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Superpositions of paraxial laser beam modes to generate atom-optical lenses based on the optical dipole
force are investigated theoretically. Thin, wide, parabolic, cylindrical, and circular atom lenses with numerical
apertures much greater than those reported in the literature to date can be synthesized. This superposition
approach promises to make high-quality atom beam imaging and nanodeposition feasible.
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I. INTRODUCTION

The field of atom optics offers considerable potential in
applied and fundamental physics, both for atom beam lithog-
raphy �to create nanostructures� �1,2� and for atom beam
microscopy �3,4�. Here, the use of the optical dipole force
using far-detuned laser light for the manipulation of neutral
atoms is considered. In this regime it yields a conservative
potential for the manipulation of atoms that is proportional to
the laser light intensity �1,5�.

Already in 1978 Ashkin and co-workers demonstrated
neutral atom beam focusing using the optical dipole force
�6�. Many techniques to focus atomic beams have been tried
since: mirrors �7,8�, transmission gratings �9,10�, holo-
graphic reflection gratings �11�, electrostatic lenses �12�,
magnetic lenses �1,13–16� or magnetic mirrors �17�, nanoap-
ertures �18–20�, and optical setups �1,6,18,20–31� relying on
the optical dipole force �1,5�.

Among optical dipole force approaches there are schemes
based on pulsed laser configurations �21,22�, light confined
by nanoapertures �18�, single-mode hollow beams �6,23,24�,
or standing wave setups that yield tightly spaced ridges of
the atomic deposition patterns �1,25–28�. Standing wave pat-
tern approaches can also yield other deposition patterns
�29,30�, but because of the high spatial frequencies involved,
smooth profiles such as those desired for aberration-free
atom lenses wider than 200 nm cannot be synthesized with
this approach �1,26,30,31�.

In the case of standing wave setups �1,30�, spherical ab-
errations give rise to pronounced pedestals, filling the gaps
between patterned areas �1,25,30�. This makes it impossible
to lay down separate nanowires. A pulsed approach should
reduce the pedestal problem �32� but remains constrained by
the short spatial wavelengths typical for standing wave ap-
proaches �33�. A related approach �27�, which suffers less
from pedestal problems, uses atomic deexcitation processes,
creating an effective transmission mask for excited noble-gas
atoms to etch structures. Unfortunately, it appears to be un-
suitable for direct deposition of metal atoms �they tend to
stick to the deposition area regardless of their internal state�.
Its inherent filtering reduces atomic deposition rates and,
more importantly, it does not redirect the center of mass of
atomic motion and thus cannot be used for traditional imag-
ing of atomic beams.

Similar problems occur in the application of single-mode
hollow laser beams �23,24� as optical imaging elements.
Their waist is potentially wide, but their elongation leads to
thick lenses with small numerical apertures: for realistic set-
ups a diameter of the transverse parabolic part of the poten-
tial of less than 200 nm arises in conjunction with focal
lengths in the micrometer range �18,23,24� yielding unsatis-
factorily small numerical apertures for atomic focusing. This
implies that one would have to start out with already well-
focused atomic beams and, yet, the resulting atomic point-
spread function remains unsuitably wide. None of the ap-
proaches mentioned so far has been adopted as a solution for
the problem of imaging of atomic beams in atomic micros-
copy �3,4� or direct atom-deposition lithography �1,2�; a vi-
able atom-optical lens still needs to be found.

Here, it is shown that only the superposition of many laser
modes �34–36� will allow us to generate wide atom-optical
lenses based on the optical dipole force. We will find that
widening the beams’ waists is not a solution if atomic lenses
with large numerical apertures are desired, because prohibi-
tive increases in laser power are necessary. The idea of this
paper is to superpose several odd Hermite-Gaussian TEMmn
modes �m,n �37–39�, such that all nonlinear terms in the de-
pendence of the electric field on the �transverse� x direction
are optimally suppressed �see Fig. 1�. This generates an elec-
tric field profile that varies linearly across a large part of the
laser beam’s cross section �see Fig. 2�, and yields the desired
parabolic laser intensity profile to generate an aberration-free
atom-optical lens.

After an introduction of the underlying idea in Sec. II, its
possible implementation using Hermite-Gaussian modes to
generate cylindrical lenses is described in Sec. III. Section
IV generalizes this approach to a crossed-beam configuration
that yields thin spherical lenses. We conclude in Sec. V.

*O.Steuernagel@herts.ac.uk FIG. 1. �Color online� Arrangement of beams.
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II. SUPERPOSITIONS OF ODD MODES

We now consider cylindrical atom lenses with a parabolic
modulation in the x direction �see Fig. 1�; most of what fol-
lows can be translated into the scenario of circular lenses for
which atomic beams copropagate with the focusing laser
beams �6,23� on their optical axis—instead of crossing
through it. Such circular lenses would require the use of
Laguerre-Gaussian instead of Hermite-Gaussian modes �23�
but they have the disadvantage of yielding either tiny lenses
�in the case of strongly focused laser beams� or thick lenses
�for less focused laser beams� �23�. We therefore do not in-
vestigate setups with laser beams co-propagating with the
atomic beam here; instead, we will show in Sec. IV how to
create a thin spherical lens using a combination of two or-
thogonally crossed multimode Hermite-Gaussian laser
beams.

A. Hermite-Gaussian modes

Let us consider modes �m,n �37–39�, with transverse beam
coordinates x and y propagating in the z direction. The Ray-
leigh lengths zRx

and zRy
associated with the two transverse

coordinates, x and y, can be different from each other �fo-
cused by different cylindrical lenses, say�. In this case two
different associated beam waist radii, w0x and w0y, and Gouy
phases, �x�z� and �y�z� arise. In the paraxial approximation
the normalized modes have the form

�m,n�r� =� �2

wx�z�
�m� �2x

wx�z�
�exp� ikL

2

x2

Rx�z��
�exp�− i�m +

1
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��x�z�	

�� �2

wy�z�
�n� �2y

wy�z�
�exp� ikL
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y2
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�exp�− i�n +

1

2
��y�z�	 . �1�

Here, r= �x ,y ,z� is the position vector, �L the frequency of
the monochromatic laser, kL=�L /c=2� /�L its wave number,
and �m���=Hm���exp�−�2 /2� /�2mm!�� �m=0,1 ,2 , . . . �,
with the Hermite polynomials Hm �37–39�. The wave front
radii R�z�= �z2+zR

2� /z, the beam radii w�z�=w0
�1+z2 /zR

2

with w0=��LzR /�, and the longitudinal Gouy phase shifts
�37–39� ��z�=arctan�z /zR�, are all parametrized by the
beams’ Rayleigh lengths zR; strictly speaking by zRx

and zRy
,

respectively.
In a configuration such as that displayed in Fig. 1, one can

generate �34,36� a wide cylindrical atom lens using a laser
beam with an electric field composed of a suitable combina-
tion of odd modes,

	2J+1�r� = 

j=0

J

c2j+1�2j+1,0�r� . �2�

Here, the beam is modulated in the x direction whereas for
the y direction the purely Gaussian lowest-order mode �0 is

employed. Note that this allows us to make the lens “thin” in
the y direction. With increasing cutoff J, the superposition
pattern becomes increasingly dephased due to the action of
Gouy’s phase �35�; this will be further investigated in Sec.
IV.

Following Ref. �38�, the modes in Eq. �1� yield an electric
field which is polarized in the y direction with a small con-
tribution in the z direction due to the tilt of wave fronts off
the beam axis �x̂ , ŷ , ẑ are the unit vectors and Re stands for
real-part�

E2J+1�r;t� = Re��ŷ�L	2J+1 + ẑic
�	2J+1

�x
�ei�kLz−�Lt�	 .

�3�

For beams that are not too tightly focused we neglect the
transverse derivatives. The associated time-averaged light in-
tensity distribution then has the form �38�

I2J+1�r� = 
0�E2J+1�r,t�2� 

0

2
�L

2�	2J+1�r��2. �4�

B. Normalization and intensity scaling

With the normalized modes of Eq. �1� and assuming that
the sum of the coefficients 
�c2j+1�2 in Eq. �2� is unity we use
the normalization

�
−�

� �
−�

�
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=
2


0�L
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Assuming validity of the Raman-Nath approximation of neg-
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FIG. 2. �Color online� Electric field profile E2J+1�x ,0 ,0� at focal
cross section of Hermite-Gauss beams comprising superpositions of
up to 23rd-order odd modes �i.e., 2J+1=1,3 , . . . ,23; x axis in units
of beam waist w0x, total cross-sectional beam power normalized to
unity, Rayleigh lengths kept constant, 
0�L

2 /2 set to unity�.
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ligible transverse motion of the atoms ��x ,z�=const� �40�,
the atoms experience the y-integrated intensity distribution
of the laser field given by

Ī2J+1�x,z� = �
−�

�

dy I2J+1�r�

=

0�L

2

2

�2

wx�z��
j=0

J

�2j+1� �2x

wx�z�
�e−i�j+1/2��x�z��2

.

�6�

We note that this integrated intensity Ī of beams of fixed
total power reduces inversely proportionally to their width
w0x, that is, their field amplitudes scale with w0x

−1/2. Further-
more the field gradients diminish with w0x

−1. This implies that
the effective curvature of the integrated laser light intensity,
��	�2, responsible for atomic focusing scales with w0x

−3. We
face an unfavorable cubic scaling with the beamwidth if we
attempt to expand a laser beam transversally in order to
widen the effective lens without weakening its refractive
power. Additionally, as we will show below, pure modes
have small useful areas to generate lenses, the combination
of these two factors makes a pure mode approach unfeasible.
It forces us to employ the mode superpositions studied here.

C. Optical dipole force

We assume that the interaction between atoms and the
laser light is well described by a two-level scheme �excited
state e and ground state g� in the rotating wave approxima-
tion with effective atomic linewidth � and resonance fre-
quency �=�e−�g. This leads to the expression
I�r��2 / �2IS�=�r�2 for the Rabi frequency  as a function
of the ratio of the local laser intensity I�r� and the transition’s
saturation intensity IS=�hc� / �3�3� �5,26�. With sufficiently
weak laser intensity I and sufficiently large detuning ��

=�L−� of the laser frequency �L from the atomic transition
frequency �, the ac Stark shift gives rise to a conservative
optical dipole potential which, to first order in I / IS, has the
form �5,41�

U� 
��2

8��

I�r�
IS

. �7�

We can determine the atomic de Broglie wave number � of
atoms with mass M and initial kinetic energy K0
= ���0�2 / �2M� in terms of their kinetic energy K. Disregard-
ing Doppler detuning, and assuming the validity of the
Raman-Nath approximation �K0�U��, this allows us to cal-
culate the associated phase shift

���x,z�  � dy���r� − �0�

=
�2MK0

�
� dy�� K

K0
− 1� �8�


�2MK0

�
� dy��1 −

U�

K0
− 1�


− �2M�2

16�K0IS��

Ī�x,z� . �9�

The dependence of Eq. �9� on the inverse kinetic energy
implies that best performance is achieved for monochromatic
atomic beams; the approximations are in accordance with the
Raman-Nath assumption �40�. Work by Drewsen et al. �42�
showed that, for an atom lens, chromatic dispersion can be
reduced by tilting the laser beam with respect to the passing
atomic beam, but the focal plane would have to be tilted as
well. Such a tilt, however, elliptically stretches out the
atomic beam’s point-spread function.

Aside from spherical aberrations, there are detrimental
noise sources due to spontaneous emission of photons and
light fluctuations. These tend to increase with increasing la-
ser intensity but can be decreased by increased detuning �5�
or through the use of more complicated optical level schemes
�41�. Further discussion of their influences is beyond the
scope of this paper.

III. CYLINDRICAL LENSES

According to Eqs. �8� and �9� parabolic optical potentials
give rise to parabolic atom-optical phase masks, as is re-
quired for “perfect” atom lenses. In other words, we want the
y-integrated electric field profile to depend linearly on the x
direction �see Fig. 2�. In order to achieve this we integrate
out the y component �see Eq. �6��, then Taylor-expand the
field profile, and finally choose the coefficients in Eq. �2� so
as to cancel terms nonlinear in x. Using the first 2J+1 odd
field modes, all nonlinear terms up to �2J+1�th order can be
canceled. The determination of the coefficients c2j+1 involves
the solution of a linear equation system and is easily per-
formed. For instance, for the third superposition field 	5,
comprising Hermite-Gaussian modes �1,0, �3,0, and �5,0, the
relative strengths of the coefficients are c3=c118�6 /71 and
c5=c12�30 /71. For a normalized superposition the coeffi-
cient c1 should be chosen accordingly. The family of the first
12 normalized superpositions �	2J+1 ,2J+1=1,3 , . . . ,23� is
displayed in Fig. 2; the associated set of amplitude coeffi-
cients c2j+1 is shown in Fig. 3.

Mode superpositions extend the “useful” linear part of the
field profile, yielding wider parabolic intensity profiles. Fig-
ure 4 demonstrates that the useful parabolic part in the focal
intensity profile expands with the number of superposition
modes 2J+1 according to the �2J+1 scaling, expected for a
harmonic oscillator �35�. Note, however, that the refractive
power of the wider lenses is reduced �its atom-optical focal
length is lengthened�, because wider lenses have reduced
transverse field gradients �see Fig. 2 and discussion follow-
ing Eq. �6��. In order to compensate for this loss of refractive
power, we can increase the transverse field gradient either
through laser beam focusing in the x direction, or through an
increase in laser beam power. Focusing in the y direction

makes no difference since only the integrated intensity Ī mat-
ters. In the next section we show how much the power has to
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be raised to keep the atomic lenses’ refractive powers equal.
Subsequently, in Sec. IV, we will investigate focusing in the
x direction; we will see that Gouy dephasing constrains this
focusing; the lenses must not be shrunken below a certain
limit.

A. Increased beam power compensates for lens widening

If we increase the total beam power P2J+1 for wider beam
profiles according to the ratios of the modes’ transverse de-
rivatives, P2J+1= P1��x	1�x ,0 ,0� /�x	2J+1�x ,0 ,0��2, the
weakened gradient is power compensated for by increased
laser power. In this way all optical potentials give rise to
atom lenses with equal refractive power; see Fig. 5. The

necessary beam power increase to achieve this compensation
is sketched in Fig. 6. The power savings due to our multi-
mode approach are quantified in Sec. III C.

B. Decreased Rayleigh length compensates for lens widening

Alternatively to the beam power increases just discussed,
we can keep the total beam power for all beams equal and
shrink the higher-order superposition-beams’ Rayleigh
lengths through increased beam focusing in the x direction.
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FIG. 3. �Color online� Amplitude coefficients c2j+1 of Hermite-
Gauss superpositions 	2J+1 of up to 33rd-order modes �2J+1
=1,3 , . . . ,33�.
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FIG. 4. �Color online� Integrated focal intensity profiles Ī�x ,0�
of Hermite-Gauss superposition beams comprising up to 23rd-order
modes; compare Fig. 2 �same units as in Fig. 2; vertical bars mark
location of position 0.57�2J+1w0x, confirming harmonic oscillator
scaling �35��.
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FIG. 5. �Color online� Integrated focal intensity profiles Ī�x ,0�
of Hermite-Gauss beams comprising up to 23-rd order modes; com-
pare Fig. 2 �same units as in Fig. 4; total beam power adjusted such
that all profiles have same curvature at origin as the dotted line
parabola�.

0

20

40

60

80

100

120

5 10 15 20 25 30

FIG. 6. �Color online� The increase in total beam power needed
to achieve the power compensation described in the text and dis-
played in Fig. 5 as a function of mode number �solid red line� scales
approximately like �20 /31��2J+1�3/2 �dotted black line�.
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This also allows us to compensate for the gradient reduction
observed in Fig. 2. The corresponding laser intensity profiles
are displayed in Fig. 7 and lend themselves to an efficiency
analysis of the invested laser power. The vertical bars in this
figure mark the points d2J+1, where each intensity curve de-
viates from the enveloping parabola �dotted line� by 0.74%.
They delineate the useful areas of the lenses. Beyond a de-
viation of 0.74%, spherical aberrations distort the atomic
point-spread function of an imaged atomic beam too se-
verely. The filled-in areas under the curves in Fig. 7 represent
the laser power fraction contributing to the atom lens in each
case. Higher-order superpositions clearly allow us to use the
laser power much more efficiently. This is quantified in the
next section.

C. Lens quality and power savings

The 0.74% criterion was extracted from the work by Gall-
atin and Gould �23�, who considered, for example, the use of
a 0.1 W laser detuned by roughly 40 000 linewidths. To

achieve acceptable performance, the effectively useful beam
area was found to be only some 2d1=140 nm wide �for a
laser beam with a 2w0x=2 �m waist diameter �23��. In other
words, pure laser modes yield only a small useful window
�in order to satisfy the 0.74%-deviation criterion only about
2d1 / �2w0x�=140 nm /2 �m7% of a cylindrical lens diam-
eter or only the central 0.49% area of a circular lens is use-
ful�. Most of the laser power is wasted in the wings if no
suitable superpositions of higher-order modes are employed.
In our case of a cylindrical lens based on the Hermite-
Gaussian mode �1,0, very similarly, approximately d1 /w0x
=6% of the width of the beam is useful �see Fig. 7�. Addi-
tionally to the quantification of the useful area of the lenses
�see Table I�, this waste is meaningfully quantified through
the determination of the fraction of power E2J+1 the laser
beam contributes to the “useful” part of the lens profile. We
define it as the ratio of the laser energy contributing to the
area between the deviation points −d2J+1�x�d2J+1, in terms
of the total laser power, namely,

E2J+1 =

�
−�

�

dy�
−d2J+1

d2J+1

dx I2J+1�x,y,0�

�
−�

�

dy�
−�

�

dx I2J+1�x,y,0�
. �10�

Figure 7 and Table I summarize and quantify our findings.
Specifically, Table I allows us to compare values for a single-
mode atom lens for which E1=0.048% with the superposi-
tion approach. For example, compared to mode 	1 the rela-
tive power savings in the case of superposition 	33 is 825;
this translates into a power utilization of E33=0.048%
�825=39%. In general the details of this behavior depend
on the chosen quality criterion, but the underlying scaling is
straightforward to derive. The useful fraction of the laser
beam is proportional to a linear integral over the intensity
and therefore grows with the third power of the position of
the deviation mark E2J+1 /E1= �d2J+1 /d1�3.

IV. SPHERICAL LENSES

We now want to investigate the constraints that arise
when an identical copy of the laser beam that travels along
the z axis �see Fig. 1� is additionally sent along the x axis
such that their crossed configuration leads to the simulta-
neous application of two cylindrical lenses giving rise to the
application of a spherical lens to the atomic beam. Either the
laser beams are slightly displaced along the y axis, or they
are sufficiently detuned from each other that despite their
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FIG. 7. �Color online� Integrated focal intensity profiles Ī�x ,0�
of Hermite-Gauss beams comprising up to 23-rd order modes �com-
pare Fig. 2�, and their 0.74%-deviation marks d2J+1, which lie at
relative positions d2J+1 /d1=1.00,3.24, . . . ,8.70 from the origin
�compare Table I� �same units as in Fig. 2; in contrast to Fig. 5 total
beam power normalized to unity, but Rayleigh lengths zRx read-
justed such that all higher-order superpositions match up with cur-
vature of the first mode case 	1; see text�.

TABLE I. Lens parameters d2J+1 and E2J+1 �compare Fig. 7�.

2J+1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

d2J+1 /d1 1.00 3.24 4.75 5.74 6.45 7.00 7.42 7.78 8.06 8.32 8.53 8.70 8.87 9.01 9.15 9.27 9.36

E2J+1 �%� 0.048 1.6 5.1 9.1 13 16 20 23 25 28 30 32 33 35 37 38 39

E2J+1 /E1 1 34 107 190 269 344 411 472 526 576 620 662 699 735 766 795 825
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spatial overlap no harmful interference occurs �43�.
Gouy’s phase ��z�=arctan�z /zR�z /zR introduces rela-

tive phases between the modes within each beam. Since the
Gouy phase varies most strongly near the beam focus we
have to consider its mode dispersive effects �35�. If the beam
is very strongly focused �small value of zRx

� the dephasing
away from the focus z=0 is so rapid that nonlinear aberra-
tions degrade the desired linear field profile over the width of
the atom lens. In other words, a lower limit for the Rayleigh
lengths zmin�2J+1� as a function of the number of used
modes 2J+1 has to be determined in order to guarantee mod-
erate dephasing. Whereas the absolute values for this lower
limit are hard to derive from first principles, we can still
work out the correct scaling with the mode number.

The electric field is proportional to the superposition of
the modes including the Gouy-phase factors; this can be ap-
proximated by E2J+1�
 j=1,3,. . .

2J+1 cj� je
ij�
 j=1,3,. . .

2J+1 cj� j�1
+ ijz /zRx

�. The expansion coefficients are positive and the
wave functions are real at the focus z=0. Since the first-order
term is purely imaginary, the integrated intensity has to de-

pend on z quadratically: Ī2J+1�z�= Ī2J+1�0��1+ �z2 /zRx

2 �F2J+1

+O�z4��. The term F2J+1 has a complicated dependence on
the number of modes, but, containing the square of sums of
the form 
 j=1,3,. . .

2J+1 jcj� j, is roughly proportional to �2J+1�2.
When we consider the relative deviation of the intensity pro-

file near the focus from the focal intensity distribution, �Ī

= �Ī�z�− Ī�0�� / Ī�0�, we find �Ī2J+1� �z2 /zRx

2 ��2J+1�2. Addi-
tionally, we know that the widths of the superpositions scale
roughly like those of the harmonic oscillator �35� �see Fig.
4�, namely, z��2J+1. For constant relative intensity devia-

tions �Ī2J+1 this implies const= ��2J+12 /zRx

2 ��2J+1�2 or zRx

� �2J+1�3/2. A numerical investigation �see Fig. 8� confirms
zmin�2J+1�=0.8�L�2J+1�3/2 as a good estimate for a lower

bound on zRx
. This relationship has been checked numeri-

cally and holds for 15�2J+1�55. There is no reason to
believe deviations might occur for values of 2J+1�55, but
for small values of J the assumptions used in the derivation
of the scaling law do not hold accurately �see Fig. 4�. In-
stead, the expression zmin�2J+1�=10.5�L�2J+1�1/2 gives a
much better estimate for zmin�2J+1� in the range of 1�2J
+1�13. These lower limits for zRx

imply that the beam focus
is several wavelengths wide and a posteriori confirms that
the paraxial approximations hold for all cases discussed here,
since the largest beam opening angle conforming with the
lower limits presented here turns out to be roughly 7.5° for
superposition 	3.

V. CONCLUSIONS

For a possible experimental implementation of the ideas
presented here it should be emphasized that throughout the
use of a repulsive �blue-detuned� optical potential has been
assumed since it allows us to build focusing lenses with a
dark center, reducing detrimental spontaneous emission
noise. Equivalent logic applies to “concave” atomic lenses,
which would best be implemented in red detuning, with dark
centers as well.

The Raman-Nath assumption becomes progressively
worse the larger the numerical aperture of a lens. Trajectory
simulations show a “downhill” drift of atomic paths that can
partly be compensated for by slightly weakening the rise of
the potential through the suitable subtraction of higher-order
terms that lead to slight nonharmonic modifications of the
lens, improving its performance. Clearly, if such fine tuning
is considered, the approximations underlying Eqs. �4� and �7�
might not be permissible. These considerations are beyond
the scope of this paper.
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FIG. 8. �Color online� Left: Behavior of the relative deviation of the intensity distribution �Ī from zero as it approaches the 0.74%-

deviation marks �top and bottom grid�. Here, �Ī23 is shown for the crossed configuration of two laser beams traveling along the z and x axes,

respectively. The value of the Rayleigh length zRx at which we find that the oscillatory behavior of �Ī along a constant radial perimeter just
exhausts the upper and lower limits set by the deviation marks allows us to determine the associated value of zmin. The latter is plotted as
a function of maximum mode number, in the middle panel �the filled-in red area is the forbidden area of too tightly focused beams�. The
values of zmin�2J+1� in turn determine the positions of the turning points 0.57�2J+1w0x �top green line�, the positions of the deviation
points d2J+1 �middle blue line�, and the minimal beam widths w0x�2J+1� �bottom red line�, depicted in the right panel in units of the laser’s
wavelength �L.
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The techniques for the coherent superposition of laser
modes have been experimentally demonstrated; see, e.g.,
Refs. �34,36� and citations therein. We have found here that
use of the mode-superposition approach allows for very con-
siderable laser power savings and lenses can be made wider
than is possible with pure modes. We come to the conclusion
that, for the design of atomic lenses, based on the optical
dipole force, it is possible and necessary to coherently super-
pose suitable laser modes in order to create wide thin para-
bolic lenses with large numerical apertures. Obviously the

approach presented here can be applied for the manipulation
of stationary atomic clouds just as well as for atomic beams
�44,45�.
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