†B� �5�

denotes the Frobenius square norm of an arbitrary N�N
square matrix B composed of the matrix elements bij, 1� i,
j�N. The optimal control field E�t� belongs to the infinite-
dimensional function space L2 of square-integrable functions
on the interval �0,T�, where T is a final time consistent with
the dynamical capabilities of the physical system. In prac-
tice, the control fields E�t� may be composed of a finite num-
ber of field components of different frequencies, amplitudes,
and phases, thus spanning a finite-dimensional control field
space. However, the control landscape is most revealing and
the easiest to understand in the context of a single uncon-
strained time-dependent function E�t�. Moreover, the unitary
matrix W may be block diagonal

W = Wn � �N−n + �n � QN−n = Wn � QN−n, �6�

where the n�n matrix Wn is the relevant target unitary
transformation operating on a subset of n chosen levels
�n�N�, � denotes the direct sum �of lower dimensional ma-
trices�, �m �m=N−n or n� is a zero matrix of dimension m,
and QN−n is an arbitrary �N−n�� �N−n� unitary matrix.

The condition defining the critical points of the control
landscape JF�E� is specified by the zero gradient �the first-
order functional derivative with respect to the control field
E�t�� �49�

�JF�E�
�E�t�

= 0 �7�

for all t� �0,T�. The Hessian �the second-order functional
derivatives� �2JF�E� /�E�t���E�t�, t� t�, at the critical points
determines whether or not the control landscape JF�E� pos-
sesses local traps. The expressions and bounds of the gradi-
ent and Hessian are given in Sec. III. The cost functional
JF�E� may be thought of as a composition of two maps. The
first, denoted VT�E�, takes in a control field E�t� and pro-
duces the corresponding unitary propagator U=U�T ,0�. The

second, ĴF�U�, takes in a unitary propagator U and produces

the real number ĴF�U�= ��W−U��F
2 . Then JF�E�

= ĴF�VT�E�� and

�JF

�E�t�
= ��ĴF�U�,

�VT

�E�t�� = Re ı

�
tr���ĴF�U��†U��t��� ,

�8�

where the notation �·,·� stands for the scalar product. A regu-
lar critical point of JF�E� is one where the operator

�· ,�VT /�E�t�� is full rank and the gradient �ĴF�U�=0. A
critical point of JF�E� where �VT /�E�t� is rank deficient is
called a singular point. Because VT is a highly nonlinear map
from an infinite-dimensional space to a finite-dimensional
one, such singular points are expected to be rare and will not
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be considered here. It may be observed that the full rank
condition on

�VT

�E�t�
=

ı

�
U��t� , �9�

where

��t� = U†�t,0��U�t,0� , �10�

is identical to the condition that

�Re��i
��t�
j��, Im��i
��t�
j��: j � i = 1, . . . ,N� �11�

is a collection of N2 linearly independent functions �50�.
Consequently, it will always be assumed in this paper that
these dipole functions are linearly independent at the critical
points. Future work will seek to characterize the set of sin-
gular points and their role in quantum control.

To facilitate a full exploration of the optimal control land-
scape of unitary transformations, throughout the remaining
derivations and discussions, we will consider the following
generalized �A-adapted� cost functional

JF�E� = ��W − U�A�F
2 = tr���W − U�A�†�W − U�A�

= 2�A�F
2 − tr�AA†W†U� − tr�U†WAA†� , �12�

where and henceforth, as in Eq. �3�, the same notation JF�E�
for the A-adapted cost functional has been used for simplic-
ity. The N�N landscape adaptation matrix A is an arbitrary
nonsingular matrix that may be freely chosen for additional
exploration of the control landscape properties. In general,
each nonsingular adaptation matrix A �within a matrix simi-
larity transformation� corresponds to a distinct control land-
scape, which can be characterized by the landscape gradient
and Hessian, especially at the critical points. Specifically, we
emphasize that the matrix A is mainly a mathematical device
that can be arbitrarily chosen to manipulate unitary transfor-
mation control landscapes. The introduction of A allows us
to simultaneously analyze an entire family of unitary trans-
formation control landscapes �parametrized by A�. We point
out that the quantity ��W−U�A�F

2 is a measure of the fidelity
of U where we are free to choose A. The situation in the
laboratory calls for coming up with a means to determine
U�U�T ,0� for offline use in the measure, which is a subject
beyond the scope of this work.

For any nonsingular square matrix A, the product AA† is
Hermitian and positive definite �i.e., all its eigenvalues are
real and positive� which aids in performing the landscape
analysis. The matrix AA† can be diagonalized via a unitary
matrix D, D†D=DD†=I,

D†�AA†�D = 	2, �13�

or equivalently �51�,

AA† = D	2D†, �14�

where 	2 is a diagonal matrix

	2 = diag�
1
2,
2

2, . . . ,
N
2 � , �15�

consisting of real positive eigenvalues �singular values� 
1
2

�
2
2� . . .
N

2 �0 of the matrix AA† and the columns of D are
the eigenvectors of AA†, i.e., AA†D=D	2.

By invoking Eq. �14�, Eq. �12� can be rewritten as

JF�E� = �D†�W − U�D	�F
2 = ��W̄ − Ū�	�F

2

= 2�	�F
2 − tr�	2W̄†Ū� − tr�Ū†W̄	2�

= 2	
i=1

N


i
2 − tr�	2W̄†Ū� − tr�Ū†W̄	2� , �16�

where W̄=D†WD and Ū=D†UD. Here we have used the
relation

�A�F
2 = �D	D†�F

2 = �	�F
2 = 	

i=1

N


i
2. �17�

Moreover, Ū� Ū�T ,0� where the rotated propagator Ū�t ,0�
�D†U�t ,0�D is governed by the equation

ı�
�Ū�t,0�

�t
= �D†H0D − D†�DE�t��Ū�t,0�, Ū�0,0� = I .

�18�

As a result, the control landscape JF�E� depends on the uni-
tary matrix D and the diagonal matrix 	; both are arbitrary
and, thus, at our disposal in the landscape analysis.

From Eq. �12�, or equivalently Eq. �16�, it is evident that
the control landscape JF�E� possesses one global minimum
value and one global maximum value corresponding to the
cases of U=W and U=−W, respectively, independent of the
specific choices of D and 	 �or equivalently that of A�. How-
ever, the landscape details, including its local slopes and cur-
vatures, and the number as well as the properties of the criti-
cal points depends on the choices of D and 	. These various
landscape features can significantly affect the process of
identifying optimally shaped control fields. Although the
limiting case of AA†=I �i.e., when A is unitary, including the
identity matrix I� is of special interest and has been studied
extensively �21,22,25,26�, other possibilities for A may also
be exploited for altering the search for optimal control fields
that generate the desired unitary transformation W. For ex-
ample, all singular values in the diagonal matrix 	2 may be
distinct, i.e., 
1

2�
2
2� . . . �
N

2 �0, or they may be
weighted in favor of the n eigenstates associated with Wn in
Eq. �6�, i.e., 
1

2�
2
2� . . . �
n

2�
n+1
2 � . . . �
N

2 �0.
In addition, the unitary matrix D may be determined such

that the rotated unitary matrix W̄=D†WD is diagonal, or
particularly in Eq. �6�, D may be chosen as

D = Dn � �n + �N−n � IN−n = Dn � IN−n �19�

such that

W̄n = Dn
†WnDn �20�

is diagonal, where Ik �k=n ,N−n� is a k�k identity matrix
and Dn is an n�n unitary matrix. In general, 	2 and D may
be tailored to a specific quantum system of interest. Without
specifically choosing A �or equivalently D and 	�, the focus
of this paper will be on a detailed analysis of the generic
properties of the control landscape JF�E� in Eq. �12�, based
on Eq. �1� governing the propagator U�t ,0� of a controllable
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N-level quantum system with the Hamiltonian H�t�=H0
−�E�t�.

Finally, in quantum information processing, the desired
unitary transformation is a designated quantum logic gate W,
which is generally only defined within a global phase
�16,17�, i.e., W←W exp�ı�� where 0���2. As a result,
dependence on the global phase � may be eliminated through
a phase-independent control landscape �17,21�

JP�E� = 
tr�AA†W†U�
 , �21�

which is compared with the control landscape JF�E� in Ap-
pendix A.

III. QUALITATIVE FEATURES OF THE A-ADAPTED
JF[E] LANDSCAPE

The topology of JF�E� as a functional of the control field
E�t� will be described below in terms of the gradient
�JF�E� /�E�t� and Hessian �2JF�E� /�E�t���E�t� �49�.

A. Gradient and Hessian on the landscape

Within the electric dipole formulation of the Hamiltonian
in Eq. �1�, it can be shown that �35�

�U�t,0�
�E�t��

=
ı

�
U�t,0���t��, t � t�, �22�

and

���t�
�E�t��

=
ı

�
���t�,��t���, t � t�. �23�

As a result, the gradient of JF�E� can be expressed as

�JF�E�
�E�t�

= − tr�AA†�W†�U�T,0�
�E�t�

+
�U†�T,0�

�E�t�
W��

= −  ı

�
�tr��AA†W†U − U†WAA†���t��, t � T ,

�24�

and the corresponding Hessian can be expressed as

�2JF�E�
�E�t��E�t�

= −
ı

�
tr�AA†W†�U�T,0�

�E�t��
−

�U†�T,0�
�E�t��

WAA†���t�

+ �AA†W†U�T,0� − U†�T,0�WAA†�
���t�
�E�t��

�
=

1

�2 tr�AA†W†U��t���t�� + U†WAA†��t����t��,

t � t�. �25�

For a fully controllable N-level quantum system, the gradient
in Eq. �24� is essential for deriving the necessary and suffi-
cient conditions for the existence of JF�E� critical points,
while the rank and signature �i.e., respectively, the sum and

difference of the numbers of positive and negative eigenval-
ues� of the Hessian are needed to characterize each critical
point �52�. Moreover, Eqs. �24� and �25� can be used to es-
tablish upper bounds on the gradient and Hessian, respec-
tively. The magnitudes of these bounds are important for the
efficiency and stability of control field searches to find effec-
tive unitary transformations. In particular, the Hessian prop-
erties at the global maximum determines the robustness of an
optimal control field E�t� subject to some small perturbation
�E�t� due to noise �53�.

B. Bounds on the gradient and Hessian

The absolute magnitude of the gradient �JF�E� /�E�t� can
be expressed as

� �JF�E�
�E�t�

� =
1

�

tr�AA†W†U��t�� − tr�U†WAA†��t��
 ,

�26�

and by invoking the triangle inequality and the Cauchy-
Schwarz inequality, we have

� �JF�E�
�E�t�

� �
1

�
�
tr�AA†W†U��t��
 + 
tr�U†WAA†��t��
�

�
2

�
�AA†�F���F. �27�

The bound of the gradient of JF�E� is proportional to the
product of the norm ���F of the dipole moment operator �
and the norm

�AA†�F =�	
i=1

N


i
4 �28�

of the landscape adaptation matrix A. �AA†�F=�N when
AA†=I. Likewise, the bound of the Hessian
�2JF�E� /�E�t���E�t� becomes

� �2JF�E�
�E�t���E�t�

� =
1

�2 
tr�AA†W†U��t���t��

+ U†WAA†��t����t��


�
1

�2 �
tr�AA†W†U��t���t���


+ 
tr�U†WAA†��t����t��
�

�
2

�2 �AA†�F���t���t���F

�
2

�2 �AA†�F���F
2 . �29�

It is evident that both the gradient and Hessian are finite and
uniformly bounded, since the dipole moment norm ���F of
the quantum system is a bounded quantity for any N-level
system. From Eqs. �27� and �29�, it can be readily shown that
the vector norm �i.e., two norm� of the gradient and the op-
erator norm of the Hessian are bounded, respectively, by the
relations
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� �JF

�E�t�
� = �

0

T � �JF

�E�t�
�2

dt�1/2

�
2T1/2

�
�AA†�F���F

�30�

and

� �2JF�E�
�E�t���E�t�

� = max
�f�2=1

�
0

T ��
0

T �2JF

�E�t���E�t�
f�t��dt��2

dt�1/2

� max
�f�2=1

��
0

T�f�2
2�

0

T� �2JF

�E�t���E�t�
�2

dt��dt�1/2

�
2T

�2 �AA†�F���F
2 . �31�

These uniformly bounded norms are significant as they re-
veal the geometric picture of a regular and gently rolling
landscape and they also are important for establishing the
robustness of the optimal control field in the presence of field
noises �54�.

C. Robustness of controlling unitary transformations

Expanding the cost functional JF�E+�E� as

JF�E + �E� = JF�E� + �
0

T �JF�E�
�E�t�

�E�t�dt

+
1

2
�

0

T �
0

T �2JF�E�
�E�t���E�t�

�E�t��E�t��dtdt� + ¯ ,

�32�

in terms of a perturbation �E�t�, t� �0,T� in the control field
E�t�, and utilizing Eqs. �27� and �29� leads to


�JF�E�
 = 
JF�E + �E� − JF�E�
 � ��
0

T �JF�E�
�E�t�

�E�t�dt�
+ � 1

2
�

0

T �
0

T �2JF�E�
�E�t���E�t�

�E�t��E�t��dtdt�� ,

�33�

which is further bounded as


�JF�E�
 � max
t��0,T�

� �JF�E�
�E�t�

���
0

T


�E�t�
dt + max
t��0,T�

�� 1

2

�2JF�E�
�E�t���E�t�

���
0

T �
0

T


�E�t��E�t��
dtdt�

� �AA†�F� 2

�
���F��E�1 +

1

�2 ���F
2��E�1

2� , �34�

where the one norm

��E�1 = �
0

T


�E�t�
dt . �35�

characterizes the control field variation �noise�. At the critical
points, including the global minimum and maximum, the lin-

ear term in ��E�1 in Eq. �34� drops out since �JF�E� /�E�t�
=0, and we have the �normalized� error bound


�JF�E�

�AA†�F

= �
JF�E + �E� − JF�E�
�/�AA†�F

�

� 1

2
�

0

T �
0

T �2JF�E�
�E�t���E�t�

�E�t��E�t��dtdt��
�AA†�F

�
1

�AA†�F
max

t��0,T�
� 1

2

�2JF�E�
�E�t���E�t�

��
��

0

T


�E�t�
dt�2

�
1

�2 ���F
2 � ��E�1

2. �36�

Equations �34� and �36� impose upper bounds for the control
errors �i.e., the stability of JF�E�� in the presence of control
field noise, implying that any generic N-level quantum uni-
tary transformation control has an inherent degree of robust-
ness in the presence of control field noise �i.e., insensitivity
to field noise�, assuming that the associated dipole moment
norm ���F is finite. Appendix B gives a similar robustness
analysis in terms of the phase-independent cost functional
JP�E�, Eq. �21�, for the special case involving an ensemble
of two-level quantum systems �i.e., qubits�.

IV. KINEMATIC CRITICAL POINTS OF THE LANDSCAPE

Consider the critical point condition Eq. �7�. In conjunc-
tion with Eq. �24�, it becomes

�JF�E�
�E�t�

= −
ı

�
	

i
	

j

�i
�AA†W†U − U†WAA†�
j��j
��t�
i� = 0,

�37�

which is satisfied if and only if

AA†W†U = U†WAA†, �38�

under the assumption that the N2 time-dependent functions
�i
��t�
j�, i , j=1, . . . ,N are linearly independent, cf. Sec. II.
To facilitate the analysis, define the unitary matrix

X = W†U, X†X = I . �39�

Using Eq. �13� in Eq. �38�, we obtain

XAA†X = AA† = X†AA†X† = D	2D†, �40�

from which it can be shown that �55�

X† = X , �41�

indicating that the matrix X is not only unitary, but also
Hermitian. Moreover, from Eqs. �39� and �41�, it is seen that
X is a periodic matrix of second order satisfying the qua-
dratic matrix equation:
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X2 = X†X = I , �42�

whose solutions are the square roots of the identity matrix I.
Finally, from Eqs. �38� and �41�, X and AA† commute, i.e.,

�X,AA†� = 0. �43�

As a result, X and AA† can be diagonalized by the same
unitary transformation D, i.e.,

D†XD = � , �44�

where � is a real diagonal matrix, thus

X = D�D†. �45�

It can be shown that the diagonal matrix � is composed of
real matrix elements

�i = �ii = �− 1�ni, �46�

with ni, i=1,2 . . . ,N, being either even or odd integers, such
that �2=I. The diagonal matrix � in Eq. �46� immediately
satisfies Eq. �42�, i.e., X2= �D�D†��D�D†�=D�2D†=DD†

=I.
The number of solutions for the matrix X, cf. Eq. �45�,

depends on whether the Hermitian matrix AA† is degenerate
or not. For example, only one X�=D�D†� solution exists �or,
equivalently, only one U=WX=WD�D† exists� when the
matrix AA† is completely nondegenerate �i.e., it possesses
only distinct eigenvalues�, since in this case each column of
the unitary matrix D is uniquely defined within an overall
phase factor �e.g., �k for the kth column of D such that the
ith row and jth column of the matrix elements Xij of the
matrix X can be written as Xij

=	k�Dik exp�ı�k���k�Djk
* exp�−ı�k��=	kDik�kDjk

* , indepen-
dent of the phases �k’s�. On the other hand, an infinite num-
ber of X’s is allowed when AA† is completely degenerate
�e.g., AA†=I, which can be diagonalized by any unitary ma-
trix D�. Explicitly, the degeneracy of the singular values 
1

2

�
2
2� . . . �
N

2 �0 determines the properties of the local
critical points. The signature of the Hessian at the critical
points depends on the singular values of the matrix AA†, and
the freedom of choosing the landscape adaptation matrix A
may facilitate the search for optimal control fields. Finally,
the results derived in Eqs. �41�–�46� are generic, independent
of the number n of quantum states spanning the desired uni-
tary transformation Wn and the exact content of the matrix
QN−n in Eq. �6�. The freedom of choosing the unitary matrix
QN−n does not change the essential features of the underlying
control landscape; however, it may be judiciously chosen to
expedite the control processes.

From Eq. �12�, the functional JF�E� at the critical points
may be expressed as

JF�E� = 2�A�F
2 − 2 tr�AA†X� = 2 tr�D	2D†�

− 2 tr�D	2D†D�D†� = 2 tr�	2� − 2 tr�	2��

= 2	
i=1

N

�1 − �− 1�ni�
i
2 � 0, �47�

which possesses at most 2N distinct values. These critical
values may be grouped into N+1 classes, depending on the

number k of ni’s in Eq. �47� that are odd integers: JF�E�
=0 for k=0, JF�E�=4
i

2, i=1, . . . ,N for k=1, JF�E�=4�
i
2

+
 j
2�, 1� i� j�N for k=2, JF�E�=4�
i

2+
 j
2+
k

2�, 1� i
� j�k�N for k=3, . . ., and JF�E�=4�	i=1

N 
i
2� for k=N. The

number of distinct critical JF�E� values associated with each
k is at most � N

k �, and the total number of the distinct critical
values of JF�E� is at most 	k=0

N � N
k �=2N. Moreover, regardless

of the exact nature of the landscape adaptation matrix A,
there exist precisely one global minimum value JF�E�=0
and one global maximum value JF�E�=4	i=1

N 
i
2, each asso-

ciated with a unique unitary transformation matrix U, i.e.,
there is a one-to-one relationship between the global ex-
tremal values and the global extrema, since �=I, X
=D�D†=I, and U=WD�D†=W at the global minimum at
which all ni are even integers whereas �=−I, X=−I, and
U=−W at the global maximum at which all ni are odd inte-
gers. However, there will be an infinite number of distinct
control fields producing these unique extrema.

In the case that the matrix AA† is nondegenerate, the cor-
responding X matrix is unique for a given �. Thus, the cor-
respondence between local critical values and local critical
points is one to one, each associated with a specific unitary
transformation matrix U=WD�D†. However, in the case that
AA† is either partially or completely degenerate, an infinite
number of X’s always exist. Consequently, the correspon-
dence between local critical values and local critical points is
one to infinity, associated with an infinite number of distinct
unitary transformations U=WD�D†. In particular, in the
completely degenerate case of AA†=I, i.e., 
i=1, ∀i
=1, . . . ,N, the cost functional is simply

JF�E� = 2N − 2	
i=1

N

�− 1�ni, �48�

which possesses N+1 distinct critical values 0 ,4 , . . . ,4N
−4,4N. Two of the critical values are JF�E�=0 at the global
minimum and JF�E�=4N at the global maximum. The other
N−1 critical values take on the simple form JF�E�=2N
−2��N−k�−k�=4k, each characterized by a multiplicity
equal to � N

k � which depends on the index k �26�.

V. HESSIAN AT THE KINEMATIC CRITICAL POINTS

At the critical points, substituting the relation from Eq.
�38� in Eq. �25�, the Hessian H�t , t��
��2JF�E� /�E�t���E�t� can be written as follows:

H�t,t�� =
1

�2 tr�AA†X���t���t�� + ��t����t��� . �49�

By inserting the identity D†D=I and invoking the cyclic in-
variance property of the matrix trace, we have the following
expansion

H�t,t�� =
1

�2 tr�DD†AA†DD†XDD†

����t�DD†��t�� + ��t��DD†��t���

=
1

�2 tr�	2�D†���t�DD†��t�� + ��t��DD†��t��D�
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=
1

�2	
i

�− 1�ni
i
2	

j

��i
�̄�t�
j��j
�̄�t��
i� + �i
�̄�t��
j�

��j
�̄�t�
i�� , �50�

where

�̄�t� = D†��t�D , �51�

with the unitary matrix defined in Eq. �14�. Here Eqs. �13�,
�44�, and �46� have been used to derive Eq. �50�. From Eq.
�50�, the Hessian trace at the critical points can be written as

trH � �
0

T

H�t,t�dt =
2

�2�
0

T

	
i

�− 1�ni
i
2	

j


�i
�̄�t�
j�
2dt ,

�52�

which, by carrying out the integration over t and invoking
the norm relation

���F
2 = ��̄�t��F

2 = 	
i

	
j


�i
�̄�t�
j�
2, �53�

yields the lower and upper bounds of the Hessian trace

−
2

�2 �AA†�2���F
2 �

1

T
trH �

2

�2 �AA†�2���F
2 �

2

�2 �AA†�F���F
2 ,

�54�

where the two norm �AA†�2=max�
1
2 , . . . ,
N

2 �, with the
equalities at the global minimum �lower bound� when U
=W �corresponding to all even ni integers� and at the global
maximum �upper bound� when U=−W �corresponding to all
odd ni integers�. Note that �a� �AA†�2� �AA†�F��N�AA†�2
and �b� �AA†�2=1, �AA†�F=�N when AA†=I.

By taking into account the Hermitian nature of the dipole
moment operator �̄�t�= �̄†�t�, the Hessian H�t , t�� at the

critical points, Eq. �50�, can be further written as

H�t,t�� =
2

�2	
i

�− 1�ni
i
2�i
�̄�t�
i��i
�̄�t��
i�

+
2

�2	
i

	
j�i

��− 1�ni
i
2 + �− 1�nj
 j

2�

� �Re��i
�̄�t�
j��Re��i
�̄�t��
j��

+ Im��i
�̄�t�
j��Im��i
�̄�t��
j��� �55�

which is a separable and symmetric kernel spanned by N2

linearly independent basis functions
��i
�̄�t�
i� ,Re��i
�̄�t�
j�� , Im��i
�̄�t�
j�� , j� i=1, . . . ,N� of
time t� �0,T�, cf. Sec. II. The Hessian H�t , t�� can be written
in simple vector form

H�t,t�� = �T�t����t�� = 	
k=1

N2

�k�k�t��k�t�� , �56�

where

�57�

is the transpose �denoted as the superscript “T”� of an N2

dimensional column vector ��t� consisting of the N2 linearly
independent components of the dipole moment matrix �̄�t�
and

�58�

is a diagonal matrix which can be explicitly written as

�59�

in terms of the eigenvalues of the matrix product AA†. Equa-
tions �56�–�59� indicate that the Hessian at a critical point
possesses at most N2 nonzero real eigenvalues, in addition to
an infinite number of zero eigenvalues and their associated
eigenfunctions.

Moreover, a proper choice the adaptation matrix A may
mollify the magnitude of the gradient �JF�E� /�E�t�, cf. Eqs.

�27� and �30�, in such a way to improve the gradient-based
search algorithms in the optimal control implementations.
The situation where AA† is completely nondegenerate is a
special case in which each critical unitary matrix associated
with the kinematic landscape ĴF�U�= ��W−U�A�F

2 is isolated.
In addition, the Morse function ĴF�U� has the fewest pos-
sible critical points, hence the fewest saddle points, among
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the Morse functions on U�N� �i.e., the function ĴF�U� be-
comes a perfect Morse function �49��. Since the saddles may
have the effect of increasing the computational complexity of
the gradient descent optimization, such a perfect Morse func-
tion may be the most efficient landscape on which to perform
a gradient descent. In particular, the Hessians in the neigh-
borhood of the critical points may be approximated by Eq.
�56� such that the corresponding gradients can be written as

� �JF�E�
�E�t�

�
E0

� − �
0

T

H�t,t���E�t�� − E0�t���dt�

= − �T�t���
0

T

��t���E�t�� − E0�t���dt�� ,

�60�

where E�t� and E0�t� are the control fields corresponding to a
critical point and its neighborhood, respectively. By optimiz-
ing the basis functions �1�t� , . . . ,�N2�t�, cf. Eqs. �51� and
�57�, with proper choices of the adaptation matrix A, Eq. �60�
may be solved �56� to greatly facilitate the search for optimal
control fields E�t�, especially around the global extrema
where the Hessian �equivalently the matrix �� is positive
�minimum� or negative �maximum� definite.

VI. HESSIAN QUADRATIC FORMS, RANKS, AND
SIGNATURES AT THE KINEMATIC CRITICAL POINTS

It may be shown �57� that every regular critical point of
JF�E� with Hessian rank R belongs to a critical submanifold
of codimension R in the control space L2 and that the null
space of the Hessian is identical to the tangent space of this
critical submanifold. The rank and signature of the Hessian
H�t , t�� are useful parameters to characterize the geometric
properties of JF�E� at the critical points. The rank can be
directly deduced from Eq. �59�. In this section, a more in-
structive and quantitative analysis is presented for revealing
both the rank and signature by casting the Hessian into its
various equivalent quadratic forms �52�.

In terms of the N2 linearly independent �usually nonor-
thogonal� basis functions Re��i
�̄�t�
j��, 1� i� j�N, and
Im��i
�̄�t�
j��, 1� i� j�N, the rank-N2 separable and sym-
metric Hessian H�t , t��, Eq. �56�, possesses a quadratic �bi-
linear� form

�v
H
v� = �
0

T �
0

T

v�t�H�t,t��v�t��dt�dt , �61�

where v�t��L2. The time-dependent function v�t� can be
expanded as

v�t� = cT��t� + q�t� = �T�t�c + q�t� = 	
k=1

N2

ck�k�t� + q�t� ,

�62�

where q�t�� �span��k�t� :k=1, . . . ,N2����L2 and

cT = �c1,c2, . . . ,cN2−1,cN2� �63�

is the transpose of an N2 dimensional vector c containing the
unknown expansion coefficients c1 , . . . ,cN2. In the case that

the matrix AA† is nondegenerate, the quadratic form �v
H
v�
of the Hessian H�t , t�� is of rank N2 and diagonal in the
�nonorthogonal� � representation, i.e.,

�v
H
v� = x�
T�x�, �64�

where the N2-dimensional column vector x� is given as

x� = �
0

T

��t�v�t�dt = ��
0

T

��t��T�t�dt�c , �65�

with its transpose x�
T = �x�

1 , . . . ,x�
N2

� composed of N2 coordi-
nates, since �0

T��t�q�t�dt=0.
Equations �59� and �64� show that the ranks of the Hes-

sians at the global minimum and maximum are always N2 for
any nonsingular N�N matrix AA† �or more precisely inde-
pendent of the N nonzero singular values of AA†�. However,
the Hessian ranks and signatures at the saddle points depend
on the different combinations of singular values, via the
terms �−1�ni
i

2+ �−1�nj
 j
2, i� j, in Eq. �59�, of the matrix

AA†. For example, in the case of AA†=I, the rank at the local
critical points is �N−k�2+k2=N2−2k�N−k�, with k being the
number of ni’s that are odd integers: the Hessian ranks at
both the global minimum and maximum �respectively, corre-
sponding to k=0 and k=N� remain at N2, while the counter-
parts �corresponding to 0�k�N� at the saddle points are all
less than N2. In general, the matrix AA†=D	2D†, Eq. �14�,
can be constructed in terms of the diagonal matrix 	2 and
the unitary matrix D to alter the relative magnitudes of

1

2 ,
2
2 , . . . ,
N

2 in Eq. �59� resulting in different Hessian
ranks and signatures.

For a closer examination of the Hessian geometric prop-
erties at the critical points, it is useful to cast H�t , t�� into the
expansion

H�t,t�� = 	
k=1

N2

�kuk�t�uk�t�� = uT�t��u�t�� . �66�

Here the diagonal matrix

� = diag��1, . . . ,�N2� �67�

consists of at most N2 nonzero Hessian eigenvalues
�1 , . . . ,�R �R the Hessian rank� and zero eigenvalues
�R+1 , . . . ,�N2 and the transpose uT�t� of the N2-dimensional
column vector u�t� is defined as

uT�t� = �u1�t�,u2�t�, . . . ,uN2−1�t�,uN2�t�� , �68�

which consists of the Hessian eigenfunctions uk�t� that sat-
isfy the integral equation

�
0

T

H�t,t��uk�t��dt� = �kuk�t� ,k = 1, . . . ,N2. �69�

The eigenfunctions uk�t�’s are taken to be orthonormal

�
0

T

u�t�uT�t�dt = I �70�

and to span the same space as the functions
��1�t� , . . . ,�N2�t��. It is seen from Eq. �66� that the quadratic
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form associated with H�t , t�� in terms of the Hessian eigen-
functions is also a diagonal quadratic form in the �orthogo-
nal� u representation,

�v
H
v� = xu
T�xu, �71�

where the N2-dimensional column vector xu is defined as

xu = �
0

T

u�t�v�t�dt = ��
0

T

u�t��T�t�dt�c , �72�

with its transpose xu
T= �xu

1 , . . . ,xu
N2

� composed of
N2 independent components �coordinates�, since
span�uk�t� :k=1, . . . ,N2�=span��k�t� :k=1, . . . ,N2�, and
therefore �0

Tu�t�q�t�dt=0. Combining Eqs. �64� and �71� re-
sults in

xu
T�xu = x�

T�x�. �73�

By introducing the linear transformation Pu�t�=��t� �or
equivalently Pxu=x�� in terms of the nonsingular matrix

P = �
0

T

��t�uT�t�dt , �74�

where both ��t� and u�t� are vectors of dimension N2, we
have �xu

TPT���Pxu�=xu
T�PT�P�xu, and thus Eq. �73� reduces

to a simple relation

� = PT�P , �75�

between the diagonal matrices �, given in Eq. �59�, and �,
given in Eq. �67�.

Equation �73�, or equivalently Eq. �75�, indicates that the
�diagonal� matrices � and � are congruent. Consequently, by
invoking Sylvester’s law of inertia for the equivalence of a

symmetric matrix under a congruent transformation
�52,58,59�, it can be shown �60� that the numbers of positive,
negative, and zero diagonal elements �+�0, �−�0, �0=0 of
�, cf. Eq. �67�, are, respectively, equal to those values �+

�0, �−�0, �0=0 of �, cf. Eq. �59�. For each distribution of
even and odd integers ni, i=1, . . . ,N, it is easy to enumerate
the numbers of positive, negative, and zero diagonal ele-
ments in �. For example, it is readily seen that in the case
that AA† is nondegenerate, all of the �i’s in � are nonzero
regardless of any combination of even and odd ni integers,
i=1, . . . ,N. The rank of the corresponding Hessian is then
equal to N2 at any critical point. Moreover, except at the
global minimum and maximum �respectively, corresponding
to situations when all ni’s are even or odd integers�, and
independent of the degeneracy of AA†, there exists at least
one negative and one positive �i value in � when the corre-
sponding ni’s consist of mixed even and odd integers, indi-
cating that none of the local critical points are traps.

In the special case of AA†=I, the corresponding landscape
can be summarized below: �1� at the global minimum �i.e.,
all ni are even integers�,

�76�

�2� at the global maximum �i.e., all ni are odd integers�,

�77�

and �3� at a local critical point with 0�k�N odd integers
�among all ni’s�,

�78�

As a result, we have, for 0�k�N,

�79�

The rank Rk and signature Sk of the Hessian H�t , t�� at the
critical points can be given in simple form: Rk=N�N−2k�
+2k2 and Sk=N�N−2k�, k=0,1 , . . . ,N �k=0 at the global
minimum, k=N at the global maximum, 0�k�N at all other
critical points�. Specifically, there are �N−k�2 positive eigen-
values ��

+�0, �=1, . . . , �N−k�2, k2 negative eigenvalues ��
−

�0, �=1, . . . ,k2, and 2�N−k�k additional zero eigenvalues.
In addition, there are infinitely many zero eigenvalues due to
the infinite dimensional continuous control field space in the

temporal domain �0,T�. All of results obtained in this work
based on the dynamical �control field� analysis are consistent
to those obtained from the kinematic landscape �U matrix�
analysis �26�.

VII. SUMMARY

We have presented a detailed study of the control land-
scape of unitary transformations in the context of working
with the infinite-dimensional function space L2 of square-
integrable control fields. Specifically, given a fully control-
lable N-level quantum system that evolves over time, gov-
erned by the unitary propagator U�t ,0�, and a preselected
unitary transformation W, we explored the landscape struc-
ture and properties of the Frobenius matrix norm square
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JF�E�= ���W−U��A�F
2 in the infinite-dimensional space L2 of

the control fields E�t� in conjunction with a landscape adap-
tation matrix A, including a full analysis of the degenerate
AA†=I case. The matrix AA†=D	2D†, Eq. �14�, provides a
flexible means for altering the dynamical control landscape
JF�E� by �i� changing the numbers of critical points, �ii�
generating different Hessian ranks and signatures at the criti-
cal points, and �iii� optimizing the gradient �JF�E� /�E�t�,
Eq. �24�, with different choices of the diagonal matrix 	2

and the unitary matrix D. Proper choices of 	2 and D �i.e.,
AA†� may enable better implementations for seeking optimal
controls of unitary transformations, especially, in the neigh-
borhood of the global minimum and maximum.

Within the electric dipole formulation, upper bounds were
obtained for both the slope �gradient� and curvature �Hes-
sian� over the control field landscape, and accordingly a gen-
eral assessment was made of robustness �i.e., error bounds in
JF�E� due to control field noise �E� when optimally control-
ling unitary transformations. It was found that for generic
controllable N-level quantum systems, the corresponding er-
ror bound is proportional to the product of the square norm
of the system’s dipole moment and the square norm of the
control field noise, implying that the underlying optimal con-
trol of the unitary transformation is inherently robust to the
presence of control laser field noise of reasonable magnitude.
We derived the necessary and sufficient conditions for the
existence of the regular critical points, defined in Sec. II, and
gave a thorough analysis of the qualitative properties of con-
trol landscape, based on the Hessian, at the corresponding
critical points. It was found that there is only one global
minimum and one global maximum value, corresponding to
U=W and U=−W, respectively. All other critical points are
nontrapping saddles.

For a nonsingular landscape adaptation matrix A, at most
2N distinct critical values of JF�E� exist and every Hessian at
the critical points, including both the global minimum and
maximum and all local nontrapping saddles, has a rank of at
most N2. For the completely degenerate AA†=I case, in ad-
dition to the two values associated with the global minimum
and maximum, there are N−1 local critical values of JF�E�.
Moreover, when the matrix W†U has exactly k negative ei-
genvalues, the rank and signature of the corresponding Hes-
sian are, respectively, �N−k�2+k2 and �N−k�2−k2. In all
cases, regardless of the exact nature of the nonsingular ma-
trix A, all local critical points are nontrapping, which is con-
sistent with a previous kinematic study of this special case
�26�.

For comparison, an alternative unitary transformation
landscape was considered in Appendix A using the phase-
independent functional JP�E�= 
tr�AA†W†U�
 to measure the
fidelity between the controlled and target unitary matrices.
The landscape JP�E� depends on the target W up to an ar-
bitrary global phase, in contrast to the Frobenius norm
square JF�E� that specifies the phase. It was found that �i�
the Hessian at the JP�E� critical points possess one addi-
tional zero eigenvalue beyond that of its JF�E� counterpart
due to the arbitrary global phase in the former, and �ii� both
landscapes contain no false traps. In Appendix B, the issue of
robustness for controlling quantum logic gates of a generic
multiqubit �p-qubit� quantum system was addressed, based

on the analysis of the JP�E� landscape. An error bound of the
unitary transformation fidelity F= 
tr�W†U�
 /2p for a coupled
p-qubit system at the global maximum was found to scale
approximately as p22p/2 in terms of the number p of the
qubits and quadratically with the one norm ��E�1 of the noise
in the control field, implying that when the number of the
qubits is large the unitary transformation involving fully
coupled qubits may not be robust in the presence of control
field noise, in agreement with the conclusion obtained from
the analysis using the action matrix �61�.
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APPENDIX A: PHASE-INDEPENDENT LANDSCAPE
OF JP[E]= �tr{AA†W†U}�

Consider a fully controllable N-level quantum system, N
�2, where the goal is to find a control field E�t�, t� �0,T�
that can generate a target W unitary transformation, within a
globally unspecified phase �. The associated optimal control
problem may be posed as the following maximization prob-
lem �17,21,22,25�

max
E�t�

JP�E� , �A1�

where the cost functional JP�E� defining the landscape is

JP�E� = 
tr�AA†W†U�
 � 0. �A2�

The cost functional JP�E� measures the fidelity between the
unitary transformation U=U�T ,0�, associated with a control
field E�t�, and the designated unitary transformation W
within a globally arbitrary phase. The functional derivative
�JP�E� /�E�t� of JP�E� with respect to E�t� is not defined at
the global minimum when JP�E�=0 �see below�, thus we
only consider the landscape of JP�E��0, cf. Eq. �A2�, in
this appendix. An arbitrary nonsingular adaptation matrix A
has been introduced to enable additional manipulation of the
JP�E� landscape in the control field function space, thereby
facilitating the search for optimal control fields. The special
case of AA†=I has been the subject of many recent studies,
especially in quantum information processing �16–22,27,61�.
In this case, the unitary transformation W is related to a
quantum logic gate associated with a p-qubit �p�1� quan-
tum system containing N=2p quantum states and the cost
functional JP�E� serves as a measure of the fidelity of the
optimal unitary transformation U with respect to W. The ro-
bustness for controlling a p-qubit quantum logic gate is pre-
sented in Appendix B.

To simplify the formulation, Eq. �A2� is rewritten as

JP�E� = 1
2 �tr�AA†W†U��* + tr�U†WAA†��� , �A3�

where the complex global phase parameter ��exp�ı�� is
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� =
tr�AA†W†U�

tr�AA†W†U�


�A4�

in terms of A, W, and U. The phase parameter � is of unit
modulus, i.e., 
�
=1. Moreover, ��*=1 and �*=�−1. The
phase parameter � is ill defined when JP�E�
= 
tr�AA†W†U�
=0. From Eq. �A3�, the first-order functional
derivative �JP�E� /�E�t� can be expressed as

�JP�E�
�E�t�

=
ı

2�
tr���*AA†X − �X†AA†���t�� , �A5�

where ��t�=U�t ,0�†�U�t ,0� and X=W†U. The functional
derivative �JP�E� /�E�t� in Eq. �A5� is not defined when
JP�E�=0 due to the ill-defined phase parameter �, cf. Eq.
�A4�. Likewise, the corresponding second-order functional
derivative �2JP�E� /�E�t���E�t� can be written as

�2JP�E�
�E�t���E�t�

=
ı

2�
 ��*

�E�t��
tr�AA†X��t��

−
��

�E�t��
tr�X†AA†��t���

−
1

2�2 ��* tr�AA†X��t����t��

+ � tr�X†AA†��t���t���� −
1

2�2 tr���*AA†X

− �X†AA†����t�,��t���� , �A6�

where

��

�E�t�
=

1

JP�E�
ı�

2�
��* tr�AA†X��t�� + � tr�X†AA†��t��� .

�A7�

At the critical points where �JP�E� /�E�t�=0, it can be
shown that the equality �the critical point condition�

AA†X̃ = X̃†AA† �A8�

holds for a fully controllable N-level quantum system, as
shown in Secs. II and IV. In Eq. �A8�, we have introduced
the notation

X̃ = �*X = �*W†U . �A9�

Multiplying Eq. �A8� with X̃ on the left-hand side and X̃† on
the right-hand side produces the relation

X̃AA†X̃ = AA† = X̃†AA†X̃†. �A10�

It can then be shown �55� that Eq. �A10� leads to

X̃† = X̃ �A11�

for X̃ and the commutation relation

�AA†,X̃� = 0 �A12�

between AA† and X̃. Note that X̃†X̃=X†X=I, i.e., X̃ is also

unitary, recalling that X�W†U and X†X=I. Thus, X̃ satis-
fies the quadratic matrix equation

X̃2 = X̃†X̃ = I , �A13�

whose solutions are the square roots of the identity I.
Due to the commutation relation Eq. �A12�, the matrices

AA† and X̃ can be simultaneously diagonalized by the same
unitary matrix D, D†D=I, such that

D†�AA†�D = 	2 �A14�

and

D†X̃D = � , �A15�

where 	2 and � are both diagonal square matrices whose
diagonal matrix elements are, respectively, given by


i
2 = 	ii

2 � 0 �A16�

and

�i � �ii = �− 1�ni �ni even or odd integers� . �A17�

From Eqs. �A14�–�A17�, we can show that at the critical
points

JP�E� = tr�AA†X̃� = 	
i

�− 1�ni
i
2, �A18�


tr�AA†X�
 = 
tr�AA†X̃�
 = �	
i

�− 1�ni
i
2� , �A19�

and

�*� =
tr�AA†X̃�


tr�AA†X̃�

=

	
i

�− 1�ni
i
2


	
i

�− 1�ni
i
2


= 1, �A20�

leading to the condition

JP
c = 	

i

�− 1�ni
i
2 = �	

i

�− 1�ni
i
2� � 0 �A21�

that the integers �ni� must fulfill in characterizing the eigen-

values ��i� of X̃, as given in Eq. �A17�. As a result, at the
critical points, the cost functional JP�E� can be easily com-
puted using the simple expression

JP�E� = JP
c = �	

i=1

N

�− 1�ni
i
2� � 0, N � 2, �A22�

independent of the global phase parameter �, but subject to
the condition, Eq. �A21�. From Eqs. �A21� and �A22�, it is
found that JP�E� is a maximum, with magnitude 	i=1

N 
i
2,

when �ni� are all even integers. In the case that AA† is com-
pletely nondegenerate, i.e., 
1

2�
2
2� . . . �
N

2 , the number
of allowed values of JP�E� at the critical points is at most
2N−1, as opposed to 2N for the Frobenius cost functional
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JF�E�, cf. Eq. �47�. Moreover, in the special case of AA†

=I, since 
1
2=
2

2= . . . =
N
2 =1, the number of odd integers

among all ni’s must be less than that of even ones due to the
constraint Eq. �A21�. Thus, when AA†=I, the allowed �posi-
tive� values of JP�E� at the critical points are N−2k with k
=0,1 , . . . , �N /2� being the allowed numbers of odd integers
among all ni’s, where �N /2�= �N−2� /2 when N is an even
number and �N /2�= �N−1� /2 when N is an odd number, cf.
Eq. �48�.

Using Eq. �A8� in Eq. �A6�, the Hessian H�t , t��
��2JP�E� /�E�t���E�t� at a critical point can be succinctly
written as

H�t,t�� = −
1

�2JP
c �JP

c tr�Ỹ��t����t�� − tr�Ỹ��t���tr�Ỹ��t��� ,

�A23�

where the matrix Ỹ is given by

Ỹ = �*AA†W†U = AA†X̃ = X̃AA†. �A24�

The Hermitian matrix Ỹ can be diagonalized as follows:

�̃ = D†ỸD = D†AA†DD†X̃D = 	2� , �A25�

with diagonal matrix �̃ composed of elements

�̃i = �̃ii = �− 1�ni
i
2. �A26�

From Eqs. �A23�–�A25�, the Hessian H�t , t�� can be further
expressed as

H�t,t�� = −
1

�2	
i

�− 1�ni
i
2	

j

�i
�̄�t��
j��j
�̄�t�
i��
+

1

�2JP
c 	

i

�− 1�ni
i
2�i
�̄�t��
i��

�	
i

�− 1�ni
i
2�i
�̄�t�
i�� , �A27�

where �̄�t�=D†��t�D. Equation �A27� can be rearranged to
yield

H�t,t�� = −
1

�2JP
c 	

i
��JP

c − �− 1�ni
i
2��− 1�ni
i

2�i
�̄�t��
i�

��i
�̄�t�
i� − 	
j�i

�− 1�ni+nj
i
2
 j

2�i
�̄�t��
i��j
�̄�t�
j��
−

1

�2	
i

�− 1�ni
i
2	

j�i

�i
�̄�t��
j��j
�̄�t�
i� . �A28�

Equation �A28� can be written as an equivalent quadratic
form

�v
H
v� = x�
T�̃x� �A29�

in terms of an N2-dimensional column vector x�

=�0
T��t�v�t�dt containing as components the real and imagi-

nary parts of the integrals over the products of the matrix
elements of ��t� and an arbitrary function v�t�, c.f., Eqs.
�55�–�57� and Eqs. �64� and �65�. By invoking Sylvester’s

law of inertia �52,58,59�, it can be concluded that at the

critical points both the Hessian H�t , t�� and �̃ possess the
same rank and signature in terms of the distribution of their
respective positive, negative, and zero eigenvalues. The Hes-
sian at the global maximum of the landscape JP�E� is of
rank N2−1, in comparison with the rank, which is N2, of the
Hessian associated with the landscape JF�E� in Eq. �12�.
This can be shown as follows.

The N2�N2 real symmetric matrix �̃ can be written in
block-diagonal form

�̃ = �̃� � �̃�, �A30�

where the N�N real symmetric matrix �̃� is composed of
the nonvanishing matrix elements

�̃ii� = −
1

�2JP
c �JP

c − �− 1�ni
i
2��− 1�ni
i

2, i = 1, . . . ,N ,

�A31�

�̃ij� = +
1

�2JP
c �− 1�ni+nj
i

2
 j
2, 1 � i � j � N �A32�

and the N�N−1��N�N−1� real symmetric matrix �̃� is di-
agonal with the following N�N−1� elements

�̃JijJij
� = −

1

�2 ��− 1�ni
i
2 + �− 1�nj
 j

2�, 1 � i � j � N ,

�A33�

�̃KijKij
� = −

1

�2 ��− 1�ni
i
2 + �− 1�nj
 j

2�, 1 � i � j � N ,

�A34�

with the indexes Jij = �i−1�N− i�i+1� /2+ j and Kij =N�N
−1� /2+Jij. It is important to reveal the eigenvalues, includ-
ing their signs, of the Hessians at the critical points, equiva-

lently those of the matrix �̃ given in Eq. �A30�, in order to
characterize the associated dynamical control landscape
JP�E�. To this end, it is expected that all eigenvalues of the

matrix �̃ in Eq. �A30� are less than or equal to zero at the
global maximum of the landscape JP�E�.

For example, in the special case of AA†=I, i.e., 
1
2=
2

2

= . . . =
N
2 =1, the matrix �̃ at the global maximum, i.e.,

JP�E�=N, contains the following nonzero elements:

�̃ii = −
1

N�2 �N − 1�, i = 1, . . . ,N , �A35�

�̃ij = +
1

N�2 , 1 � i � j � N , �A36�

�̃ii = −
2

�2 , N + 1 � i � N2, �A37�

from which the characteristic polynomial may be written as
�62,63�
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det��̃I − �̃� = �̃�̃ +
1

�2�N−1�̃ +
2

�2�N�N−1�

= 0.

�A38�

Thus, we have

�A39�

as the eigenvalues of the matrix �̃, compared to its counter-
part

�A40�

for the matrix �, cf., Eqs. �76� and �77�, corresponding to the
global minimum and maximum of the landscape JF�E�. It is
interesting to see that regardless of the number N of quantum
levels, the corresponding Hessian possesses an extra zero
eigenvalue �on the top of infinitely many zero eigenvalues
that already exist due to the infinite dimensionality of the
control field function space�, N−1 negative eigenvalues − 1

�2

and N�N−1� negative eigenvalues − 2
�2 for the matrix �̃ at the

global maximum. The Hessian rank of JP�E� being smaller
than that of JF�E� by one is consistent with the fact that the
JP�E� landscape is independent of the global phase of the
designated unitary transformation W. In the remaining sec-

tion we present an analysis of the eigenvalues of the matrix �̃
of Eq. �A30�, therefore of the Hessian of JP�E�. In particular

it will be shown that for 1�n�N, �̃ always possesses at
least one positive and at least on negative eigenvalue. From
this result, it may be concluded that the landscape JP�E� has
no false traps.

Many of the eigenvalues of the matrix �̃ Eq. �A30� can be

directly read off from the diagonal matrix �̃�, which is an
N�N−1��N�N−1� diagonal matrix, characterized by N�N
−1� /2 duplicate entries �eigenvalues�, cf. Eqs. �A33� and
�A34�. It is seen that all eigenvalues �i.e., the elements� of

the diagonal matrix �̃� are negative at the global maximum
where all ni’s are even integers. Moreover, the eigenvalues of

�̃� are always mixtures of both positive and negative values
as long as the number k of odd integers among ni’s is greater
than one. In general, the number of positive eigenvalues �im-

plying no false local traps� that the matrix �̃� may possess
increases with the number k. The matrix �� possesses at least
k�k−1� /2 duplicate positive eigenvalues, or equivalently at
most �N−k��N+k−1� /2 duplicate negative eigenvalues,
when k�2. In the special case that the index nN �correspond-
ing to the smallest singular value 
N

2 of the matrix A†A� is
the only odd integer �i.e., all other n1 ,n2 , . . . ,nN−1 are even

integers�, the matrix �̃� possesses only negative eigenvalues
�as well as 2�m−1� zeros when the smallest eigenvalue of
AA† is m-fold degenerate, i.e.,

1

2� . . . �
N−m
2 = . . . =
N

2 �0�. However, it can be shown in

the following that in this special k=1 case the corresponding

matrix �̃� possesses at least one positive eigenvalue.
The eigenvalue problem involving the N�N real sym-

metric submatrix �̃� �c.f. Eqs. �A31� and �A32��, is in gen-
eral difficult to solve since it is a full matrix, except at the
global maximum for the special case of AA†=I in which all
n1 , . . . ,nN are even integers, see Eqs. �A35�–�A39�. Never-

theless, because of the special structure of the matrix �̃�, it
can be shown that, in general, the determinant of the matrix

�̃�I− �̃� can be written in closed form �62�

det��̃�I − �̃�� = 1 −
1

�2JP
c 	

i=1

N

i

4

�̃� + �− 1�ni
i
2/�2�

��
i=1

N �̃� +
1

�2 �− 1�ni
i
2� . �A41�

It can then be shown that the characteristic polynomial of the

matrix �̃� is �cf. Eq. �A41��

�A42�

where �̃2�� ¯ ��̃N� �0. As a result, the matrix �̃� possesses
exactly one zero eigenvalue, say �̃1�=0, at all critical points,
a manifestation of the global phase of the unitary matrix W
being unspecified in the cost functional JP�E�. From Eqs.
�A41� and �A42�, we can readily derive the equality

�A43�

which is a product of N−1 eigenvalues �̃2� . . . �̃N� and holds for
arbitrary N�2. It is seen from examining the right-hand side
of Eq. �A43�, and invoking Eqs. �A21� and �A22�, that �i�
cN�0 if N and k are both even integers or are both odd
integers and �ii� cN�0 if N is an even integer and k is an odd
one or vice versa, since the denominator 	i=1

N �−1�ni
i
2 is al-

ways positive, cf. Eq. �A21�. As a result, in the case of k
=1 �i.e., only one odd integer among all ni’s�, the corre-

sponding N−1 nonzero eigenvalues �̃2� , . . . , �̃N� of �̃� cannot

all be negative, i.e., the matrix �̃� always possesses at least
one positive eigenvalue regardless of whether N is an even or
odd number. In the case of k�2 �i.e., two or more negative

integers among all ni’s�, the matrix �̃�, Eqs. �A33� and
�A34�, is endowed with at least one duplicate positive eigen-

value. As a result, the matrix �̃= �̃� � �̃� possesses at least
one duplicate positive eigenvalue. It can therefore be con-
cluded that the landscape JP�E�, similar to that of JF�E�,
also contains no local false traps �i.e., all saddles� regardless
of the number N of levels.
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APPENDIX B: ROBUSTNESS FOR CONTROL
OF A p-QUBIT QUANTUM LOGIC GATE

In this appendix, we specifically consider the phase-
independent unitary transformation fidelity defined as
�16,61�

F =
1

N

tr�W†U�
 , �B1�

for an ensemble of p qubits, where N=2p. Given a perfect
�noiseless� control field E�t� maximizing F, t� �0,T�, for a
target quantum logic gate W, the matrix U=U�T ,0� is the
unitary transformation W at the time T, within a global
phase. Note that F=JP�E� /N with AA†=I in Eq. �A2� in
Appendix A. In quantum information science applications, it
is important to know the error �F in the cost functional F
due to the control field noise �E�t�, particularly at the global
maximum of the landscape F, namely,

�F = F�E�t� + �E�t�� − F�E�t��

�
1

2
�

0

T �
0

T

HF�t,t���E�t��E�t��dtdt�, �B2�

where, from Appendix A, the corresponding Hessian can be
written as

HF�t,t�� =
�2F

�E�t���E�t�
=

1

�2

1

N2 �tr��*W†U��t����

��tr��*W†U��t��� −
1

�2

1

N
tr��*W†U��t����t��

�B3�

with the phase parameter �=tr�W†U� / 
tr�W†U�
. The Hes-
sian at the global maximum of F is bounded by the relation


HF�t,t��
 �
1

�2

1

N2 
„tr�W†U��t���…„tr�W†U��t��…


+
1

�2

1

N

tr�W†U��t����t��


�
1

�2

1

N2N���F
2 +

1

�2

1

N
N1/2���F

2

=
1

�2

1

N
�1 + N1/2����F

2 , �B4�

thus resulting in an error bound �up to second order� for the
underlying fidelity


�F
 �
1

2
�

0

T �
0

T


HF�t,t���E�t��E�t��
dtdt� �
1

2

1

�2

1

N
�1

+ N1/2����F
2�

0

T


�E�t�
dt�2

=
1

�2

1

2p+1 �1 + 2p/2����F
2

� ��E�1
2. �B5�

Here we have remarked that the norm �W†U�=N1/2=2p/2 for
a p-qubit system.

The Hamiltonian of a p-qubit system in the presence of a
control field E�t� may be modeled as �27�

H�t� =
1

2�	
i=1

p

�i�iz − 	
i=1

p−1

	
j�i

p

�ij��ix � � jx + �iy � � jy

+ �iz � � jz�� −
1

2	
i=1

p

�iE�t��ix, �B6�

where �i and �i are, respectively, the energy spacing and
internal coupling constant of the ith qubit, and �ij��0� is the
coupling constant between the ith and jth qubits. The 2�2
matrices �ix, �iy, �iz are, respectively, defined as the tensor
products

�B7�

�B8�

�B9�

in terms of the 2�2 identity matrix I2 and the 2�2 Pauli
matrices �x, �y, �z, with the subscript i designating the ith
qubit. As a result, we have ��ix�F= ��iy�F= ��iz�F=2p/2, inde-
pendent of the index i, since �I2�F= ��x�F= ��y�F= ��z�F

=21/2 and ��ix,y,z�F= �I2�F
i−1� ��x,y,z�F� �I2�F

p−i. It can be eas-
ily shown that for p qubits the corresponding Frobenius
norm ���F of the operator � may be estimated as

���F = �1

2	
i=1

p

�i�ix�
F

�
1

2	
i=1

p


�i
 � ��ix�F

=
1

2
2p/2	

i=1

p


�i
 �
p

2
2p/2�0, �B10�

assuming that 
�i
��0 for all i. Substituting Eq. �B10� in
Eq. �B5� yields an approximated error bound for the fidelity
the p-qubit system


�F
 �
1

�2

p2

23 �1 + 2p/2��0
2��E�1

2 →
p�1 1

�2

p2

23 2p/2�0
2��E�1

2.

�B11�

The estimated error bound for the unitary transformation fi-
delity of a coupled p-qubit system scales as p22p/2 in terms of
the number p of the qubits and quadratically with the one
norm ��E�1 of the noise in the control field, implying that
when p is large the unitary transformation involving fully
coupled p qubits may not be robust in the presence of control
field noise. These findings are generally in agreement with
the conclusion obtained from the analysis using the action
matrix �61�.
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In summary, a detailed analysis has been performed in the
Appendixes A and B for the maximization of the cost func-
tional JP�E�= 
tr�AA†W†U�T ,0�� 
 . It is found that the land-
scapes of JP�E� and JF�E� are essentially the same, with the
difference being attributed to the additional, indefinite global

phase, producing an extra null-space dimension at the global

maximum of JP�E�. The issue of robustness for controlling

quantum logic gates of a generic p-qubit quantum system

was also addressed.
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