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Time-evolution operator method for non-Markovian density matrix propagation in time
and space representation: Application to laser association of OH in an environment
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An efficient method for the numerical solution of a non-Markovian, open-system density matrix equation of
motion in coordinate representation is developed. We apply the scheme to model simulations of the laser-
assisted O+H — OH association reaction in an environment. The suggested approach is based on the applica-
tion of the time-evolution operator to the “closed-system’ part of the overall Hamiltonian and transformation
of the open-system equation of motion to the Heisenberg picture suitable for numerical propagation. A dual
role of the system-environment coupling with respect to the infrared (ir) laser-driven association of OH is
demonstrated: the association probability is increased due to the coupling at relatively weak laser fields, but
decreased at strong laser fields. Moreover, at a certain strength of the ir laser field, the association probability
does not depend on the strength of the system-bath coupling at all.
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I. INTRODUCTION

Photoassociation reactions, wherein two colliding atoms
interact with an external laser field to form a bound molecu-
lar state, has attracted much attention in the past [1-14] and
more recently [15-21]. Especially promising is a growing
trend to investigate photoassociation reactions in the time
domain [3,7-12,14-16,18-21], which makes it possible to
employ laser-field optimization and control techniques. Until
now theoretical investigations of the laser-driven quantum
dynamics of two colliding atoms have been performed
within the time-dependent Schrodinger wave-function for-
malism [8,10-12,14—16,18-21], including the optimal con-
trol of vibrationally state-selective photoassociation in the
ground electronic state,

A+B— AB(v), (1)

with shaped ir laser pulses [8,11,18,19].

In the present work we study the quantum dynamics of
association reaction (1) in an environment. Since in this case
a wave-function approach, i.e., solution of the time-
dependent Schrodinger equation for the full system plus en-
vironment, is possible only for model problems (see, e.g.,
[22] for the example of laser-free gas-surface scattering), we
use open-system density matrix theory here. For this purpose
we extend the previously used numerical methods [30,31],
i.e., the time-dependent, reduced non-Markovian density ma-
trix formalism in the state representation, to the coordinate
representation. This is the natural choice for a problem in-
cluding unbound motion. Specifically, we investigate the
central collision of O and H atoms, which takes place in an
environment treated as an unobserved “bath.” Interaction of
the “O+H” system with the bath results in the formation of
OH in the case of laser-free collisions. We also investigate
the vibrationally state-selective photoassociation of OH con-
trolled by ir laser pulses. In the latter case, the system-bath
coupling facilitates stabilization of OH due to relaxation to
the lower-lying vibrational states.
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In our previous works [30,31] the non-Markovian laser-
driven dissipative dynamics of OH was treated in the state
representation, including the discretization of unbound con-
tinuum states, for bound-bound and bound-continuum transi-
tions only, while the continuum-continuum transitions were
not taken into account therein. In contrast, the numerical
methods developed in the present work for the coordinate
representation allow unbound systems to be treated explic-
itly.

Note that association reactions in an environment are also
most relevant for gas-surface scattering. Then the collision
partners are an atom or molecule and a surface, and associa-
tion is called sticking or adsorption. In this case the effects of
dissipation are coordinate dependent, typically increasing to-
ward the surface. Dissipative gas-surface scattering with and
without support of a laser has been studied quantum me-
chanically in the past [22-26]. Also the reverse process to
association, sticking, or adsorption, namely, the desorption of
adspecies from substrates, has been studied [27-29]. In many
of the above examples, open-system density matrix theory
was used. In these cases, in addition to the “reduced” ap-
proach, at least one of the following two approximations was
made additionally: (1) The unbound continuum was dis-
cretized by quasibound states and/or (2) the dynamics was
Markovian, i.e., memory effects were neglected. This is
where the present study tries to go beyond the previous
work.

In more practical terms, we want to address the questions
as to how the association probability depends on the system-
bath coupling parameters, and on the ir field if one is applied.
The matter-field interaction is treated semiclassically, with
the electric field determined from the vector potential to sat-
isfy Maxwell’s equations.

The paper is organized as follows. The model for associa-
tion of O and H in an environment and the numerical tech-
niques used are described in Sec. II. The quantum dynamics
of the laser-free and the laser-driven association is presented
in Sec. III. The results obtained are summarized and dis-
cussed in the concluding section.
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II. MODEL EQUATIONS OF MOTION AND TECHNIQUES

The model used is this study is based on the previous

work [8,11,30,31]. The total Hamiltonian I:IT is divided into
four parts,

Hy(r{z,}.1) = Hg(r) + Hgelr,0) + Hgg(r.{z,) + Hp({z.}),
(2)

where Hg(r) represents the O+H system, Hp(r,7) describes
the interaction of the system and the laser field, Hgy(r,{z,})

describes the system-bath interactions, and Hy({z,}) repre-
sents the bath, where {z,} stands for the bath degrees of
freedom. Atomic units are used below unless otherwise ex-
plicitly indicated.

As possible concrete applications of this model we have
in mind the laser-induced formation of an O-H bond at a
solid (oxide) or a liquid (water) surface, or the same process
in a liquid or an inert solid environment such as a rare gas
matrix. In these cases the environmental modes are phonons
or low-amplitude motions of solvent molecules, respectively.

The system Hamiltonian is given as in previous works
[8,11,30,31] by

A s
Hs(r)= 5+ Vu(r), (3)

where r is the internuclear distance and m is the reduced
mass of the O and H atoms: m=1728.538m,, where m,
stands for the electron rest mass. In Eq. (3), V,,(r) stands for
the Morse potential for the electronic ground state of OH
supporting 22 bound vibrational states,

VM(r) =De{exp[_ B(I"— re)]_ 1}2_De7 (4)

with the well depth D,=0.1994E,, the equilibrium bond
length r,=1.821a,, and the Morse parameter B:1.189a61
(Ey is the Hartree energy, and a is the Bohr radius).

The interaction of the O+H system with a laser field,
which is assumed to be linearly polarized along the O-H
axis, is treated within the semiclassical electric dipole ap-
proximation by the Hamiltonian

N u(r) dA(r)
HSF(r7t):__’ (5)
c o
where A(r) is the vector potential, c is the speed of light, and
the dipole moment operator u(r) is given by the Mecke func-
tion

ulr) =—q,rexp(=r/r,), (6)

with q#=1.634|e| and r,=1.134aq,.

The initial state of the O+H system is a free state of O
and H atoms in the energy continuum. It is represented as in
[8,11,19] by a Gaussian wave packet,

9 \l4 r—ro 2
\If(r,t=0)=(m) exp[ikor—< A )} (7)

where A=9.675a, is the width of the wave packet (7), the
average initial internuclear distance is ro=31.01qa,, and the
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relative momentum is fiky with ky=-3.5a; ! Accordingly, the
density matrix at =0 is written as follows:

o(r,r',t=0)=V*(r",t=0)¥(r,t=0). (8)

In a certain domain of the internuclear distance, r <rpg, the
O+H system interacts with an unobserved quasiresonant

bath. The system-bath interaction Hamiltonian Hgg(r,{z,}) is
taken as in [30,31] in the following form:

Hgp(r{z,}) = AQ(DF({z,)), 9)

where A is a coupling constant that measures the overall
strength of the system-bath coupling, while Q(r) and F({z,})
are the system and the bath coupling operators, respectively.

The system coupling operator Q(r) is modified from
[30,31] as follows:

(1/B){1 —exp[- Br=r,)]} forr=<r,
o(r) = Q(ﬁ)COSz{g(ﬂﬂ for ry <r<rj,

0 for r > rp.

rp—r;

(10)

The value of Q(r;) in the second line of Eq. (10) is calcu-
lated from the first line therein at r=r;, and r| is always
chosen such that Q(r;) = 1. By the choice (10), we assume a
coordinate-dependent coupling which goes smoothly to zero
for large r. Numerical parameters r; and rg, defining the
various regions of Q, are chosen as follows: r;=12a, and
rp=20a,. The cos’ function used in the second line of Eq.
(10) to accomplish a smooth transition from Q(r)=1 at r
=r; to Q(r)=0 at r=rg out of the interaction domain is
rather arbitrary. Of course, other choices of the coordinate
dependence of Q(r) are also possible.

The bath coupling operator F({z,}) is assumed to be linear
and factorized with respect to the bath degrees of freedom as
in [30,31]:

Fz) =2 Kz, u=12, ... (11)

This is a good approximation if one assumes only small dis-
placements of the bath modes during the association process.

The bath is treated as an infinite ensemble of harmonic
oscillators and represented by the Hamiltonian

usu

A2
7 pu my,
Hy({z, )= am. 79222 (12)

u

where m, is the mass and (), is the frequency of the bath
oscillator u. The eigenfunctions of the bath degrees of free-
dom are the well-known harmonic oscillator wave functions.

The density matrix equation of motion used below is de-
rived as follows. We start with the Liouville equation [32] for
the density matrix o(¢) of the total system in the Schrédinger
picture,
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220 = ) 0], (13)

and transform it into the interaction picture with respect to
the bath degrees of freedom only,

o(1) = exp(iHgt/h) o(t)exp(— iHgt!h). (14)
The resulting equation of motion can be written as follows:

iﬁ(?ﬂ'_](t) = [[:]S, o]+ [[:]sp(f),o'l(f)]

+ A[Q(NF/({z,}),o1(1)], (15)

where the bath coupling operator in the interaction picture
reads

Fi{z,h1) = exp(Hgtt)F({z,exp(~ iHgt/h),  (16)

while the other operators of Eq. (13) are not affected by the
transformation (14).

In the next step, the time-evolution operator S(r,r’,t) is
employed in Eq. (15) to transform it to the Heisenberg pic-
ture with respect to the system coordinate r as follows:

o(t) =S oy (DS, (17)

where op(f) is the density matrix of the total system in the
Heisenberg picture, and S(r,r’,7) is the time-evolution op-
erator in the Schrodinger picture, satisfying the equation of
motion

aS(1)

P Hy(r)S(1) + Hgp(r,1)S(1) (18)

ih
and the initial conditions

S(r,r',t=0)=f, (19)

where 1 is the unit operator, and S (t)S‘l(t)=f at any time ¢.
Note that the inverse operator S~!(¢) is not equal to the Her-
mitian conjugate of S(¢) if imaginary absorbing boundaries
are employed (see below).

Substituting Eq. (17) into Eq. (15) and taking into account
Eq. (18), we finally get the equation of motion in the Heisen-
berg picture,

D AL Qurr DF ()0 o], (20)

ih =
ot

where Qp(r,r',f) is the system coupling operator in the
Heisenberg picture,

Oylr,r’ . t) =S (r,r' ,00(r)S(r,r',1). (21)

It also follows from Egs. (14), (17), and (19) that initially, at
t=0, when the O+H system is far from the interaction do-
main,

oy(r,r',t=0)=0o(r,r',t=0), (22)

where o(r,r',r=0) is given by Eq. (8). Note that Eq. (20) is
still exact.
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The statistical description of the O+H system coupled to
an unobserved bath is made by the reduced density matrix
py(r,r' 1), which is defined as

pH(r’rlvt) = TrB[O-(r»r,’{Zu}’t)]’ (23)

where Trp refers to the trace over all degrees of freedom of
the bath {z,}. The equation of motion for the reduced density
matrix pg(#) is obtained as in [32] by making use of the
formal solution of Eq. (20),

)= 040~ LA | arTyeIF. ), @1
0

substituting it back into Eq. (20), and evaluating the trace
(23) under the basic condition of irreversibility, o(r)

=pu(?)pp(0), where
pp(0) = exp(— HylkpT)/ Trglexp(— HylkpT)].  (25)

The final equation of motion for the reduced density matrix
in the Heisenberg picture reads

Ipp(1) __

A 2
ot ( ) [QH(V,V,,Z),GH(r,r,,t)], (26)

7
where Qp(r,r',t) is given by Eq. (21) and Gy(r,r',1) is
defined by

Gylr,r',t) = f dr'[Qu(r,r" ,t") py(t' XF () F(t"))
0

= pu(t")Qulr,r" .t )(F /(") F((1))], (27)

where (F,(1)F,(t')) and (F/(t')F,(t)) are the time correlation
functions, for example,

(FOF(t") = Trg[ F/({z,}, O F({z,}.t ) pp(0)],  (28)

and a similar equation holds for (F,(t')F/(1)).

Equations (26) and (18) are the basic equations that have
to be solved together. Since Eq. (26) depends through Egq.
(27) on all previous times ¢, it contains memory, i.e., the
equations of motion are non-Markovian. Equation (27) is
evaluated by the trapezoidal rule.

For the model environment composed of harmonic oscil-
lators [see Eq. (12)] it can be shown that

1 h
<F1(t)F1(t’)>=EE o Kd(Q,.t-1'.1), (29)
where
O(Q,,t—1,T)={[n(Q,) + 1]exp[-iQ,(t—1")]
+ (€, )expliQ,(t—1')]}, (30)

with the Bose-Einstein distribution function
n(Q,) = [exp(hQ,/kgT) - 117", (31)

and (F/0)F(t")=(F(t")F/(1))*.

As in the previous works [30,31] we set (f/m,(),)=aj in
Eq. (29) and assume quasiresonant system-bath coupling
represented by a Lorentzian-type function
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1
R A v (32)

+ (wmn - Q)2 '

mn

where (7,,,/ Q)" is a normalization factor, (), is a scaling
parameter, v,,,>>0 determines the width of the distribution
gmn(Q), and w,,, are the frequencies of the bound-bound
transitions in OH. Further, in Eq. (29) we change from the
infinite sum over u to a finite sum over m>n containing
integrals,

2
FOF ()= T KO =1.T)

2 Umax m-1 an
= % > Sk, f dQ &1 -1/, T)g,, (),
A

m=1 n=0 mn

(33)

where A,,, < ,,,<B,,,. The distribution function 7({},) of
Eq. (31) is approximated in each frequency domain A,
<Q<B,,, by its “central value” 71(w,,,). Assuming that the
Y 10 Eq. (32) can be chosen such that the neighboring
distributions g,,,({2) do not overlap one another, we set
A,,,=—= and B,,,=%, which yields tabulated integrals [33] in
Eq. (33). The final expression for the time correlation func-
tion of Eq. (29) reads

2 Umax m-1
a ' —
(FOF() =2 2 2 K (ol Qo) e ([ (0,)
m=1 n=0
+ e om0 4 i@, el om0}, (34)

where v, is the the number of the topmost vibrational
bound state of OH, i.e., v,.,=21. Further, a particular
system-bath coupling is specified by the parameters K,
Yuns o> and p. Here we adapt the model used in [30,31] and
set K2 =80 p=1, Qo=w;9, and 7,,=(A%/2). A% is the
anharmonicity constant of OH, defined from the difference
between the Morse (w;,) and the harmonic (wy) fundamental
frequencies, A’=—(w;p—wy)/2. Thus, within the present
model, all that is needed is w;, and A“.

Equations (18) and (26) were represented on equidistant
two-dimensional grids at grid points r; and r;. We used
1024 X 1024 grid points from r,,;,=0.05a, to r,,,=87.41a,
for the r and ' variables. Equation (18) was propagated with
the split-operator technique with the time step Ar=4 atomic
time units (a.t.u.). Spatial derivatives ¢*S(r,r’,1)/dr* in Eq.
(18) were calculated with the DF2TCF and DF2TCB routines of
IMSL. At large values of the internuclear distance r, the out-
going part of the time-evolution operator S(¢) was damped by
a time-dependent imaginary optical potential

3 (rmax — Iy t)2
Vopt(r = roppt) =- lY([)VO exp| = 1- —Pz_ ,
° (I" - ropt)
(35)
and Vi (r <rey.1)=0. The time-independent part of the op-

tical potential is adopted from [34]; see also references
therein. The smooth switching term Y (¢) is chosen such as to
avoid absorption of the ingoing evolution operator S(z). Spe-
cifically, Y(r<t,)=0,
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FIG. 1. Laser-free association of OH in a quasiresonant bath at
T=300 K. The association probability is calculated as the total
population of all bound states of OH. The strengths of the system-
bath couplings \, defined by Eq. (37), are given near the corre-
sponding curves.

Y (1, szg@)zsinz[E( =4 )] (36)

2\t -1,

and Y(t>1,)=1. The results presented in the next section
have been calculated with #,=0.3 ps, #,=04ps, V,
=0.055Ey, and r,,=80.72a,. Equation (26) was propagated
with the well known predictor-corrector method, as in our
previous work [29-31].

III. ASSOCIATION OF OH

The initial state of the O+H collision, specified by Eqs.
(22), (8), and (7), corresponds to the center of mass collision
energy of E.=0.355X 1072Ey, which is a typical order of
magnitude for atomic beam experiments. The initial energy
E. is a suitable reference for the strength of the system-bath
coupling, which will be defined therefore by a parameter

\=Aqg, (37)

with the dimension of energy. The temperature of the bath is
assumed to be 7=300 K. The association probability is cal-
culated as the total population of all bound states of OH, i.e.,

Umax

Py= 2 pu(D). (38)
v=0

A. The laser-free association

The time-dependent laser-free association of OH resulting
from an inelastic collision of O and H atoms is illustrated in
Fig. 1 for four different strengths of the system-bath coupling
N. The values of the system-bath coupling N\ in Fig. 1 ap-
proximately correspond to the numbers of association “chan-
nels” efficiently “opened” to the initial state of the O+H
system with the initial collision energy of E. At A
=0.003Ey for example, the energy difference E.—FE, _y;
=0.368 X 1072E, is slightly larger than the system-bath cou-
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FIG. 2. Populations of vibrational bound states of OH at r=(a)
0.5 and at (b) 1 ps versus the vibrational quantum number v for two
system-bath couplings: A=0.01Ey (solid lines) and 0.003Ey
(dashed lines).

pling, and therefore only one association channel (via the
topmost bound state [v=21)) is opened. At N\=0.005Ey, the
lower bound state |[v=20) is also involved: E.—E,_,
=0.457 X 10‘2EH< N\, and one more association channel is
opened. Similarly, additional association channels, via states
lv=19) and |v=18), are opened at A\=0.007E and 0.01Ey,
respectively. Therefore, at large couplings association starts
earlier and proceeds with a higher rate than at small ones. At
t>0.5 ps, when the colliding O and H atoms leave the inter-
action domain, the association probability reaches saturation.

Populations of the vibrational bound states of OH at ¢
=0.5 and at 1 ps are shown in Fig. 2 versus the vibrational
quantum number at a weak system-bath coupling A
=0.003Ey (one association channel is opened initially) and at
a strong coupling A=0.01E} (four association channels are
opened). At r=0.5 ps, when association reaches the satura-
tion domain and the total population of the bound states does
not change (see Fig. 1), only high-lying vibrational states of
OH are populated substantially, as is seen from Fig. 2(a). The
maximum population corresponds to the state |[v=18) at the
weak system-bath coupling of A=0.003Ey and to the state
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[v=16) at the strong coupling of A=0.01E,. At a later time,
t=1 ps [Fig. 2(b)], the lower bound states of OH are being
populated at the expense of the higher ones. At the small
coupling A=0.003Ey, the distribution of populations be-
comes more flat, although the maximum population is still at
v=18. Much lower vibrational states have dominant popula-
tions at r=1ps in the case of the strong coupling A
=0.01E.

Figure 2 thus demonstrates the effect of vibrational relax-
ation of highly excited OH on a picosecond time scale. One
recognizes the (trivial) effect that vibrational relaxation is the
faster the larger the coupling parameter N. A nontrivial ob-
servation is that, in the case of the strong coupling A
=0.01Ey, for example, the overall distribution of populations
is still very far from equilibrium at 7=1 ps, including the
existence of two ensembles: “cold” with a maximum at v
=9 and “hot” with a maximum at v=19. The bimodal distri-
bution observed at r=1 ps and A=0.01E, suggests that not
only “downward” |v)—|v—1) but also “upward” |v)—|v
+1) transitions took place, because after t=0.5 ps the re-
flected part of the wave packet left the interaction region and
the association probability remained constant according to
Fig. 1.

B. The laser-driven association

Next we study the laser-pulse assisted state-selective as-
sociation of OH. Here, the interaction of the O+H system
with the bath can play a dual role in the laser-driven asso-
ciation. On the one hand, the probability of the laser-driven
association can be increased due to the system-bath coupling
which results in association even without a laser field, as
discussed above. On the other hand, the laser-free association
reduces the norm of the unbound part of the initial wave
function, thus reducing the probability of the state-selective
laser-driven association to be addressed below.

For the latter, we choose the bound state |v =15) of OH as
the intermediate target and start with the investigation of the
resonant association with the laser frequency of w=(E.
—E,_;5)/ 1, implying the one-photon laser-driven association
pathway

|E.) — [v=15)+ho. (39)

The vector potential A(7) in the system-field interaction
Hamiltonian Hg of Eq. (5) is chosen in the following form:

A(r) = 380 sinz(m/tp)cos(wt + ), (40)
®

where & is the amplitude, #,=0.5 ps is the pulse duration at
the base, w is the laser carrier frequency, and ¢ is the phase.
In what follows, the case of ¢=0 is considered, and the
electric field E(r)=—(1/c¢)dA(r)/ dt is given by

En) = 50<sin2(m/tp)sin(wt) - lt sin(277t/tp)cos(wt)>.
wlp
(41)

The first term in Eq. (41) corresponds to a sin’-shaped laser
pulse, while the second, the so-called switching term, ap-
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FIG. 3. Laser-driven association of OH in a quasiresonant bath
at T=300 K. The association probability (a) and the population of
the “pumped” state [v=15) (b) at t=1 ps versus the amplitude of the
resonant laser pulse. The laser pulse parameters are 7,=0.5 ps, @
=0.021 26E/h.

pears due to the finite pulse duration [35,36]. The definition
of the electric field via the vector potential, suggested in
[35], assures that the electric field has a vanishing direct-
current (dc) component, [(E(r)dt=0, and satisfies the Max-
well equations in the propagation region.

The association probabilities and populations of the inter-
mediate target state [v=15) of OH at t=1 ps are shown in
Figs. 3(a) and 3(b), respectively, versus the amplitude &, of
the 0.5 ps laser pulse with the resonant carrier frequency of
®0=0.021 26E,/h corresponding to the photoassociation
pathway (39). The time interval of 1 ps includes the 0.5 ps
laser-driven association followed by 0.5 ps of free evolution.
The strengths of the system-bath couplings \ are indicated at
the respective curves, the case of A=0 is also included for
comparison.

From Fig. 3(a) the following observations are made.

(i) A maximum of the association probability occurs at a
certain field amplitude, for each of the curves.

(ii) The system-bath coupling can play a dual role with
respect to the efficiency of the laser-driven association. At
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relatively weak laser fields, £y<0.029E}/eqay in the case of
OH under study, the association probability is increased due
to the system-bath coupling and strong couplings are prefer-
able for efficient association. In contrast, in stronger laser
fields, &£,>0.029E/ea,, the association probability is
higher for smaller system-bath couplings, and weak system-
bath couplings are preferable for the efficient association.

(iii) It is very interesting that all five curves in Fig. 3(a),
corresponding to five different system-bath couplings, cross
at the same “isosbestic” point which corresponds to the pulse
amplitude of £,=0.029E}/ea,. At this isosbestic value of
the laser-pulse amplitude, &= f), the probability of the laser-
driven association of OH in an environment does not depend
on the strength of the system-bath coupling at all.

(iv) The maxima in Fig. 3(a) which correspond to optimal
field strengths are shifted toward the isosbestic point as the
system-bath coupling A gets larger.

The occurrence of an isosbestic point for the multilevel
OH system of course does not mean that the same population
of bound states occurs at this point, rather the sum of the
bound state populations is the same. This is indicated in Fig.
3(b), which shows the population of the laser-pumped state
[v=15) at t=1 ps. The population of the pumped state |v
=15) is almost equal to the overall association probability if
A=0, and decreases drastically with the increase of the
system-bath coupling . At A>0.005E it is so small as to
be neglected. The latter observations are due to the fast vi-
brational relaxation to lower bound states. At the isosbestic
field strength &, the population of state |15) is different for
different N\, and consequently also the populations of other
states must be different for different dissipative coupling. For
N # 0, the bound state populations are also time dependent.

One of the most interesting effects is the counterintuitive
decrease of the association probability with increasing
system-bath coupling \ at strong laser fields £,> 56 [see Fig.
3(a)]. Possible reasons for the decreased association prob-
ability are as follows. A strong laser field dumps more and
more energy into the molecule and thus heats it up. More-
over, if the laser field gets too strong it becomes no longer
optimal for the chosen continuum-bound transition at a given
laser frequency and the pulse duration. Finally, a strong cou-
pling to the bath broadens the laser-pumped state |v=15) into
a resonance such that the laser frequency is no longer opti-
mal for the respective transition. An intuitive expectation that
increasing the coupling to the bath would help the molecule
cool off is fully realized after the end of a strong laser pulse:
the population of the pumped state [v=15) strongly de-
creases with the increase of the system-bath coupling \ [see
Fig. 3(b)] due to a fast relaxation to the lower-lying vibra-
tional states of OH [see Fig. 5(a) in the next section].

Before analyzing the results for OH further, we note that
the observations in Fig. 3(a) are quite generic. In fact, the
main findings (i)—(iv) can be explained by a simple Markov-
ian two-state model. In this model, an initially occupied,
high-energy state |1) is resonantly coupled by a sin’ pulse to
a low-energy state |0). To make contact with the OH prob-
lem, state |1) is assumed to have a certain lifetime 7=I"""
(where T is the dissipative transition rate from |1) to |0)) and
is interpreted as the ‘“continuum state” with energy E. as
above. State |0> is a model for a bound, associative state, e.g.,
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amplitude for a two-level system (see text). The lifetime of the
initial state, 7=I""!, is indicated.

the acceptor state [v=15) as above. We assume a certain
dipole coupling w;, between the two states, an energy differ-
ence of fiw;=0.02Ey, and a pulse of the form (41) with
duration 7,=0.5 ps and carrier frequency w=w;,. The total
propagation time was 1 ps as above. The Markovian equa-
tions of motion for the diagonal elements of the density op-
erator are

dp i

d_tll == %50)(#101301 = protor) = Loy, (42)

dew__ L r 43
i -k ") (ro1p10= pors10) + Lo (43)

where pg; and p;, are coherences for which similar equations
of motion exist. Solving these equations with the initial con-
dition p,;(0)=1 for different field amplitudes &, and 7 gives
for the population of state |0) after 1 ps (the “association
probability”) the curves shown in Fig. 4.

It is found that Fig. 3(a) is qualitatively reproduced, with
the following interpretation.

(i) The maximum is due to a first Rabi maximum, corre-
sponding to a 7 pulse. A 7 pulse leads to a perfect popula-
tion inversion in a dissipation-free two-level system. For a
sin? pulse, one finds the condition mio€ot,/ 2fi=r. Therefore,
when plotting the normalized field amplitude &
=p10&ot,/ 27h as abscissa the 7 pulse maximum occurs at
56: 1, which is well satisfied in Fig. 4. Further maxima occur
in Fig. 4 (not shown) for £;=3,5,7,..., and minima for &
=0,2,4,.... In the dissipation-free case, I'=0, the oscilla-
tion(s) in Fig. 4 is (are) between pyy=0 and pyy=1.

(ii) If dissipation is present, I' >0, the amplitude of oscil-
lation is damped with enhanced association probability at
low fields &, and a reduced yield around the maximum. The
enhancement at low & is due to the fact that even for a
vanishing field there is association due to fast relaxation.
Dissipation also explains why the level inversion is incom-
plete around the maximum, similar to the limited yield one
obtains for the inverse process, photon absorption.

(iii) An isosbestic point around woEyt,/2h ~ 0.8 marks
the transition between the two regimes. From Fig. 4 we note,
however, two refinements relative to Fig. 3: First, for very
fast dissipation [I'=(0.02 ps)~'] the py, curves move out of
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phase, i.e., the corresponding curve no longer goes through
6’6. Second (for not too strong dissipation), there is a second
isosbestic point beyond the maximum at high field strengths,
basically for symmetry reasons.

Note that the counterintuitive decrease of the association
probability with increasing coupling parameter \ for strong
fields is reproduced within the simple two-state model, at
least in the interval & <&, <&, where & and & denote
the two isosbestic points. It is a simple consequence of the
damped Rabi oscillations: Increasing \ lifts the minima and
lowers the maxima. Of course, the two-state model is too
simple to reproduce the precise behavior indicated in Fig. 3.
In particular, no second isosbestic point is found in Fig. 3 for
field strengths up to 0.14Ey/ eay,.

(iv) The (first) maximum of the py(Ey) curves shifts to
lower field strength as I becomes larger. This can be under-
stood from the extreme case of very large I'. Then, after 1 ps
all the population has already decayed to state [0) even at
Ep=0. Thus, py, is maximal at £,=0 and finite fields can only
diminish py. If, on the other hand, I" is zero, the maximum
of pyg is at the Rabi field amplitude.

We extended our investigation to a three-state model
(with a continuum state |2) above |1)), and also to various
Markovian multistate models and to slightly off-resonant la-
ser fields. As a result, the qualitative observations (i)—(iv)
remain valid, showing again that a substantial part of the
physics contained in Fig. 3(a) can be mapped onto an effec-
tive, dissipative two-level system. Quantitative details such
as the nonoccurrence of a second isosbestic point in Fig. 3(a)
are absent in generic few-level models and require a system-
specific treatment.

C. Optimal control of OH association

Returning to OH, we note that the dependence of the as-
sociation probability on the amplitude of the laser pulse
shown in Fig. 3(a) provides the first step of the overall opti-
mization of the laser pulse aimed to maximize the associa-
tion yield at a given system-bath coupling \. Further optimi-
zations of the laser carrier frequency and the laser pulse
amplitude make it possible to substantially increase the as-
sociation probability, by more than 20%. Association dynam-
ics of OH controlled by the optimal 0.5 ps laser pulse at a
“moderate” system-bath coupling of N=0.005Ey is illus-
trated in Fig. 5(a) with the time-dependent association prob-
ability and populations of several bound vibrational states of
OH, including the pumped state [v=15), which acquire sig-
nificant population on the time interval of 1 ps. The optimal
laser field is shown in Fig. 5(b). For the sake of comparison,
we show in Fig. 5(c) the association dynamics of OH con-
trolled by the optimal 0.5 ps laser pulse at A=0 [the optimal
pulse shown in Fig. 5(d)].

It is seen from Fig. 5(a) that the association probability
reaches the saturation domain at t=0.45 ps and does not
change at a later time. Up to 60% of population is localized
in the pumped state [v=15) at £=~0.4 ps. At a later time, the
population of |[v=15) state decreases due to vibrational re-
laxation to the lower bound states, which facilitates the sta-
bilization of OH in the ground electronic state. The maximal
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association probability of 0.757, obtained at A=0.005E with
the optimal laser frequency w=0.021 51E,/# [Fig. 5(a)], is
higher by more than 20% than that obtained with the reso-
nant frequency w=0.02126Ey/% at the same system-bath
coupling [Fig. 3(a)], but smaller by about 10% as compared
to the maximal association probability obtained at A=0 [Fig.
5(c)]. The reason for the latter is that at N=0.005E, the
optimal pulse amplitude £,=0.0999E/eq, is larger than the
isosbestic field strength &~ 0.029E,,/ ea, [see Fig. 3(a)] and
the association probability is smaller as compared to the case
of A=0 [see Fig. 5(c)].

Note that the association dynamics shown in Fig. 5(c) at
A=0 is very similar to that presented in our previous work
[8] (see Fig. 2 therein) except that the maximal association
probability of 0.848 obtained in the present work is slightly
higher than the maximal probability of 0.846 obtained in [8],
where the photoassociation of OH was studied without dis-
sipation within the Schrodinger wave-function formalism.
The reason for this small difference is that the optimal laser
field obtained in the present work is slightly different from
that of the previous work [8], where the switching term in
Eq. (41) was not included.

IV. CONCLUSIONS

The time-evolution operator method used in the present
work is well known and widely used in the derivation of
general equations of motion; see, for example, [32]. The
time-evolution operator method is also very suitable for iso-
lated systems in the Schrodinger wave-function formalism: if

the time-evolution operator is known, one can easily evaluate
the quantum dynamics of the system under study at any ini-
tial conditions. On the other hand, the time-evolution opera-
tor method can be too expensive in the Schrodinger wave-
function formalism, because it doubles the dimensionality of
the problem under consideration: instead of propagating,
e.g., a one-dimensional wave function, one should propagate
the two-dimensional time-evolution operator. In contrast, in
the density matrix formalism the dimensionality of the prob-
lem to be solved numerically is not changed if the time-
evolution operator is employed, and one can substantially
simplify the corresponding equations of motion by making
use of it.

In the present work, the time-evolution operator method
was applied to the closed-system part of the overall time-
dependent Hamiltonian, which made it possible to transform
the open-system equation of motion to the Heisenberg pic-
ture suitable for the numerical propagation. Numerical
implementation for the association reaction O+H — OH re-
vealed that the system-bath coupling can play a dual role
with respect to the efficiency of the laser-driven association:
the association probability is increased due to the system-
bath coupling if the laser field strength is smaller than the
isosbestic value é‘ozé’i, but decreased if the field strength is
greater than Ef). If the field strength is equal to the isosbestic
value £,=E!, the association probability does not depend on
the strength of the system-bath coupling at all. In the case of
the association reaction O+H — OH, studied in this work,
the optimal field strength maximizing the association prob-
ability is greater than the isosbestic field strength of 56
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~(.029Ey/ eay, and the association probability is decreased
as the system-bath coupling is increased.

Note, finally, that the difference between the results ob-
tained with the zero-area (present work) and nonzero-area
(previous work [8]) laser pulses is very small because the
number of optical cycles per the pulse duration at the base,
t,=0.5 ps, is more than 70 and the switching term in Eq. (41)
is of minor importance. If the number of optical cycles per
pulse duration is small enough, the aforementioned differ-
ence is quite substantial. Moreover, with the number of op-
tical cycles being less than 15, the phase of the laser field
starts to play an important role as well (see, e.g., [38]), and
one should always take into account that the area of the laser
pulse used in the numerical simulations must vanish [37].
The definition of the electric field via the vector potential,
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suggested in Ref. [35], assures that the area of the pulse is
zero. The other way to handle this problem is the use of an
integer number of optical cycles at the base of the pulse.
With a symmetric envelope of the pulse, such as the sin’
envelope for example, the area of the pulse is always equal to
zero, although the pulse duration at the base 7, depends on
the laser carrier frequency.
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