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We study a model for electron detachment from negative ions by ultrashort unipolar electric pulses. The
electron-atom interaction is described by the zero-range potential and the temporal dependence of the electric
field is approximated by the Dirac � functions. The case of a single pulse can be treated semianalytically and
explicit expressions are obtained for momentum and energy distributions of detached electrons as well as for
the total detachment probability. The determination of angular distribution involves numerical evaluation of a
one-dimensional integral. The case of two alternating electric pulses requires numerical evaluation of more
complicated integrals but leads to interesting effects caused by the quantum interference of the electronic wave
packets produced during the interactions with the first and the second pulses. The differential and integral
detachment probabilities are calculated and discussed for a variety of pulse strengths and time delays between
the pulses.
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I. INTRODUCTION

The description of the motion of an electron in the zero
range potential �ZRP� has served as a useful model for stud-
ies of many processes involving negative ions in interactions
with external fields or collisions with other atomic particles
�1�. In particular, the model has been widely used in describ-
ing interaction of negative ions with strong monochromatic
laser fields �see the review article �2�, and references
therein�.

In recent years, great experimental advances have been
achieved in developing short pulses of uv to xuv light of
sub-femtosecond duration �see, e.g., the review �3��, aimed
for the studies of the ultrafast phenomena in atomic and mo-
lecular physics. For example, isolated, approximately single-
cycle attosecond pulses with a duration of about 130 as and
a photon energy of about 36 eV have been realized �4�. In
the context of theoretical description of electron detachment
by few-cycle laser pulses, the ZRP model was first used
within the Keldysh-type strong-field approximation �SFA�
applied to H− ion �5�. The validity of this approach is re-
stricted to situations when the pulse duration is much longer
than the characteristic orbiting time of the loosely bound
electron and the depletion of the initial state is small. More
recently, the ZRP model was used to study the dependence of
the detachment probability on the duration of the few-cycle
pulses, by using the first-order perturbation theory, adiabatic
�tunneling� approximation, SFA and exact solution of the
time-dependent Schrödinger equation �6,7�.

In the present work we use the ZRP model to study in
some details the detachment caused by the action of one or
two alternating ultrashort unipolar electric pulses, known
also as “half-cycle pulses” �HCPs�. It is assumed that the
duration of each of these HCPs is much smaller then the
electron orbiting time in the initial state, so that the actual
form of the HCP is unimportant. Each HCP is characterized
by the total momentum transferred to the electron during the

interaction. Previously, such sudden “kicks” of electrons by
HCPs have been studied theoretically in the context of ion-
ization of atomic Rydberg states �8–10� and more recently, in
the context of the ionization from the ground state of hydro-
gen �11,12�.

The plan of this paper is as follows. In Sec. II we consider
the case of a single ultrashort half-cycle pulse interacting
with a negative ion. Most of the results concerning the total
and differential detachment probabilities can be obtained
analytically and therefore analyzed in full details. Section III
deals with the case of two alternating ultrashort pulses where
the determination of detachment probabilities involves nu-
merical evaluation of certain type of integrals. The most sig-
nificant effect in this case, the quantum interference of the
wave packets formed during the interaction with each of the
pulses, can be fully described and analyzed by studying mo-
mentum distributions of the detached electrons. These effects
are to some extent smoothed out in partially integrated en-
ergy and angular distributions. However, the remnants of the
interference effects are present even in the total detachment
probabilities. Some concluding remarks are given in Sec. IV.
We use atomic units throughout the work except when ex-
plicitly stated.

II. SINGLE ULTRASHORT HALF-CYCLE PULSE

Within the single-active-electron approximation for a
negative ion, the motion of the outer electron in the com-
bined fields of the atom and the linearly polarized electric
pulse F�t� is described, in the dipole approximation, by the
time-dependent Schrödinger equation

i
���r,t�

�t
= �H0 + F�t� · r���r,t� , �1�

where

H0 = − 1
2� + V�r� , �2�

and the three-dimensional ZRP is defined as*tasko@phy.bg.ac.yu
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V�r� =
2�

�
��r�

�

�r
r . �3�

H0 supports a single bound state with energy Eb=−�2 /2 and
with the corresponding normalized wave function

�b�r� = � �

2�
�1/2e−�r

r
. �4�

The continuum �scattering� states corresponding to the
asymptotic momentum k and outgoing �incoming� spherical
waves are given by

�k
��r� = �2��−3/2�eik·r −

1

� � ik

e�ikr

r
� . �5�

The single parameter � of the ZRP is usually determined
from the experimental or theoretical value of the electron
affinity. For H− we have Eb=−0.027 75 and �=0.2356.

As for the electric field, we shall assume that it is a uni-
polar, half-cycle pulse of arbitrary form �e.g., sine, sine-
square, rectangular, etc.� with polarization along the z axis.
However, the duration time of the pulse T is assumed to be
much smaller than the characteristic period for Bohr transi-
tions

T � Tc �
2�

��E�
, �6�

where �E is the energy difference between the initial and the
nearest energy level. Thus, in the case of an electron in the
Rydberg state with large principal quantum number n, we
have ��E�	1 /n3 and Tc	2�n3, which corresponds to clas-
sical orbiting time �period� of the Rydberg electron. The ZRP
has no classical analog and the notion of electron orbiting
time is not applicable. Nevertheless, since there is only one
bound state, ��E�= �Eb�=�2 /2 �electron affinity� and the con-
dition �6� becomes

T � Tc =
4�

�2 . �7�

In the case of H− one has Tc=226.39 a.u.=5.476 fs, so that
half-cycle pulses in the subfemtosecond region are consid-
ered.

For such ultrashort pulses one can use either the theory of
sudden perturbations �13� or the Magnus expansion of the
evolution operator �14,15�. The leading term for the transi-
tion amplitude is the same in both approaches and up to an
unimportant phase factor is given by �8–12,16�

afi�q� = 
� f�e−iq·r��i� , �8�

where

q = �
0

T

F�t�dt �9�

is the momentum transferred to the electron by the electric
field during the half-cycle pulse and ��i� and �� f� are initial
and final eigenstates of H0.

The same result for the transition amplitude, Eq. �8�, is
obtained if we formally replace the actual temporal form F�t�
of the electric field by

F̃�t� = q��t� , �10�

where ��t� is the Dirac � function. One should be aware of
the formal character of this substitution. For example, the
question whether or not the dipole approximation is appli-
cable in our problem should be addressed to the actual physi-
cal realization of the electromagnetic pulse. Since the char-
acteristic extension of the electronic cloud in the initial state
�4� is of the order of 1 /�, the condition of the applicability of
the dipole approximation is �	1 /�, where � is the wave-
length of the carrier wave. In the case of H−, the condition is
�	4.24 a.u.=0.225 nm, or for the period of the carrier wave
� /c	0.031 a.u.=0.75 as. The last condition is certainly not
in contradiction with the requirement �7�.

A. Total detachment probability

The probability amplitude for the electron to remain in the
bound state ��b� described by the wave function �4�, after the
interaction with the pulse of the form �10�, can be calculated
in closed form �see the Appendix�:

abb�q� = 
�b�e−iq·r��b� =
2�

q
arctan

q

2�
. �11�

We note that the above, as well as all of the following results
can also be obtained by using momentum representation. The
calculations are in that case facilitated by the fact that the
operator exp�−iq ·r� is the displacement operator in momen-
tum representation.

The probability of the electron to remain in the bound
state �“survival probability”� is

wb = �abb�q��2 =
4�2

q2 arctan2 q

2�
, �12�

and the total detachment probability is

wd = 1 − wb. �13�

These two probabilities are shown in Fig. 1 as functions of
q�=q /�—the scaled momentum transferred to the electron.
Actually, from Eqs. �1�–�5� one can easily see that our prob-
lem allows for the universal scaling, r�=�r, t�=�2t, F�
=F /�3, E�=E /�2, k�=k /�, but we shall keep the explicit
dependence on � in all of our formulas.

For example, in the case of H−, assuming a pulse of du-
ration T=130 as and �for simplicity� of the rectangular form
�q=FT�, the range from q /�=0.1 to 50, shown in Fig. 1,
corresponds to the range of electric field strengths from F
=2.254
107 V /cm to 1.127
1010 V /cm.

B. Momentum, energy, and angular distributions
of detached electrons

The transition amplitude for the electron detachment into
the continuum state ��k

−� can also be calculated in closed
form �see the Appendix�,
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akb�q� = 
�k
−�e−iq·r��b� =

�1/2

2�


� 2

�2 + �k + q�2
−

1

iq�� + ik�
ln

� − i�k − q�
� − i�k + q�� .

�14�

The corresponding momentum distribution �triple differential
detachment probability� is given by

d3wd

k2dk sin �d�d�
= �akb�q��2 =

�

4�2


� 2

�2 + k2 + q2 + 2kq cos �
+ A�2

+ B2� ,

�15a�

A =
1

q��2 + k2� k

2
ln

�2 + �k − q�2

�2 + �k + q�2

+ ��arctan
k − q

�
− arctan

k + q

�
�� , �15b�

B =
1

q��2 + k2��

2
ln

�2 + �k − q�2

�2 + �k + q�2

− k�arctan
k − q

�
− arctan

k + q

�
�� . �15c�

The above distribution is axially symmetric �does not depend
on �� and instead of the spherical coordinates of the elec-
tron’s momentum �k ,� ,�� we can equally well use the cy-
lindrical coordinates �k ,kz ,��.

The momentum distributions �15� corresponding to values
of the momentum transferred to the electron q /�=0.5, 5, and
20 are shown in Fig. 2. One can see from Fig. 2�a� that in the

case q /�=0.5 the electrons are emitted in both directions
along the z axis. This is the remnant of the purely dipole
distribution which is obtained from Eq. �14� in the limit
q→0,

akb
d �q� = − iq · 
�k

−�r��b� = −
2�1/2qk cos �

���2 + k2�2 . �16�

As q /� increases �see Fig. 2�b�� a peak in the momentum
distribution is beginning to build up at kz=−q, while the
probability for the electron emission in the positive direction
of the z axis diminishes. Finally, at still larger values of the
q /�, as seen from Fig. 2�c�, the spectrum is dominated by
the very sharp peak located at kz=−q. In all cases the prob-
ability density monotonically decreases in the radial k direc-
tion.

When the momentum distribution �15a� is integrated over
all angles one obtains the energy distribution �dE=kdk� of
the detached electrons,

dwd

dE
=

�k

�
� 4

��2 + k2 + q2�2 − 4k2q2

+
A

qk
ln

�2 + k2 + q2 + 2kq

�2 + k2 + q2 − 2kq
+ A2 + B2� . �17�

The above energy distributions are shown in Fig. 3 for the
values of q /�=0.1, 0.5, 5, and 20. The peaks which show up
in the cases of q /�=5 and 20 correspond to those repre-

FIG. 1. Total probabilities for the electron to remain in the
bound state �wb� and to be detached �wd=1−wb� after interaction
with a single pulse of the form �10� as functions of the scaled
momentum transferred to the electron.

FIG. 2. Scaled momentum distributions of detached electrons
for three values of the scaled momentum transferred by the pulse:
�a� q /�=0.5, �b� q /�=5, and �c� q /�=20. All quantities are given
in a.u.
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sented in Figs. 2�b� and 2�c�. Also shown as dashed line,
along with the curve corresponding to q /�=0.1, is the
dipole-limit �q→0� result,

dwd
d

dE
=

16�q2k3

3���2 + k2�4 , �18�

which follows from Eq. �16�.
The angular distribution of the detached electrons is ob-

tained by numerically integrating expression �15a� over k,

dwd

sin �d�
= 2��

0

�

�akb�q��2k2dk . �19�

The results for the four values of q /�=0.1, 0.5, 5, and 20 are
shown in Fig. 4. The dashed line is the dipole-limit �q→0�
result,

dwd
d

sin �d�
=

q2

4�2 cos2 � , �20�

as obtained from Eq. �16�. From Fig. 4 we see that as q /�
increases, the angular distribution, which is symmetric in the
dipole limit, becomes more and more peaked along the nega-
tive z axis ��=��, in accord with Fig. 2.

We have verified that numerical integration of the distri-
bution �17� over all energies and integration of the distribu-
tion �19� over all angles, both reproduce Fig. 1 and therefore
confirm the formula �12�.

III. TWO ALTERNATING ULTRASHORT HALF-CYCLE
PULSES

We next consider the problem of electron detachment
from a negative ion by two HCPs of the form �10�, separated
by a time interval �. The case when both pulses have the
same polarization and therefore transfer momentum to the
electron in the same direction is not very interesting, since
the second pulse simply “pushes” detached electron further
away from the atom. Much more interesting is the case of
two alternating pulses,

F̃�t� = q��t� − q��t − �� , �21�

because the second pulse stops the propagation of the wave
packet representing the electron detached after the first pulse
and recapture of the electron can occur. In addition, we ex-
pect quantum interference effects produced by the wave
packets originating from the first and the second pulses. Pre-
viously, the recapture was studied in the context of ionization
of the hydrogen atom by HCPs �11,12�. The interference
phenomena were studied in the context of the electron de-
tachment from negative ions by using SFA �5� or numerical
solutions �7�, but for long pulses with durations satisfying
the condition opposite to that given in Eq. �7�.

The transition amplitude, in the case of the interaction
with the two pulses �21�, is given by

Afi = 
� f�eiq·re−iH0�e−iq·r��i� . �22�

In order to distinguish from the single-pulse case, the ampli-
tudes and probabilities for the two-pulses case will be de-
noted by capital letters. Inserting now in Eq. �22� the com-
plete set of ZRP eigenstates we obtain

Afi = afb�− q�abi�q�ei��2/2�� +� d3pafp�− q�api�q�e−i�p2/2��,

�23�

where the single-pulse amplitudes afi�q� are defined in Eq.
�8�.

A. Total detachment probability

As in the case of a single pulse, the simplest to calculate
from Eq. �23� is the amplitude of the probability for the
electron to stay in the bound state,

FIG. 3. Scaled energy distributions of detached electrons for
indicated values of q /� in a.u. The dashed curve is the dipole-limit
�q→0� result from Eq. �18�.

FIG. 4. Angular distributions of detached electrons for indicated
values of q /� in a.u. The dashed curve is the dipole-limit �q→0�
result from Eq. �20�.
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Abb = �abb�q��2ei��2/2�� +� d3p�apb�q��2e−i�p2/2��, �24�

where the single-pulse amplitudes abb�q� and apb�q� are ex-
plicitly given in Eqs. �11� and �14�.

The first term in Eq. �24� can be interpreted as the prob-
ability amplitude for the sequence of events in which the
electron is not detached after the first pulse, evolves in the
bound state of H0 and is also not detached after the second
pulse. The second term in Eq. �24� is the sum �integral� of
the probability amplitudes which correspond to scenarios in
which the electron is detached after the first pulse, evolves in
the continuum of H0 and is recaptured after the second pulse.
These two terms coherently contribute to the total survival
probability and we expect to see some quantum interference
effects.

After performing angular integrations, the expression for
the probability of the electron to remain in the bound state
becomes

Wb = �Abb�2 = �wbei��2/2�� + �
0

� dwd

dE
e−iE�dE�2

, �25�

where wb and dwd /dE are single-pulse survival probability
and energy distribution of the detached electrons, given in
Eqs. �12� and �17�.

Figure 5�a� shows the survival probability �25� as a func-
tion of the scaled time interval �2�, for several values of
q /�. For small values of �2� this probability is close to 1.

This is true even for large values of q /� where the detach-
ment after the first pulse is very probable �see Fig. 1�, indi-
cating that the recapture of the electron after the second pulse
is very efficient. Formally, this follows from the fact that the
leading term of the expansion of Wb in Eq. �25� for
�2� ,Ec�q���1 is Wb	�wb+wd�2=1. Here, Ec�q� is a cutoff
value of energy for which the dwd /dE is negligibly small �as
seen from Fig. 3 this cutoff value is a function of q�. In the
opposite limit, for sufficiently large �2�	1, the integral in
Eq. �25� tends to zero and we have asymptotically,

Wb�wb
2. �26�

This result simply indicates that for sufficiently large � the
recapture of the electron is negligible because the wave
packet representing the detached electron after the first pulse
is located very far away at the moment of action of the sec-
ond pulse. The constant values from Eq. �26� are represented
in Fig. 5�a� by horizontal dashed lines and they are indeed
the asymptotes approached by the slowly oscillating Wb
curves.

The case when q→� was studied in Ref. �17�. It was
assumed that the initial state is completely depleted after the
first pulse, i.e., wb= �abb�q��2	0. Retaining then in Eq. �24�
only the integral and replacing the intermediate continuum
states by plane waves, the following asymptotic expression
was derived:

Wb � e−2�q�. �27�

This dependence is shown in Fig. 5�a� as a dotted line in the
case q /�=20. While the overall trend of Wb is well pre-
dicted, the oscillations are absent as they are due to the quan-
tum interference which is not taken into account in Eq. �27�.
In addition, expression �27� is not valid for very long time
intervals �, because the constant term �26� then becomes
dominant.

Figure 5�b� shows the total detachment probability Wd
=1−Wb. It is just the mirror image of Fig. 5�a�, but repre-
sented on the linear scale, so that the curve corresponding to
q /�=0.5 is now visible, while on the logarithmic scale of
Fig. 5�a� it appears very close to Wb=1. In the special case of
H−, the interval from �2�=0.01 to �2�=20 corresponds to
the range of �=4.36 as to �=8.72 fs.

Figure 6�a� shows the survival probability �25� as a func-
tion of q /�, for several values of the scaled time interval
�2�. The dotted lines represent the large-q asymptotes, Eq.
�27�, and in the cases of �2�=0.01, 0.05, and 0.1 they �apart
from the oscillations� indeed follow the general trend of the
survival probabilities at large values of q /�. However, in the
case of �2�=0.5, one can see that the corresponding dotted
line is far from the exact result. The reason for this is that we
have approached the large-� asymptote, Eq. �26�, represented
by a dashed line in Fig. 6�a�, where the expression �27� is no
longer valid. Actually, the exact results for Wb, calculated for
�2��3 are indistinguishable from the dashed line on the
scale of Fig. 6�a�.

The total detachment probability Wd=1−Wb is shown in
Fig. 6�b�. Again, it is just the mirror image of Fig. 6�a� but
represented on the linear scale.

FIG. 5. �a� Probability of the electron to remain in the bound
state Wb as a function of the scaled time interval �2� between the
pulses, for indicated values of q /� in a.u. The dashed lines are the
large-� asymptotes, Eq. �26�. The dotted line is the large-q asymp-
tote, Eq. �27�, for q /�=20. �b� Same as �a� but for the total detach-
ment probability Wd=1−Wb.
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B. Momentum, energy, and angular distributions

The detachment transition amplitude is obtained from Eq.
�23�,

Akb = akb�− q�abb�q�ei��2/2�� +� d3pakp�− q�apb�q�e−i�p2/2��,

�28�

where the bound-bound and bound-free single-pulse ampli-
tudes abb�q�, apb�q�, and akb�−q� are defined in Eqs. �11� and
�14�, whereas the free-free amplitude can be calculated from
Eqs. �5� and �8� �see the Appendix�,

akp�− q� = 
�k
−�eiq·r��p

−� = ��k − q − p�

−
1

2�2�� − ip���k − q�2 − p2 + i��

−
1

2�2�� + ik���p + q�2 − k2 − i��

+
1

i4�2q�� − ip��� + ik�
ln

i�p − k + q� + �

i�p − k − q� + �
,

�29�

where �→0+.

The first term in Eq. �28� can be interpreted as the prob-
ability amplitude for the sequence of events in which the
electron is not detached after the first pulse, evolves in the
bound state of H0 and is detached after the second pulse. The
second term in Eq. �24� is the sum �integral� of the probabil-
ity amplitudes which correspond to scenarios in which the
electron is detached after the first pulse, evolves in the con-
tinuum of H0 and remains in the continuum after the second
pulse. These two terms coherently contribute to the detach-
ment probability and we also here expect to see some quan-
tum interference effects.

Upon substitution of the expression �29�, the calculation
of the transition amplitude �28� can be reduced to evaluation
of a single integral,

Akb = akb�− q�abb�q�ei��2/2�� + ak−qb�q�e−i���k − q�2�/2��

−
�1/2

�2 �
0

�

F�p;k,q�e−i�p2/2��p2dp , �30�

where the function F�p ;k ,q� is explicitly given in the Ap-
pendix. The second term in Eq. �30� originates from the �
function in Eq. �29� and represents the contribution to de-
tachment amplitude when the intermediate continuum states
are approximated by plane waves. This term is dominant for
large values of q, because as can be seen from explicit ex-
pressions in the Appendix, F�p ;k ,q�→0 when q→�.

Figure 7 shows the calculated momentum distributions for
three characteristic pairs of parameters �q /� ,�2��. In the
�q /� ,�2��= �0.5,5� case �Fig. 7�a��, the interference pattern

FIG. 6. �a� Probability of the electron to remain in the bound
state Wb as a function of q /�, for indicated values of �2� in a.u. The
dotted lines are the large-q asymptotes, Eq. �27�. The dashed line is
the large-� asymptote, Eq. �26�. �b� Same as �a� but for the total
detachment probability Wd=1−Wb.

FIG. 7. Scaled momentum distributions of detached electrons
for �a� q /�=0.5, �2�=5, �b� q /�=5, �2�=1, and �c� q /�=20,
�2�=0.1. All quantities are in a.u.
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is clearly visible. In the �q /� ,�2��= �5,1� case �Fig. 7�b��,
the development of the peek at k=0 is noticeable together
with a wider structure around kz /�=q /�=5. Finally, in the
�q /� ,�2��= �20,0.1� case �Fig. 7�c��, the peak at the origin
of the momentum space is the dominant feature.

Somewhat better understanding of the structures in the
momentum distributions can be obtained from the analysis of
the k=0 sections of these distributions, which are shown in
Fig. 8 on the logarithmic scale. The dotted and dashed lines
correspond, respectively, to the modulus squared of the first
and second terms in Eq. �30�. In the �q /� ,�2��= �0.5,5� case
�Fig. 8�a��, we see that the interference pattern is predomi-
nant and actually, all three terms in Eq. �30� are more or less
equally contributing. In the �q /� ,�2��= �5,1� case �Fig.
8�b��, the formation of the peek around kz=0 is due to the
second term in Eq. �30�, while the broad structure around
kz=q=5 is the result of the interference of the first two terms.
Finally, in the �q /� ,�2��= �20,0.1� case �Fig. 8�c��, the peak
at kz=0 is by far the predominant feature, while the interfer-
ence structure around kz=q=20 is still present but is orders
of magnitude smaller �and therefore invisible on the linear
scale of Fig. 7�c��.

The energy distribution of the detached electrons after the
interaction with two alternating ultrashort pulses is given by

dWd

dE
= 2�k�

0

�

�Akb�2 sin �d� . �31�

This quantity is shown in Fig. 9 for selected pairs of param-
eters �q /� ,�2��. As compared to Fig. 8 the interference ef-

fects are less apparent, although for small q /� and large �2�
they become more pronounced.

The angular distribution of the detached electrons is ob-
tained as

dWd

sin �d�
= 2��

0

�

�Akb�2k2dk . �32�

Figure 10 shows the angular distributions for selected set of
pairs of parameters �q /� ,�2��. The interference effects are
suppressed in these distributions.

We have verified that numerical integration of the energy
distribution �31� over energies and integration of the angular
distribution �32� over angles, both reproduce the total detach-
ment probabilities calculated as Wd=1−Wb, with Wb given
by Eq. �25�. Thus, for the cases shown in Figs. 9 and 10, that
is for the set of parameters �q /� ,�2��= �20,0.1�, �5,1�,
�0.5,5�, and �0.1,10� all three calculations give Wd=0.97,
0.95, 0.079, and 0.0033.

IV. CONCLUDING REMARKS

It should be noted that the unipolar HCPs are to a large
extent theoretical idealizations. Actually, the closest to the

FIG. 8. Scaled momentum distributions of detached electrons at
k=0 for �a� q /�=0.5, �2�=5, �b� q /�=5, �2�=1, and �c� q /�
=20, �2�=0.1. The dashed lines represent �3�ak−qb�q��2 and the
dotted lines represent �3�akb�−q�abb�q��2=�3wb�akb�−q��2.

FIG. 9. Scaled energy distributions of detached electrons for
indicated values of pairs of parameters �q /� ,�2�� in a.u.

FIG. 10. Angular distributions of detached electrons for indi-
cated values of pairs of parameters �q /� ,�2�� in a.u.
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“true HCPs” are the experimental pulses produced on a ca-
pacitor with the use of fast voltage pulse generators �18�,
with pulse durations of about 2 ns and used in studies of
ionization of Rydberg atoms with n�300. On the other
hand, when freely propagating electromagnetic “HCPs” were
used for studies of ionization of Rydberg atoms with n
=15–35 �19�, they actually had a form of highly asymmetric
single-cycle pulses, consisting of a short HCP �duration,
�0.5 ps� continuously followed by much longer HCP �dura-
tion, �70 ps� of opposite polarity and much �about 10 times�
smaller amplitude �20,21�. Additional investigations �22�
have shown that the influence of the second HCP could be
neglected �at least for considering the total ionization prob-
abilities� only when its duration was much longer than the
orbiting time of the Rydberg electron. The discussion of the
actual form of the subfemptosecond HCPs, which are in-
volved in the present study, will have to await their experi-
mental realization.

In previous works �5,11,12� it has been pointed out that
the analysis of the case of two oppositely polarized and time-
delayed HCPs can help in describing the dynamics induced
by a single-cycle pulse. The time delay � must then be inter-
preted as one-half the period of the single-cycle pulse. Be-
cause, in this case, the first-order Magnus approximation is
zero, the expression �22� is related to the second-order Mag-
nus approximation �16�. There is a numerical evidence that
in the case of ionization of the ground-state hydrogen atom
�at least for survival probabilities at large momentum trans-
fers� this is a good approximation �11,12�. In order to check
if this also holds in the detachment problem one should con-
front our present results with the numerical solutions of the
time-dependent Schrödinger equation in the case of a single-
cycle pulse.
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APPENDIX: EVALUATION OF INTEGRALS

The integrals that are used in analytical evaluations are
the following �Re ��0�:

J��,q� =� e−�r−iq·rd3r

r2 =
2�

iq
ln

� + iq

� − iq
, �A1�

I��,q� = −
�J

��
=� e−�r−iq·rd3r

r
=

4�

�2 + q2 , �A2�

K��,q� = −
�I

��
=� e−�r−iq·rd3r =

8��

��2 + q2�2 . �A3�

The expressions for the single-pulse survival amplitude
given by Eq. �11� and bound-free transition amplitude given
by Eq. �14� rely on Eqs. �A1� and �A2�. The formula �29�
describing probability amplitude for the free-free transitions
uses Eqs. �A1�–�A3� and the fact that for �→0+, K�� ,q�
→ �2��3��q�.

The explicit expression for the function F�p ;k ,q� intro-
duced in Eq. �30� reads as

F�p;k,q� =
J1�p,k� − f�p�J2�p,k�

� + ik
+

J3�p� − 2f�p�
� − ip


� 1

�k − q�2 − p2 + i�
− g�p,k�� , �A4�

f�p� =
1

2iq�� + ip�
ln

� − i�p − q�
� − i�p + q�

, �A5�

g�p,k� =
1

2iq�� + ik�
ln

i�p − k + q� + �

i�p − k − q� + �
, �A6�

J1�p,k� = �
−1

1 dx

�p2 + q2 − k2 + 2pqx − i����2 + p2 + q2 + 2pqx�

=
J2�p,k� − J3�p�

�2 + k2 , �A7�

J2�p,k� = �
−1

1 dx

p2 + q2 − k2 + 2pqx − i�

=
1

2pq
ln

�p + q�2 − k2 − i�

�p − q�2 − k2 − i�
, �A8�

J3�p� = �
−1

1 dx

�2 + p2 + q2 + 2pqx
=

1

2pq
ln

�p + q�2 + �2

�p − q�2 + �2 .

�A9�

The existence of the term containing i� in Eq. �A4� requires
the use of the well-known formula

� f�x�
x − x0 + i�

dx = P� f�x�
x − x0

dx − i�f�x0� �A10�

and numerical evaluation of the principal value �P� of the
corresponding integral in Eq. �30�.

The limit �→0+ also defines the proper phases of the
arguments of the logarithms as being � for k−q� p�k+q
and zero otherwise in the case of Eq. �A6� and as being � for
�k−q�� p�k+q and zero otherwise in the case of Eq. �A8�.
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