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A short-pulse photoexcitation of 1s→2s ,2p transitions in the hydrogen atom is studied with perturbation
theory and the finite-element method giving an almost exact solution of the time-dependent Schrodinger
equation.
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I. INTRODUCTION

During recent years, atomic physics development has
been characterized by major interest in the processes induced
by short photopulses �1–9�. Attosecond pulse durations and
field amplitudes of the atomic scale are considered. In this
regard, the development of adequate theoretical approaches
is of interest. To date their number is essentially lower than
the number of methods for stationary problems. Let us note
the following works. In �8,9�, the time-dependent
Schrödinger equation for an atom in an external field was
reduced, using some simplifying assumptions including an
interaction weakness, to equations for two �or small number�
one-electron functions. The effective numerical solution
scheme was constructed for the gained set of nonstationary
equations. Basically, the time-dependent close-coupling
method can also be used, however this approach has been
applied so far to study only stationary photoprocesses
�10–12�.

The Feynman path integrals can also be used for the study
of dynamic processes. Methods based on the path-integral
technique have many advantages, including flexibility and
physical obviousness. Such methods have been considered
and developed in a number of works. The opportunity for
their use was detailed in �13,14� in connection with a study
of photoionization process dynamics. In our works �15–17�,
various path-integral estimate schemes for a solution of scat-
tering problems were considered.

A natural step for the development of new methods is
their testing. It is desirable that the test problem keep the
basic features of a real one and can also be solved precisely
enough. The process of excitation and ionization of the hy-
drogen atom by the short photopulse is of major interested in
this respect.

This problem was considered in �18–20�. In �18�, the
probabilities of ionization and excitation of the hydrogen
atomic levels n=2,3 ,4 from the ground state by electrical
pulses of the Gaussian and rectangular shapes were deter-
mined. It was considered pulse durations characteristic for
adiabatic �long� and nonadiabatic �short� conditions. Prob-
abilities were obtained from a numerical solution of the time-
dependent Schröodinger equation and were compared with
analytical evaluation within the limits of the adiabatic theory.
The reasons for the discrepancies in the previous works
�21,22� have been revealed. However, it may be pointed out

that the pulse amplitudes in �18� were small enough ��Ez�
�0.06 a.u.� for a perturbation’s theory validity and hence
results can be gained without a numerical solution of the
Schrödinger equation.

The major area of interest in the physics of ultrashort
processes is the case of strong fields where the perturbation
theory is inapplicable.

In �19,20�, a problem of hydrogen atom ionization by ul-
trashort pulses was considered for both conditions of weak
and strong fields. It was done for a case of very short pulses
���1 a.u.�, when the short pulse approximation �first Mag-
nus approximation� �FMA� is applicable.

In the present work, we consider excitation of a hydrogen
atom by a field corresponding to both a condition of pertur-
bation theory validity and its invalidity ��Ez��1 a.u.� for the
pulse durations, from small up to large in an atomic scale
���1 a.u.�. A corresponding problem for the time-dependent
Schrödinger equation was solved by a finite-element method
realized in the problem-solving environment of Comsol Mul-
tiphysics �Femlab�.

The gained results are used for subsequent testing of the
calculation scheme based on the Feynman path integrals and,
besides, they can have independent interest.

II. GENERAL CONSIDERATION

Let us consider some known general provisions of the
theory. The reason is that a nonstationary case needs some
comments.

Two forms of representation of a transition probability
can be used in a system. In a density-matrix formalism, the
transition probability from a state �i�t�� into a state � f�t� can
be written as

wi,f�t,t�� = tr�� f�t� · T̂�t,t�� · �i�t�� · T̂�t�,t�� . �1�

In the wave-function formalism, the transition probability of
a system from a state �i�t�� into a state � f�t� can be ex-
pressed with the probability amplitude

wi,f�t,t�� = �Ai,f�t,t���2, �2�

which should be defined as

Ai,f�t,t�� = �� f�t��T̂�t,t�� · �i�t��� . �3�

Here

T̂�t,t�� = Û�t,t�� − Ûa�t,t��
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is a transition operator. Û�t , t�� is an evolution operator for
the full Hamiltonian of a system

Ĥ�t� = Ĥa + Ŵ�t� ,

where Ĥa is the Hamiltonian of an atom and Ŵ�t� is an
interaction of an atom with a photopulse. We use a dipole
approximation for this interaction,

Ŵ�t� = − E� �t� · D̂� , �4�

where E� �t� is an electric field tension and D̂� is an operator of

the dipole moment of an atom. Ûa�t , t�� is an evolution op-
erator for an atomic Hamiltonian.

Let us take a time reference point t=0 within an interval
of pulse duration �. Initial and final time moments are chosen
out of the requirements

t� � − �, � � t . �5�

Under these requirements, it is possible to suppose, that the
transition probability �1� does not depend on the initial and
final time moments and to introduce a transition probability
per unit time �a transition velocity�, as

�i,f =
wi,f

�
. �6�

Let us make some notes.
First, it is necessary to say that the treatment considered

above is conventional for the stationary processes �23–26�.
For the nonstationary processes, the probability dynamics �1�
and �2�, when requirements �5� are not fulfilled, can also be
of interest. In connection with the development of the ul-
trashort pulses technique, there is a possibility of observation
of the processes dynamics, using the pump-probe method
�5,6�, for example.

Secondly, the transition probability per unit time is some-
times defined through a derivative of probability �1� on time
�23,25�,

�i,f =
d

dt
wi,f�t,t�� . �7�

The derivative is taken at time moment t=0. At small inten-
sity of light when a perturbation theory is applicable, such a
definition differs from Eq. �6� a little. However, at greater
intensities a probability �1� time dependence can have a com-
plex appearance and the value of Eq. �7� becomes indefinite.
So a definition of a transition velocity on the basis of a time
derivative is invalid. It can be illustrated by the results pre-
sented below of the calculation for hydrogen �Figs. 1 and 2�.
At the same time, definition �6� �following Eq. �5�� is quite
adequate to the problem when the outcome of the collision
�instead of its process� is registered.

Two definitions of cross sections are used for photopro-
cesses, which, generally speaking, do not coincide. One of
them corresponds to a conventional definition of a cross sec-
tion for collision of any particles �23,24�,

�i,f =
�i,f

J
,

where J is the colliding particles flux density. An other defi-
nition is given in energy terms �25,26�,

�i,f =
	Ei,f · �i,f

P
, �8�

where 	Ei,f ·�i,f is an energy transfer velocity at collision
�	Ei,f =Ef −Ei�, and P is photons energy flux

For an excitation by pulse it is necessary to take some
effective value of a flux density, for example medial or maxi-
mum for pulse.

We use the energy definition �8� as the photon energy flux
can be easily expressed through a field while connection of
particle flux with a field is more complex. For the electro-

magnetic pulse E� =E� 0f�
�r�−ct� spread in a direction of a unit
vector 
� , Poynting’s vector looks like

P� =
c

4�
E2
� .

For transitions between the groups of states i , f , it is used
an averaging over an initial group and summation over a
final one,

�i =
1

g�i� 	��i

��, � f = 	
�f

�, �9�

where g�i� is the statistical weight of an initial group of
states.

Further we neglect relativistic effects, including interac-
tion with a spin subsystem. In this case, a density matrix
factorizes on the orbital and spin density matrixes �=�L�S.
In the case of the hydrogen atom, we need not consider an
antisymmetrization of states, taking into account Pauli’s
principle.

For the one-electron system, in the absence of spin polar-
ization, the spin density matrix �medial on a spin projection�
is taken in the form

�Si =
1

2
Î ,

where Î is the unit matrix �24�. A summary spin density
matrix looks like

�Sf = Î .

By virtue of neglecting interaction with a spin subsystem, a
trace for spin variables

tr��Sf�Si� = 1

can be explicitly separated in the formula �1�.

III. THE PROBLEM STATEMENT

The process of photoexcitation of transitions 1s→2s ,2p
in the hydrogen atom has been considered, i.e., a photoab-
sorption resulting in an atom transition between the specified
states
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H + �
 → H*.

Evaluations of a probability and cross section of this pro-
cess depending on two main parameters of the pulse—its
duration and amplitude—have been made.

Photopulse durations have been chosen within an interval
0.1���10 enveloping the inverse frequency of atomic tran-
sition �=� /	Ei,f 
2.67. Perturbation theory predicts a cross-
section maximum on this domain for optically allowed tran-
sition 1s→2p. All magnitudes, including cross sections and
times, are presented in atomic units �1 a.u. of time=24.2 as�.
As of now only the upper durations of the chosen domain are
accessible in experiment. However, the rapid progress in the
area of ultrashort pulses is a good indication that coverage of
the entire domain will soon be possible.

The pulse of the Gaussian shape with an electric field
linearly polarized along an axis z,

Ez exp�− � t

�
2� , �10�

where � is its duration, has been chosen. The field magni-
tudes have been chosen within an interval 0.01�Ez�1.

IV. PERTURBATION THEORY EVALUATION

At small photopulse amplitude it is natural to use nonsta-
tionary perturbation theory for calculations. According to
this theory �24�, the first-order transition probability ampli-
tude i→ f �3� looks like

(a)

(b)

(c)

(d)

FIG. 1. Transition 1s→2s. Probabilities w as time dependences. Field amplitudes Ez=0.01,0.03,0.1,0.3,1.0 �a.u.�. Field durations
�a.u.�: �a� �=1, �b� �=3, �c� �=5, and �d� �=8.
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Ai,f�t,t�� = −
i

�
�

t�

t

�� f�s��Ŵ�s���i�s��ds .

Thus, the transition probability amplitude between the sta-
tionary atomic states can be represented in the form of a
product of a transition dipole matrix element and photopulse
Fourier transform

Ai,f =
i

�
�� f�D̂

� ��i��
−�

�

E� �s�exp� i

�
	Ei,fsds .

For a photopulse of the shape �10�, this gives the follow-
ing expression for a transition probability:

wi,f =
�

�2 ��� f�D̂z��i��2Ez
2�2 exp�−

1

2
� 1

�
	Ei,f�2� .

It is convenient to represent a transition probability in the
following form:

wi,f = �� eEz

	Ei,f
2

Li,fF�x2� ,

where

x =
1

�
	Ei,f�, F�x� = x exp�−

1

2
x ,

and

(a) (c)

(b) (d)

FIG. 2. Transition 1s→2p. Probabilities w as time dependences. Field amplitudes Ez=0.01,0.03,0.1,0.3,1.0 �a.u.�. Field durations
�a.u.�: �a� �=1, �b� �=3, �c� �=5, and �d� �=8.
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Li,f = ��� f�z��i��2

is the so-called line force. With provision for the levels de-
generacy according to Eq. �9�, a line force is

Li,f =
1

g�i� 	��i
	
�f

����z�����2. �11�

According to Eqs. �6� and �8�, the cross section as a func-
tion of photopulse duration can be represented in the follow-
ing form:

�i,f�x� = 4�2 e2

�c
Li,fx

−1F�x2� .

The explicit evaluation of Eq. �11� for the optically al-
lowed transition 1s→2p in the hydrogen atom gives the fol-
lowing value of a line force: L1s,2p=215·3−10�0.555. A line
force for the optically forbidden transition 1s→2s is equal to
zero.

V. FINITE-ELEMENT METHOD COMPUTATION

For the hydrogen atom it is possible to solve a problem
for the time-dependent Schrödinger equation by the finite-
element method using the problem-solving environment of
Comsol Multiphysics �Femlab�. It allows computation of
probabilities and cross sections for any pulse amplitudes.

Results are represented in Figs. 1–5.

Figures 1 and 2 show a transition probability time depen-
dency �2� for various pulse parameters �duration and ampli-
tude�. It is seen that with increasing pulse amplitude, a tran-
sition probability becomes a complex and nonmonotonic
function of time. At the center of excitation �t=0�, the prob-
ability derivative on time can have any values including
negative ones. It specifies an inapplicability of definition of a
transition probability per unit time by a derivative �7� as was
noted in Sec. II. At the same time, in a limit of large times �in
comparison with a pulse duration� the probability goes out
on a constant value, which corresponds to the probability of
detection of a system in a corresponding state as a result of
the considered process. This value is used in definition of a
transition probability per unit time in the formula �6�. Corre-
sponding cross sections were calculated by the formula �8�.

FIG. 3. Probabilities w as functions of field amplitude. Field
duration �=3 �a.u.�. Line 1, 2s+2p, FEM �finite-element method�;
line 2, 2p, FEM; line 3, 2s, FEM; line 4, 2p, perturbation theory;
line 5, 2s+2p �18�.

(a)

(b)

FIG. 4. Probabilities w as functions of field duration. Field am-
plitudes Ez=0.01,0.03,0.1,0.3,1.0 �a.u.�. Transitions �a� 1s→2s
and �b� 1s→2p.
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Figure 3 shows a transition probability dependency on
pulse amplitude for pulse duration �=3, which is close to an
inverse transition frequency. Results are shown separately for
transitions 1s→2s ,2p and for their total n=1→n=2. For
the transition 1s→2p, the result of the perturbation theory
calculation is shown for comparison. Also the results of �18�
for total transition n=1→n=2 are shown.

The nonlinear effect in a transition probability depen-
dency on pulse amplitude is well seen from the present re-
sults. For the weak pulses, the results of a finite-element
method practically coincide with the results of a perturbation
theory. At amplitude enhancing, a violation of the transition
1s→2s suppression begins and at greater amplitudes contri-
butions of both transitions 1s→2s ,2p to the total transition
become comparable.

At high enough pulse amplitudes, their increase leads to a
probability decrease. It can be interpreted as a redistribution
of total excitation and ionization in favor of higher states
�mostly ionization�.

Figure 4 shows a transition probability dependency on
pulse duration, and Fig. 5 shows a transition of cross-section
dependency on pulse duration at its various amplitudes. For
the excitation cross sections of transition 1s→2p, perturba-
tion theory results are shown for comparison.

With a pulse duration increase, the probability falls to
zero. It corresponds to an adiabatic principle �24� according
to which the stationary field does not induce transitions in a
system. Let us note that a pulse tends to a stationary electric
field at its duration increase.

With the pulse duration decrease, the probability also falls
to zero. It can probably be interpreted as system inertia.

VI. CONCLUSION

The obtained results have shown that even for the simple
case of a hydrogen atom, the process of its excitation by
short intensive pulses is rather complex. At high pulse am-
plitudes, the excitation probability dynamics has complex
and nonmonotonic form. A transition probability and the
cross-section dependencies on pulse duration have a struc-
ture. The often used definition of a transition velocity on the
basis of the time derivative is invalid.
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