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We show how to combine finite elements and the discrete-variable representation in prolate spheroidal
coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular
targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously
in a variety of bound-state applications. The use of exterior complex scaling in the present implementation
allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward
application to electronic continuum problems. Illustrative examples involving the bound and continuum states
of H2

+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the
present approach offer distinct advantages over methods based on single-center expansions.
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I. INTRODUCTION

Understanding and modeling the behavior of molecules
subjected to intense, ultrashort laser pulses is theoretically
and computationally challenging. Diatomic molecules are of
fundamental importance in this regard and provide an impor-
tant theoretical and experimental testbed for studying a vari-
ety of processes, such as multiple ionization by one or more
photons, high-order harmonic generation and dissociation
�1–3�. An accurate description of these processes relies on
the development of theoretical and computational methods
capable of providing precise treatments of the electron dy-
namics.

The development of advanced nonperturbative methods,
which involve solving either the time-independent �4–6� or
time-dependent �7–9� Schrödinger equation on a numerical
grid, have in recent years provided essentially exact treat-
ments of electron-impact ionization and one- and two-photon
double ionization of simple atomic targets. Extension of
these methods to simple molecular targets have also begun to
appear in the literature �10,11�, but complications arising
from the nonspherical nature of the interaction potentials in-
volved adds to the numerical complexity of the implementa-
tion. Straightforward extension of atomic close-coupling
methods to molecular targets, involving a grid-based treat-
ment of the radial coordinates of the electrons and a single-
center expansion of the angular variables in spherical har-
monics, is practical for simple molecular targets, but
becomes unwieldy with increasing target complexity. We
have recently addressed this problem with a hybrid method
that combines nuclear-centered analytic basis functions
�Gaussians� with numerically defined grid-based functions
�12�. Here we explore an alternative grid-based approach
specifically tailored to diatomic targets.

The approach described here is based on the discrete-
variable representation �DVR� �13� which offers distinct ad-
vantages in the representation of local potential energy op-
erators without resorting to the numerical approximations of
derivatives that characterize finite-difference methods. As we
have previously shown �14�, the DVR can be combined with

the finite-elements method �FEM�, which provides for more
flexibility in the design of the numerical grid and increases
the sparseness of the Hamiltonian matrix. Another key ad-
vantage of using finite elements is that it allows for the
straightforward application of exterior complex scaling
�ECS� �4�, which simplifies the imposition of asymptotic
scattering boundary conditions. In this paper, we show how
to develop an exterior-scaled FEM-DVR scheme in prolate
spheroidal coordinates, which is optimally suited to the study
of diatomic targets.

We begin with the description of a general one-electron
diatomic target in prolate spheroidal coordinates in Sec. II. In
Sec. III we outline a procedure for constructing a two-
dimensional DVR in these coordinates. Section IV discusses
an alternative approach involving a DVR in one spheroidal
variable coupled with an analytic expansion in the angular
spheroidal variable. Section V gives a number of illustrative
examples involving H2

+. We conclude with a brief discussion.

II. PROLATE SPHEROIDAL COORDINATES

Prolate spheroidal coordinates �� ,� ,�� are a three-
dimensional system of coordinates obtained by rotating a
two-dimensional elliptic coordinate system about the focal
axis of the ellipse. The angle of rotation is defined by � �0
���2��. With the foci located at �a along the z axis and
r1 and r2 denoting the distances to the two foci, the dimen-
sionless coordinates �� ,�� are defined as

� =
r1 + r2

2a
�1 � � � �� ,

� =
r1 − r2

2a
�− 1 � � � 1� , �1�

and the back transformation to Cartesian coordinates is
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x = a���2 − 1��1 − �2� cos � ,

y = a���2 − 1��1 − �2� sin � ,

z = a�� . �2�

The Laplacian in these coordinates is

�2 =
1

a2��2 − �2�� �

��
��2 − 1�

�

��
+

�

��
�1 − �2�

�

��

+
1

��2 − 1�
�2

��2 +
1

�1 − �2�
�2

��2� , �3�

and the volume element is

dV = a3��2 − �2�d�d�d� . �4�

We will consider the Schrödinger equation for an electron
in the field of two fixed nuclei,

�− 1
2�2 + V − E�	��,�,�� = 0, �5�

where the Coulomb interaction V between an electron and
two nuclei with charges Z1 and Z2 at the foci is given by

V��,�� = −
Z1

r1
−

Z2

r2
= −

�Z1 + Z2�� + �Z2 − Z1��
a��2 − �2�

. �6�

We can separate the � dependence from 	 by writing

	��,�,�� = �
m

	m��,��
eim�

�2�
, m = 0, � 1, � 2, . . . �7�

to get

�Hm��,�� − E�	��,�,��

= 	−
1

2a2��2 − �2�� �

��
��2 − 1�

�

��
+

�

��
�1 − �2�

�

��

−
m2

�2 − 1
−

m2

1 − �2 + 2a�Z1 + Z2�� + 2a�Z2 − Z1���
− E
	m��,�� = 0. �8�

It is useful at this point to make some remarks about Eq.
�8�. We note first that when taking matrix elements of the
Hamiltonian, the factor 1 / ��2−�2� is canceled by the volume
element, thus rendering the singularities in the Coulomb in-
teraction at �=1,�= �1 benign. Second, we note that the a
dependence of the Hamiltonian appears as simple multipli-
cative factors, which greatly simplifies the construction of
the Hamiltonian matrix at different internuclear separations.
These two facts highlight the advantage gained by using pro-
late spheroidal coordinates to study diatomic targets. Another
important point to note is that 	m is nonanalytic at �=1,�
= �1 for odd m, behaving as ��2−1��m�/2�1−�2��m�/2 �3,15�.
Consequently, the numerical implementations we develop for
even and odd m will have to be different.

We will now consider two different approaches to solving
Eq. �8�, the first involving construction of a two-dimensional
product DVR basis in � and �. The second approach uses an

analytic basis expansion for the � dependence and a DVR in
� to solve the resulting coupled equations.

III. A TWO-DIMENSIONAL DVR

We begin by expanding the wave function 	m�� ,�� in a
product basis of DVR functions,

	m��,�� = �
i,j

= cij f i���gj��� . �9�

The variable � runs from 1 to some specified maximum value
�max at which the grid is truncated. This range is divided into
subintervals or elements and the DVR functions �f i���
 are
constructed from elementary functions �
i���
 with compact
support. A single “bridging” function associated with each
finite-element boundary connects the functions in adjacent
elements and provides continuity across the element bound-
aries �14�. Exterior complex scaling, which scales the � vari-
able by a phase factor ei� beyond some specified point �0, is
easily implemented with finite elements by simply choosing
the point �0 to coincide with one of the element boundaries.
Complex scaling is unnecessary for the variable � �16�,
which runs from −1 to 1, so we can choose a single element
in constructing the DVR functions �gj���
; in this case the
elementary functions 
 are the same as the DVR functions.
Further details about the FEM-DVR constructions can be
found in Refs. �4,14�.

Further specification of the basis functions depends on
whether m is even or odd for the reasons stated above. We
will first outline the case for even m and then discuss the
modifictions needed for odd m.

A. Even m

For even m, the elementary DVR functions are defined as


n�x� =
1

�wn
�
i�n

N
x − xi

xn − xi
, �10�

where xi and wi are the points and associated weights corre-
sponding to some specified N-point Gauss quadrature. Ma-
trix elements of all local operators have a simple diagonal
representation when evaluated using the underlying quadra-
ture rule,

� 
n�x�F�x�
m�x�dx � �
k


n�xk�F�xk�
m�xk�wk = F�xn��n,m,

�11�

which follows from the fact that 
n�xm�=�n,m /�wn.
The kinetic energy and potential matrix elements are

simple in this basis. The volume element cancels the factor
of 1 / ��2−�2� that appears in every term in the Hamiltonian,
giving
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Hij,kl
m

a
=

1

a
� � 
i���
 j���Hm��,��
k���
l���dV

=
� jl

2
� ��2 − 1�

�
i

��

�
k

��
d� +

�ik

2
� ��2 − 1�

�
 j

��

�
l

��
d�

+
�ik� jl

2
� m2

��i
2 − 1�

+
m2

�1 − � j
2�

− 2a�Z1 + Z2��i

− 2a�Z2 − Z1�� j� , �12�

where we have used the quadrature rule to evaluate the local
centrifugal and potential terms and integration by parts to
simplify the derivative parts of the kinetic energy matrix,
dropping the surface terms which either vanish at the limits
or cancel in an FEM basis when continuity conditions are
imposed across the FEM boundaries �14�.

We note that the two-dimensional �2D� overlap in this
basis is

Sij,kl =� 
i���
 j���
k���
l���a3��2 − �2�d�d�

= �ik� jla
3��i

2 − � j
2� . �13�

The overlap cannot be transformed out of the problem by a
redefinition of the one-dimensional DVR functions because
it depends on how these functions are paired, due to the
nonseparability of the volume element. However, the overlap
can easily be transformed out of the problem after the Hamil-
tonian matrix is constructed by using

Ĥij,kl
m =

Hij,kl
m

a3��i
2 − � j

2��k
2 − �l

2
. �14�

We now address the question of boundary conditions and
the choice of the underlying Gaussian quadrature for the
DVR. The procedure we have used here differs from what
was used previously. In our earlier work in which the FEM-
DVR was implemented in spherical coordinates, we made
the traditional change of variable in the Schrödinger equation
to get radial equations whose solutions must vanish at the
origin. This boundary condition was enforced by choosing
Gauss-Lobatto quadrature �17�, which includes the finite-
element boundaries as quadrature points, as the underlying
quadrature for the DVR and then simply excluding the func-
tion associated with the first point from the basis, since all
the other DVR functions vanish at that point. In the present
case, we follow Esry and Sadeghpour �18� in working with
the original Schrödinger equation, making no change of vari-
able to produce radial equations. The FEM-DVR representa-
tion of the kinetic energy �Eq. �12�� is Hermitian �or in the
case of ECS, complex symmetrc� and the boundary condi-
tions on the wave function at �=1 and �= �1 �where the
wave function for m=0 is finite and zero for other m values�
are properly handled by the volume element. So the simplest
choice for the DVR is to use a single Gauss-Legendre DVR
for the � variable, where the end points are not quadrature
points. For the � DVR, we use Gauss-Radau quadrature for
the first element, fixing only the right-hand boundary and

including all elementary functions in the basis, and Gauss-
Lobatto quadrature for the remaining elements. This pre-
scription allows us to construct a proper FEM-DVR and
works for all m values.

B. Odd m

For odd m values, the procedure outlined above converges
slowly due to the nonanalytic behavior of the wave functions
at � , ���=1. The remedy for these cases is to define the DVR
basis functions with appropriate factors of ��2−1�1/2 and �1
−�2�1/2 built in. For odd m, the elementary DVR functions
are defined as


n��� = ��2 − 1�1/2fn��� ,

fn��� =
1

�wn

1

��n
2 − 1

�
i�n

N
� − �i

�n − �i
,


n��� = �1 − �2�1/2fn��� ,

fn��� =
1

�wn

1

�1 − �n
2 �

i�n

N
� − �i

�n − �i
. �15�

The functions are orthonormal under the quadrature rule. For
example, we have

� 
n���
m���d� =� ��2 − 1�fn���fm���d�

� �
k

��k
2 − 1�fn��k�fm��k�wk = �nm

�16�

and the small error arising from using this quadrature of the
overlap integral does not limit the overall accuracy of the
method, as is generally the case in DVR applications �17�.
From the definitions in Eq. �15� and the discrete orthonor-
mality of the functions �
i
, we obtain for the Hamiltonian
matrix elements

Hij,kl
m

a
= a2� � 
i���
 j���Hm��,��
k���
l�����2 − �2�d�d�

=
� jl

2
� ��2 − 1�	��2 − 1�

�f i

��

�fk

��
+ �� f i

�fk

��
+

�f i

��
fk�
d�

+
�ik

2
� ��2 − 1�	�1 − �2�

�f j

��

�f l

��
− �� f j

�f l

��

+
�f j

��
f l�
d� +

�ik� jl

2
��i

2 + � j
2 +

m2

��i
2 − 1�

+
m2

�1 − � j
2�

− 2a�Z1 + Z2��i − 2a�Z2 − Z1�� j� . �17�

The 2D metric can be handled exactly as in the case of even
m via Eq. �14�.
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IV. CLOSE-COUPLED ONE-DIMENSIONAL DVR

An alternative to the 2D DVR scheme we have examined
is to employ an analytic basis expansion for the “angular” �
variable �19� along with a DVR for the � variable. In this
close-coupling scheme, the wave function 	m�� ,�� is ex-
panded as

	m��,�� = �
i=1

N

�
�=1

�max

ci�
i���
�
m��� , �18�

where we take 
�
m��� to be the normalized associated Leg-

endre function


�
m��� = �− 1�m�2� + 1

2

�� − m�!
�� + m�!�

1/2

P�
m��� . �19�

The Hamiltonian matrix elements in this basis are given as

Hi�,j��
m

a
= a2� � 
i���
�

m���Hm��,��
 j���
��
m �����2 − �2�

�d�d� =
����

2
	� ��2 − 1�

�
i

��

�
 j

��
d� + �ij� m2

��i
2 − 1�

+ ��� + 1��
 − �ija������Z1 + Z2��i + �Z2 − Z1�

�	����−1� �� + m + 1��� − m + 1�
�2� + 1��2� + 3� �1/2

+ ����+1� �� + m��� − m�
�2� + 1��2� − 1��
� , �20�

where the integrals over � are performed using the quadra-
ture rule and the � integration was simplified by using the
generalized Legendre equation

� �

��
�1 − �2�

�

��
+ ��� + 1� −

m2

�1 − �2��
�
m��� = 0. �21�

Note that the overlap matrix in this representation is not
diagonal in �,

a3� � 
i���
�
m���
 j���
��

m �����2 − �2�d�d�

= �ij	������i
2 −

2�2 − 2m2 + 2� − 1

�2� + 3��2� − 1� � − ����−2
1

�2� + 3�

�� �� + m + 1��� − m + 1��� + m + 2��� − m + 2�
�2� + 1��2� + 5� �1/2

− ����+2
1

�2� + 1�

�� �� + m − 1��� − m − 1��� + m��� − m�
�2� − 1��2� + 3� �1/2
 . �22�

V. ILLUSTRATIVE EXAMPLES

A. Bound states of H2
+

We have computed the few lowest bound states of H2
+ at

an internuclear separation of 2 bohr using both schemes out-
lined above with a view toward achieving convergence to
machine accuracy in both cases. The results are shown in
Table I. The � grid runs from 1 to 80 in these calculations
and is subdivided into one finite element from 1 to 2 and 10
finite elements from 2 to 80, with 15th-order DVR in each
element. The 2D DVR calculations are fully converged by
using ninth-order Gauss-Legendre DVR in �, while the
close-coupling scheme achieves identical results with �max
=8 in the angular expansion.

B. Continuum states of H2
+

The continuum states of H2
+ are solutions of the equation

�H −
k2

2
�	k

�+���,�,�� = 0. �23�

To apply ECS to solve this equation, we must first convert it
into a driven equation for the outgoing wave part of 	�+�,
using the “two-potential” ECS formalism of McCurdy, Hor-
ner and Rescigno �20�. To this end, we partition 	�+� as
follows:

TABLE I. Energies �a.u.� of H2
+ bound states at R=2.0 bohr obtained with close-coupling expansion and

with 2D DVR. In all cases �� �1,80� with 15th-order DVR.

1s�g 2p�u 2p�u 4p�u

�max=3 −0.167533256943 0.071228224071 0.384084709996

�max=4 −0.602634189177

�max=5 −0.167534392117 0.071228180105 0.384084709963

�max=6 −0.602634214489

�max=7 −0.167534392201 0.071228180104 0.384084709963

�max=8 −0.602634214492

2D DVRa −0.602634214492 −0.167534392201 0.071228180104 0.384084709963

Reference �3� −0.602634214495 −0.167534392202

aDVR order on �� �−1,1� is 9.
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	k
�+���,�,�� = �0��,�,�� + 	sc��,a,�� , �24�

where the incoming part of the scattering wave function is
specified by �0 so that 	sc is a solution of a driven equation
satisfying outgoing boundary conditions,

�H −
k2

2
�	sc��,�,�� = � k2

2
− H��0��,�,�� . �25�

Since the long-range behavior of the potential is that of a
Coulomb interaction of an electron with a positive charge
Z=Z1+Z2, an optimum choice for �0 is one that coincides,
for large �, with the one-center Coulomb function, �c

�+��k ,r�,
with Z=Z1+Z2 and incoming momentum k. That choice en-
sures that there are only outgoing waves in 	sc, and allows
us to make contact with the usual partial wave decomposi-
tion of the scattering or ionization amplitudes. We note that
our approach differs from earlier work on H2

+ continuum
states using prolate spheroidal coordinates where the
asymptotic behavior was expressed in terms of two-center
phase shifts �15,21–23�.

To avoid having to resolve Eq. �23� for each direction of
k, we begin with the partial-wave expansion of �c

�+��k ,r� in
spherical polar coordinates,

�c
�+��k,r� = � 2

�
�1/2

�
�,m

i�ei��

kr
��,k

�c��r�Y�m�r̂�Y
�m
* �k̂� , �26�

where ��,k
�c� is the partial-wave Coulomb function and ��

=arg ���+1− iZ /k�. The above expansion, along with Eqs.
�7� and �19�, suggests that we define a “partial-wave driving
term” ��

m as

��
m = g���

��,k
�c�
„r��,��…

kr��,��

�

m
„cos ���,��…

eim�

�2�

� g���f�,m,k
�c�

„r��,��,cos ���,��…
eim�

�2�
, �27�

where g��� is a cutoff function that goes to zero as �→1, and
the mapping between spherical and prolate spheroidal vari-
ables is given through

r = a��2 + �2 − 1,

cos � =
��

��2 + �2 − 1
. �28�

Substitution of Eq. �27� into Eq. �25� gives, after some alge-
bra,

� k2

2
− Hm�	sc,�

m ��,��

= � �Z1 + Z2�
a��2 + �2 − 1

−
�Z1 + Z2�� + �Z2 − Z1��

a��2 − �2� �g���f�,m,k
�c�

�„r��,��,cos ���,��… −
1

2a2��2 − �2�

�	 f�,m,k
�c�

„r��,��,cos ���,��…� �

��
��2 − 1�

�

��
�g���

+ 2��2 − 1�
�g���

��

�f�,m,k
�c�

„r��,��,cos ���,��…
��


 , �29�

where we have again eliminated the � variable from consid-
eration by working with a specific m value, which is a good
quantum number. The function g��� is needed to cut off the
right-hand side of Eq. �29� near the one-center singularity at
r=0 �i.e., at �=1, �=0 in the one-center Coulomb term
�Z1+Z2� / �a��2+�2−1��, which is not removed by the use of
prolate spheroidal coordinates. From the partial wave solu-
tions 	sc,�

m , we can construct the full solution 	sc for any k,

	sc��,�,�� = � 2

�
�1/2

�
m

�
�=�m�

�

i�ei��	sc,�
m ��,��eim�Y

�m
* �k̂� .

�30�

It is important to note the number of � values required for
convergence is the number needed to adequately represent
the one-center atomic Coulomb function and should not be

TABLE II. H2
+ T-matrix elements for k=1.0 a.u. in 2�g symmetry at R=2.0 bohr. The 2D DVR and

close-coupling schemes gave identical results.

l0=0 l0=2 l0=4

l=0 −0.396361+0.804073i 0.014887−0.014689i 0.000239+0.000336i

l=2 0.014891−0.014685i 0.309380+0.108172i 0.016510+0.006677i

l=4 0.000239+0.000336i 0.016513+0.006678i 0.050174+0.002904i

TABLE III. The same as in Table II, but for 2�u symmetry.

l0=1 l0=3 l0=5

l=1 0.327633+0.123223i 0.023568+0.011786i 0.000026+0.000332i

l=3 0.023572+0.011786i 0.104822+0.011953i 0.011202+0.001528i

l=5 0.000026+0.000332i 0.011203+0.001527i 0.029378+0.001025i
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confused with the number of angular momentum terms that
would be needed in a single-center expansion of the wave
function in spherical coordinates.

Equation �29� can be solved using either the 2D DVR
scheme by expanding 	sc,�

m �� ,�� as in Eq. �9� or by using a
close-coupling expansion as in Eq. �18�. In either case, we

use exterior complex scaling in the � variable to enforce the
proper outgoing-wave boundary conditions on the scattered
wave. The cutoff function g��� was chosen to be a polyno-
mial defined on an interval �� ��1 ,�2� with g��1�=0, g��2�
=1 and zero first and second derivatives at �1 and �2. The
explicit functional form we used was

g�x� = �
0, x � 0,

1

2
�m + 2��m + 1�xm+3 − �m + 3��m + 1�xm+2 + �1 +

�m + 1��m + 4�
2

�xm+1, 0 � x � 1,

1, x � 1,
�

x =
� − �1

�2 − �1
, �31�

The results were found to be insensitive to values of m be-
tween 5 and 10.

Convergence was tested by computing T-matrix elements
for the H2

+ continuum functions using the 2D DVR and close-
coupling schemes. The T-matrix is defined by the asymptotic
behavior of 	sc,�

m expressed in spherical coordinates,

r	sc,�0

m
„r��,��… �

r→�
�

l


l
m�cos ��T�0,�

m

� ei�kr+�Z/k�ln 2kr−�l/2+�l�k��. �32�

The T�0,�
m -matrix elements can therefore be obtained by ex-

amining the asymptotic behavior of the function obtained by
projecting 
�

m�cos �� from r	sc,�0

m �r�� ,���. T-matrix results
in 2�g

+, 2�u
+, 2�g, and 2�u are given in Tables II–V, respec-

tively. The tabulated results were all obtained with a finite-
element � grid, running from 1 to 80, which was subdivided
into one element from 1 to 2 and 10 elements from 2 to 80
with 15th-order DVR in each element. The eighth element,
beginning at �=50, was complex scaled. For the 2D DVR

calculations, we used a single element for � on �−1,1� and
13th-order Gauss-Legendre DVR, while the close-coupling
results were obtained using �max=8. The T-matrix elements
obtained using the two different methods were identical to
the number of places given in Tables II–V. Note that the
T-matrix for this problem should be complex symmetric.
This property is not imposed, but rather can be taken as a
measure of numerical convergence. The small asymmetry
that is seen in several T-matrix elements can be traced to
truncation of the �-grid and not to any deficiencies in the
treatment of the � degree of freedom, since the 2D DVR
results are identical to the close-coupling results.

C. H2
+ photoionization cross sections

The final example we consider is photoionization of H2
+.

The photoionization amplitude for a fixed-in-space molecu-
lar orientation is defined by

�	k
�−��� · ��	0�

and the corresponding differential cross section is

TABLE IV. The same as in Table II, but for 2�g symmetry.

l0=2 l0=4 l0=6

l=2 −0.403016+0.204472i 0.014297−0.006027i 0.000096+0.000134i

l=4 0.014295−0.006023i 0.069823+0.005253i 0.010399+0.001006i

l=6 0.000096+0.000134i 0.010399+0.001005i 0.026248+0.000830i

TABLE V. The same as in Table II, but for 2�g symmetry.

l0=1 l0=3 l0=5

l=1 0.051511+0.002874i 0.014503+0.001360i 0.000042+0.000112i

l=3 0.014504+0.001360i 0.041746+0.002015i 0.007459+0.000446i

l=5 0.000042+0.000112i 0.007459+0.000446i 0.017760+0.000390i
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d��k,��
d�

=
4�2�k

c
��	�−��k,r��� · r�	0�r���2 �length�

=
4�2k

�c
��	�−��k,r��� · ��	0�r���2 �velocity� ,

�33�

where k is the outgoing electron momentum, 	0�r� is the
initial state with energy E0, � defines the polarization direc-
tion for a photon with energy �, � is the dipole operator and
the final state 	k

�−� is related to the function in Eq. �24� by

	k
�−� = �	−k

�+��*. �34�

The photoionization amplitude can be computed from the
solution of the perturbative first-order equation

�E0 + � − H��sc = �� · ��	0, �35�

by writing

�	k
�−��� · ��	0� = �	k

�−���E0 + � − H�

��E0 + � − H + i��−1� · ��	0�r��

= �	k
�−��E0 + � − H��sc� . �36�

Equation �36� can be further simplified by using Green’s
theorem to convert the amplitude to a surface integral, as we
will show below.

For this final example, we carried out calculations in both
the length and velocity gauges using only the close-coupling
scheme. The dipole operator � in the length gauge is simply
the displacement operator r whose components are expressed
in prolate spheroidal coordinates in Eq. �2�. For the velocity
gauge, we need to express the Cartesian components of the
gradient operator � in prolate spheroidal coordinates, which
is accomplished in a straightforward manner using the chain
rule,

d

dx
=

d�

dx

d

d�
+

d�

dx

d

d�
+

d�

dx

d

d�

=
2���2 − 1��1 − �2� cos �

R��2 − �2�
��

d

d�
− �

d

d�
�

−
2 sin �

R���2 − 1��1 − �2�
d

d�
,

d

dy
=

d�

dy

d

d�
+

d�

dy

d

d�
+

d�

dy

d

d�

=
2���2 − 1��1 − �2� sin �

R��2 − �2�
��

d

d�
− �

d

d�
�

+
2 cos �

R���2 − 1��1 − �2�
d

d�
,

d

dz
=

d�

dz

d

d�
+

d�

dz

d

d�
+

d�

dz

d

d�

=
2

R��2 − �2�
����2 − 1�

d

d�
+ ��1 − �2�

d

d�
� . �37�

The factor ���2−1��1−�2� that appears in the formulas for
d
dx and d

dy might appear to pose a problem for numerical
quadrature. But the operators d

dx and d
dy only connect func-

tions with even and odd m values, so nonzero matrix ele-
ments of these operators have only one function with odd m.
But for odd m, the elementary DVR functions are defined
with this factor built into their definition �see Eq. �15��, so
the required matrix elements can be accurately evaluated us-
ing the underlying Gauss quadrature rule.

Having solved the driven equations for 	�+� and �sc, the
photionization amplitude is evaluated using Eq. �36�. The
required volume integral in spheroidal coordinates can be
converted, using Green’s theorem, into an integral over a
surface of constant �0,

�	k
�−��E0 + � − H��sc� =

1

2
� � �	k

�−�* � �sc − �sc � 	k
�−�*� · dS

=
a

2
��0

2 − 1� � � ��	k
�−�*��0,�,��

d

d�
�sc��,�,���

�=�0

− ��sc��0,�,��
d

d�
	k

�−�*��,�,���
�=�0

�d�d� .

�38�

The integral over � in Eq. �38� is trivial, giving �m,m� when
we sum over the m=0, �1 components of �sc and 	k

�−� al-
lowed by dipole selection rules. The close-coupling scheme
expresses the � dependence of �sc

m�� ,�� and 	sc,�
m �� ,�� �Eq.

�29�� as an expansion in the functions 
�
m��� �Eq. �19��. If

we express the reference atomic Coulomb functions in

this same basis by projecting 
�
m��� onto

��,k
�c�(r�� ,��)
�

m(cos ��� ,��), then the integral over � in
Eq. �38� also collapses due to the orthonormality of the
functions 
�

m���. The final result can then be expressed
as a sum of Wronskian terms evaluated on the surface
�=�0.
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The photoionization calculations were carried out using
the close-coupling scheme, using the same basis set param-
eters that were employed in computing the H2

+ continuum
functions. Identical results were obtained in the length and
velocity gauges. For the total cross section, we can use the
expression

�tot =
4��

c
Im�	0�� · r��sc� . �39�

The total photoionization cross sections for polarization par-
allel and perpendicular to the molecular axis are plotted in
Figs. 1 and 2, respectively. The agreement with the accurate
numerical results of Bates and Opik �24� is essentially per-
fect.

The differential photoionization cross sections at 10 eV
photoelectron energy are shown in Fig. 3 for four different
orientations of the molecule with respect to the direction of

polarization. These results are also in good agreement with
other recent accurate calculations �25,26�.

VI. DISCUSSION

Prolate spheroidal coordinates are a natural choice for
carrying out quantum mechanical scattering studies involv-
ing diatomic targets. We have shown how to develop a finite-
element discrete-variable representation in these coordinates
that can be implemented in conjunction with exterior
complex scaling. The Hamiltonian dependence on internu-
clear distance is transparently simple in these coordinates,
requiring only a simple scaling of the kinetic energy and
electron-nuclear Coulomb interaction. We have demonstrated

FIG. 1. �Color online� H2
+ total photoionization cross section, in

megabarns, at R=2.0 bohr for polarization parallel to the molecular
axis. Solid curve, velocity gauge results; points, length gauge re-
sults. 1 Mb=10−18 cm2.

FIG. 2. �Color online� H2
+ total photoionization cross section at

R=2.0 bohr for polarization perpendicular to the molecular axis.
Solid curve, velocity gauge results; points, length gauge results.

FIG. 3. �Color online� Body-frame differential photoionization
cross sections for H2

+ at R=2.0 bohr for four different angles be-
tween the molecular axis and the polarization vector. Polarization
angles are �top to bottom� 0°, 30°, 60°, 90°.
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with several illustrative calculations involving bound and
continuum states of H2

+ that fully converged results can be
obtained with modest expansions, using either a two-
dimensional DVR in �, � or DVR in � along with a
close-coupling expansion in � using an analytic expansion
basis.

While we have focused here on the construction of a
one-electron basis for diatomics in prolate spheroidal coordi-
nates, for applications to many-electron diatomic targets
the treatment of electron-electron repulsion in these coordi-
nates is also required. The expansion of 1 /r12 in prolate
spheroidal coordinates is in fact well known �27–30�. This
expansion can also be used in connection with the present

FEM DVR scheme. That topic will be the subject of a future
study.
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