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Off-the-energy-shell effect in the dissociative recombination of HD*
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The Lippmann-Schwinger (LS) equation for the K matrix is numerically solved for the collision of HD*
+e interacting by the configuration interaction (CI). The realistic CI strength is deduced from ab initio calcu-
lation of electron scattering. The LS equation is extended to the negative collision energies in the context of
multichannel quantum defect theory (MQDT) for the dissociative recombination (DR). A decoupling property
is shown for the LS equation, which is useful for reducing the amount of the calculation. The Chebyshev
quadrature is employed for the calculation and a fully converged result has been obtained. Using the result with
the MQDT, the DR cross section of HD* is obtained. It has turned out that the off-the-energy-shell contribution
is indispensable for understanding the DR. The contribution from the negative energies largely affects the
low-energy DR. The DR at low energy is induced by the indirect process with rotational excitation. The
separable approximation on the CI is examined for the realistic CI strength. This approximation has turned out
to be inadequate for the DR of HD*. The calculated rate coefficient reproduces the experiment [A. Al-Khalili
et al., J. Phys. A 68, 042702 (2003)] both on the absolute magnitude and resonance structure. The off-the-
energy shell contribution largely affects on the initial vibrational state (v*) dependence. This contribution

increases the rate coefficient for v*=0 and decreases for v*=2.
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I. INTRODUCTION

The major mechanism of dissociative recombination (DR)
of Hj is considered as the incident electrons are captured into
the two-electron excited resonance state of which potential
curve is dissociative [1,2]. This mechanism, known as the
direct process, is induced by the configuration interaction
(CI) between the one- and two-electron excited states. An-
other mechanism named the indirect process is the DR where
the incident electron is temporarily recombined into the ro-
tational and/or vibrational excited Rydberg states [3]. These
recombined Rydberg states finally dissociate into the two-
electron excited state. The CI does not induce the indirect
process within the first-order perturbation but the higher-
order effect enables it. The nonadiabatic interaction (NAI) is
thought to be the main mechanism of the indirect process.
The NAI in the Rydberg and electronic continuum states is
known to be well represented by the multichannel quantum
defect theory (MQDT) [4]. The so-called two-step method
[5] enabled us to take account of both the CI and the NAI
uniformly. In the first step of this method, a scattering prob-
lem of electrons by the CI needs to be solved accurately.
Next, the problem of NAI is solved by the MQDT using the
electronic state obtained by the first step.

An electronic resonance state plays an important role in
the dissociative processes, not only for the DR but also the
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dissociative attachment (DA) [6-9]. These dissociative pro-
cesses are controlled by the nonlocal potential in the space
coordinate representation. The nonlocality originates in the
energy dependence of CI. If we neglect this dependence and
assume the completeness of the vibrational wave functions,
the interaction potential becomes local [3]. Thus, the nonlo-
cal treatment means to take into account the CI strength at
off-resonance energies. Besides the approach using a space
coordinate, it has been studied to solve a spectrum resolved
Lippmann-Schwinger (LS) equation which the K matrix sat-
isfies [5,10]. The K-matrix K of real number is easy to cal-
culate compared with other complex collision matrices and it
is directly related to the quantum defect, which is the invari-
ant quantity of the MQDT. The LS equation is formally rep-
resented by the matrix form as K=—mV+VGyK, where V is
the CI, and G is the Green’s function of the free stationary
state. When we represent this equation by energy resolved
form as will be seen in Sec. Il A, the term of VGyK denotes
the contribution from the off-the-energy-shell of the matrix.
This off-the-energy-shell term represents higher-order effect
of perturbation theory, which is called the Born series. The
first-order approximation for the LS equation K=-mV has
been widely adopted in many studies [11-13]. For more ac-
curate calculation, the second-order approximation K=—mV
+ VG,V has been employed, although the K-matrix elements
between the dissociative states are neglected [14,15]. A con-
sistent higher-order treatment inevitably requires to investi-
gate energy dependence of the CI strength.

The problem of nonlocality has been studied for the DA
by using model interactions [6]. The energy dependence as-
sumed in that model was taken to be given by the threshold
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law given by Wigner [16]. This threshold law is actually
given for a potential scattering (not for a resonance scatter-
ing) and it is valid only for the on-the-energy-shell interac-
tion. The energy dependence of the CI which we need now is
off-the-energy-shell matrix elements, that is the CI strength
at off-resonance energies. In this paper, we will study the DR
using the CI strength obtained by an ab initio calculation,
which has nonseparable dependence on the electronic energy
and the internuclear distance. An essential difference of DR
from the DA is the existence of the Rydberg states, which
means the off-the-energy-shell contribution from the nega-
tive energy of the incident electron. Special care will be paid
for this contribution in the present paper.

Several papers have already been presented on the DR of
HD* based on realistic CI [10,17-20], where the adopted CI
strength was not definitely shown. In the present paper, we
show the definite condition of the previous papers for the
comparison with the present study based on more detailed
investigation on the CI. In the older studies [10,17,18], the
quadrature in the LS equation was done by Simpson method,
which is not fully converged [21]. We will check the accu-
racy on the result by the old quadrature.

On the HD* molecule, the DR cross section has been
measured specifying the initial vibrational state to be the
ground state. The recent measurements using the electron
cooler ring have achieved high-energy resolution up to
1 meV and have given precise absolute cross section
[22-24]. Several experiments specifying the rotational state
are undergoing now. By comparing those experiments with
the rigorous calculation, we shall make clear the validity of
our theory and the reliability of the storage ring ultracold
experiment.

II. ELECTRON-MOLECULE SCATTERING BY
CONFIGURATION INTERACTION

A brief report of this section is seen in the progress report
by one of the authors (HT) [19,20]. We here show the com-
plete form of the formulation, which is the basis of the
present study.

A. Lippmann-Schwinger equation

We adopt the basis functions made up by Born-
Oppenheimer (BO) approximation in order to represent a
system interacting by the CI. The CI considered now is the
interaction between a two-electron excited state labeled by
suffix d and one-electron excited one, which is specified by
the energy of excited electron e. Setting the coordinates of
electrons r collectively, we present the wave functions of
those states by ¢,(r) and ¢ (r). The radial nuclear wave
functions associated with those electronic functions are, re-
spectively, represented by F/(R) and x)(R). The former is
the dissociative wave function of the dissociating energy &
and the total angular momentum J. The latter is the wave
function of vibrational state v with rotational state N. The
internuclear distance is presented by R. The strength of the
CI is represented by the following matrix elements of the
electronic Hamiltonian of fixed nuclei at R; H*(r;R):

PHYSICAL REVIEW A 79, 012715 (2009)

VA o= OQR)| Ve d(R)|FLUR)), (1)

where

Ved(R) =(p(r;R)|H"(r;R)|y(r:R)),. (2)

Since the molecular orientation is fixed during the electron
collision for the inner region of the MQDT, we assume the
rotational transition is frozen for the CI, N=J. The rotational
transition is taken into account at the second stage of the
two-step method separated from the first stage [25]. Thus, we
omit the fixed parameter N and J in this section. The total
energy is a sum of the energies of electronic and nuclear
motion; ET=E,+e=E (R=»)+&. When we write the total
energy as E: for the channel v, and EST for the channel d, the
off-the-energy-shell element of the CI strength is represented
by

Vve,ds = v,d(EzaE£)7 (3)

where E:%Ez in general.

We use Greek characters, for example «, for identifying
the channel and E, for the total energy of the channel a:
{a}={v}U{d}, {Ea}={E:}U{EZ}, where {---} shows a set of
states and U presents the direct sum of the set. The energy
resolved LS equation for the K matrix becomes

KBQ(EB’Ea) == WVB,Q(EB’Ea)

* Ve EgE,)
+2pvf dE'y E _E K’ya(E'y»Ea)'
'y —0C

a” By
4)

The above equation is the same form as Eq. (7.62) given by
Newton [26] except for the integral region being extended to
the negative energy region. In the MQDT formalism, the CI
is represented at the inner region, where the boundary con-
dition on the energy is not imposed. As for the Coulombic
basis functions in the inner region of the MQDT, the scatter-
ing channel functions should be free from the control of the
asymptotic energy boundary condition. The Rydberg states
are treated as open channels for the CI interaction.

We can solve this equation by replacing the principal
value integral of E, to appropriate numerical integration.
While the energy is discretized to finite representative points,
we use the same notation E,, (and also E, and Ep) for the
discretized variables as for the continuous one. The algebraic
equation to be solved is,

Vs, (EQ,E])
> wp = 03,0p £ |KyolE,Ep)
y E, Ea_ Ey Y By

=7V {EpE,), (5)

where wg is weight function of numerical integration and &
is Kronecker delta.

B. Decoupling property

In the present problem, the coupling vanishes between the
states of the same electronic configuration; between the d
channels or v channels. Due to this character, Eq. (5) could
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be separated into two groups. We represent both « and E,
together by italic letter i: {i}={a} ®{E,}, of which states are
produced by a direct product of two state functions. Setting
the first term in the parentheses of Eq. (5) to A;;, K to x;, and
the right-hand side to B;, we obtain the following equation.
For « € {d}, Eq. (5) becomes

—x+ 2 Ay =0, ield, (6)
jefv}

2 Al_] j i_Bi’
Jjeldy

i € {v}. (7)
Equation (7) is rewritten using Eq. (6),
E Ai,j E Ajkxk_-xizBi, i e{v}. (8)

je{d} ke{v}

By similar way, we obtain equations for a € {v},

-Xi+ > Ayx;=0, ie{v}, 9)
jeldt
2 Ay 2 Apg-xi=B, ield. (10)
je{v} kel{d}

In Egs. (8) and (10), the coupling is limited in the subspace
of {v} or {d}, respectively. Moreover, Egs. (6) and (9) are
simple linear mapping from the solved complementary sub-
space.

The number of d channel is usually quite small compared
with that of v channel; in the present case, {d} consists of one
channel and {v} consists of 18 channels. This means the
amount of calculation could be reduced below one-tenth if
we use Egs. (6)-(10) instead of Eq. (5).

C. Chebyshev quadrature

We have several choices for the quadrature for the first
term in the parentheses of Eq. (5). In order to remove the
singularity =~ of  energy  resolvent, the  function
Vg Eg.E,)K,(E,,E,) should be expanded by known func-
tions, and the integration on £, must be done analytically.
Pichl and Horacek showed that the Chebyshev polynomial is
suitable for the basis function for a single channel case [27].
This method is superior in the speed of convergence. More-
over, the analytical integration is simply given by using the
Chebyshev polynomials of the first and second kinds.

We here adopt their method to the multichannel energy
resolved LS equation (4) after modifying the energy variable
transformation [19]. For taking into account the contribution
from e€<0, that is, the contribution of Rydberg states, we
adopted the following transformation from the energy
EJa,») to y[1,-1):

2C
=T o ta-C. (11)

or
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2C
y=—""—"-1, (12)

E-a+C
where a (<0) and C are arbitrary parameters. The parameter
a means the lowest energy of the integration and C controls
the domain of integration. After this transformation, the term
of principal value integration in Eq. (4) is rewritten as the
following:

* Vs (EgE.)

A CASd il 24

o0 j dE, L5 LKy (E g E,)
—00 (o3 Y

-1
1 1+y,
=so,,f dy,——— Vg (EgE)Kpg(EgE,).
. yy—yyly BYNEB =y B BYEB

(13)

Following Pichl and Hordcek [27], we expand a part of the
right-hand side of the above equation by using the Cheby-
shev polynomial 7,

—l+
1 —yyl Vﬁ}’(Eﬁ’E )K:B'V(E:B’E )
N
~ > a,(ypYai B 1. )T, (). (14)
n=1

Adopting this expansion, we can analytically integrate Eq.
(13) using the following relation:

f_ld M—WU (vy), n=1
- 1Va = L
1 y\/l_yi,(ya_yy)
=0, n=0, (15)

where U, is the nth-order Chebyshev polynomial of the sec-
ond kind.
The right-hand side of Eq. (13) becomes

N
2 an(yﬁ’ya;ﬂv y’a)WUtl—l(ya)' (16)

n=1
The expansion coefficient a,(yg,y4;B,7¥,@) is obtained
by using the orthogonality of T, for Eq. (14),

an(yﬁ7ya;ﬂ7y’a)
21‘ PR
), y71

Applying the Gauss-Chebyshev quadrature to the above
equation, we obtain the following equation:
M

2
an(yﬁ”ya;lg’ Y- a) -~ ;E wi(l +yoz)
i=1

VBY(EB’E DKo EE)T,(y,).

(17)

-y,
X —lV,B'y(EIB7E'y)Kﬁ'y(EﬁvEy)Tn(yy)v (18)
1 + in i i i
where w;=7/M and yyi:cos[(i—1/2)wi]. From Egs. (18),
(16), and (4), the LS equation to be solved is
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Kﬁa(EﬁsEa) == Wvﬁ,a(EBsEa)

M
+ 2 2 m(yﬁ’yyi’ya;ﬁs Y, a)KBy(EB»Ey)
y =1
(19)
with
m(yﬁ’y'yi’ya;ﬁ”y’a)
N
2 1_yy-
= — 1+ —IV E ,E Tn Un— al
M( Vo) \/ 1+in ﬁ'y( B 'y[)z (y'yl.) 1(Va)
(20)

The K matrix is obtained by solving the following algebraic
equation which corresponds to Eq. (5):

M

2 E [m(yﬁ’y'yi’ya;ﬂ’ Y- a’) - 5B,y5Eﬁ,E7]K'ya(E'yi9ElB)

y =1

:WVBvQ(EB’Ea)' (21)

III. ELECTRON AND HD* COLLISIONS BY THE CI
A. Adiabatic CI strength

At the collision energies lower than 1 eV, only the lowest
two-electron excited state '28(2p0',,)2 is considered to con-
tribute to the DR if the initial vibrational state of the molecu-
lar ion is lower than v=5. At the energy of v=5, the potential
curve of the molecular ion crosses with the second lowest ¢,
state. We here take into account only the lowest two-electron
excited state as the dissociative states ¢,. The Rayleigh-Ritz
variational method is employed to calculate the two-electron
excited state ¢,;. The ionizing state ¢, is calculated in the
static exchange approximation with the adiabatic polariza-
tion potential. Using those wave functions (¢, ¢.) in Eq.
(2), we obtain the CI strength V_4(R) [28,29]. The adiabatic
resonance width I'(e,R) is given by

['(eR) =27V 4R)|*. (22)

These approximations adopted to the electronic states in
fixed nuclei are appropriate to present the dynamical pro-
cesses induced by the CI between the resonance and con-
tinuum electronic states. In the scattering theory, the basis
functions representing channels are constituted of the eigen-
functions of the total Hamiltonian without the interaction
inducing the scattering, which is the CI now. If we adopt the
basis functions taking into account the CI, there is no scat-
tering by the CI. The NAI induces all dynamical processes.
In such a presentation, we cannot separate the vibrational
state from the dissociative state since the electronic states
having bonding and dissociative potential curves are mixed.
Thus we cannot present the magnitude of the CI as Eq. (1)
for an accurate electronic state of which CI matrix elements
are diagonal in fixed nuclei. The potential curves of the HD*
and the lowest two-electron excited state is shown in Fig. 1.
The potential curve by present calculation is higher than the
accurate one [12,30], in which the CI is taken into account,

PHYSICAL REVIEW A 79, 012715 (2009)

-0.40 v IRERANRENI AN R NRRN
1
\ \
‘ \
-0.45 \
|}
1 \
3 —
: -0.50 \ \ —
< A \ ==
> ! |\ ey
5 i \ "
g -0.55 v \\ /
° 43 i\
s X, '\"\y 7
b= A A\
g -0.60 0~== \\
S \\
\
Ay \\
-0.65 \
\\
\
\
-0.70 N\
[TTTTTTTI T I I T T I I T T I T T T T T I T I T[T oI T T I T T[T I T TT T TTIoITroTTT
1 2 3 4 5 6 7

Internuclear distance (a.u.)

FIG. 1. (Color online) Potential curves of HD* and the lowest
two-electron excited state. The higher dissociative curve is given by
the present calculation (CI is excluded), and the lower is the more
accurate potential curve [12,30] (CI is included). The number shows
the vibrational quantum number and the horizontal lines show the
energies of vibrational states for HD™.

that is, the shift of resonance energy by the CI is included.
We intentionally adopted the less accurate potential curve to
generate the dissociative nuclear wave function FQ(R). The
neglected higher-order coupling between the two-electron
excited states and continuum states in fixed nuclei is to be
recovered by taking account the interaction between them in
solving the dynamical process presented by Eq. (21). If we
adopted the potential curve where the CI is taken into ac-
count, the CI would be counted double.

The crucial important quantity is the strength of interac-
tion V. 4(R) or I'(e,R) as a function of two variables € and R.
The calculation was done for the internuclear distance R
=1.0-2.6 a.u. with the interval of 0.2 a.u., and the collision
energy €=~0.001-5 a.u. In Fig. 2, we show the calculated
resonance width as a function of the total electronic energy
€', which is the sum of the collision energy € and the poten-
tial energy of hydrogen molecular ion EH;(R), e=¢
+Eu+(R). As can be seen in Fig. 2, the maximum value of the
I'(e',R) comes out at almost fixed total energy (e
=—0.35 a.u.) for various R. This weak dependence of reso-
nance width on R brings advantage for interpolating or ex-
trapolating the calculated values.

B. Entire picture of adiabatic resonance width

In the present method, the calculation of adiabatic reso-
nance width I' is confined to positive collision energies but
we need it in all energy regions including the negative colli-
sion energies. This means we must extrapolate the calculated
values to all R and €’ regions. The asymptotic behavior of
the I" is important in the extrapolation. For the negative col-
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FIG. 2. (Color online) The total electronic energy dependence of
the adiabatic resonance width I'(e,R). The internuclear distance R
changes from R=1.0 a.u. to 2.6 a.u. with the interval of 0.2 a.u.
The curve of larger peak value is the CI strength of larger R. The
marks in the figure show the calculated values. The curves show the
result of interpolation or extrapolation of the calculated values (see
text). The vertical dashed line indicates the total electronic energy
e'=-0.35 a.u.

lision energy (e<<0), the electronic states become discrete
Rydberg states, of which energy is represented as e=
—1/21? with effective quantum number ». Since there is no
state below v~1, I'=0 for e<-1/2. (i) I'=0 for €<
-1/ 2+EH§(R), where EH;(R) is the lowest potential energy
of the hydrogen molecular ion. The interaction strength
sharply becomes zero at the low energy, where collision en-
ergy is negative. The I' decrease quickly when the collision
energy becomes negative. The behavior of the I' in the nega-
tive energy sensitively depends on the R as shown in Fig. 2.
Thus we carefully fit the calculated values by power series
function in the low-energy region and extrapolate them to the
negative energy region of I'=0.

When the collision energy becomes large, the continuum
wave function frequently oscillates and the overlap between
the continuum state and two-electron excited one becomes
small. Then the CI strength becomes weak at large € since
the CI strength is roughly proportional to that overlap.

(ii) I'=0 for €’ —o. When the internuclear distance be-
comes small (R— 0), the values of EH;(R) become large be-
cause of repulsive internuclear force. Then the collision en-
ergy becomes negative for a finite €’. Therefore, (iii) '=0
for R—0. When the R value becomes large, the potential
curve of two-electron excited state crosses with the curve of
EH;(R), and further large, it merges to a potential curve of
Rydberg state, where the CI vanishes. Thus, setting the merg-
ing internuclear distance R,,, (iv) I'=0 for R>R,,. The po-
tential energy curves of the EF and (2po,)? states indicate
R,,~4.5 a.u. [31]. The conditions for the asymptotic behav-
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FIG. 3. (Color online) Extrapolation of contour. The three
curves show the contours of I'(e,R)=0.07, 0.03, 0.005 a.u. from the
inner to the outer regions.

ior (i)—(iv) confine the I' in the full region of (€’,R) space. If
we present the I' in a three-dimensional graph with the ' on
the z axis and the €’ on the x and R on the y axis, the I' is
represented as an isolated island on the sea level, as can be
seen in Fig. 4.

We employed the bicubic B-spline interpolation [32] us-
ing the calculated (€,R) points. In the outside of the calcu-
lated R region (1.0<R<2.6 a.u.), we need to extrapolate the
calculated values. The B-spline works well for the extrapo-
lation to R<<1.0 a.u. because the strength monotonically de-
creases as R becomes zero.

For the R larger than 2.6 a.u., the extrapolation using the
calculated values diverges. Because the I forms an isolated
island as pointed out before, we extrapolate the contour lines
of some I" values at the boundary of the calculated region
(R=2.6 a.u.) assuming that the contour shape could be rep-
resented by the quadratic form of €’ and R. Since the contour
line necessarily crosses 2 times with that boundary, we intro-
duce a coordinate (x,y) which is the coordinate shifted by
the origin of the coordinate (€’,R) to the crossing point of
small €. That is (x,y)=(e'— eg,R—2.6) with 65 being the
right-hand crossing point with the boundary in Fig. 3. The
quadratic form is represented as

x> +axy+by*+cx+dy=0, (23)

using four parameters from a to d. These parameters are
determined using two points on the boundary y=0 (R=2.6)
in the x-y plane and the gradients of the contour lines
(dy/dx) at those two points. We put the position of the larger
y crossing point to (x,y)=(%,0), and the gradient of the con-
tour line there to k; and the gradient at the smaller y crossing
point to ky. Then a=-(ky+k,)/kok;,, c==h, d=h/k, One
more point on the contour line is needed to determine the
values of b, which is less reliable than the extrapolation. We
choose three contour lines of I'=0.005, 0.03, and 0.07 a.u.,
which is shown in Fig. 3. The used parameters are listed in
Table I.
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TABLE 1. Parameters for the quadratic form of the contour.

I'(e,R) Eg a b c d
0.005 —-0.607095 0.722534 0.46 —2.2545 0.73198
0.03 —-0.596240 0.03860 0.55 —1.17442 0.0322966
0.07 -0.492700 -0.31029 0.70 -0.35776 -0.200

Adding those values on the contour, we could interpolate
and extrapolate the calculated values to the larger R by the
two dimensional B-spline method. Figure 4 shows the adia-
batic resonance width I'(e,R) on the whole €’-R space. The
energies of the lowest resonance state (2po,)? at fixed nuclei
R is shown by the dashed curve in Fig. 4, which shows the
on-the-energy-shell interaction at fixed nuclei. The potential
curve of the lowest ionic state is also presented by the dotted
curves. The shape of I' is not simple, especially there is a
bump at the low energies of 1.7<R<2.4 a.u., of which ef-
fect will be investigated on the low-energy dissociative re-
combination.

C. Transition probability

The K-matrix elements were calculated by solving Eq.
(21). The values of parameters C and a in Eq. (12) were
adopted to C=0.3 and a=-0.625 a.u. (energy of dissociation
limit). The number of energy points M in Eq. (21) is adopted
to M =100 after confirming the obtained K matrix to be con-
verged [20]. The 18 vibrational functions (v=0-17) are em-
ployed in the calculation. The energy region of the present
interest is the incident electron energy lower than 1 eV for
v=0-2 initial vibrational states, which correspond to the to-
tal energies between —0.6 and —0.5 a.u. In order to investi-
gate the effect of the Rydberg states to such low-energy col-
lisions, we calculated the transition probabilities excluding

EN
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n
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o
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Total electronic energy (a.u.)

FIG. 4. (Color online) Adiabatic resonance width I'(R, €) (a.u.).
The dashed line indicates the resonance energies of the two-electron
excited state (2po,)?, the dotted curve indicates the potential curve
of hydrogen molecular ion.

the Rydberg states of the principal quantum number lower
than n,. The dissociation probability is defined by square
absolute value of the S-matrix element |S,,(E)|?, where the
S-matrix element is deduced from the calculated K matrix,
S=(1+iK)(1-iK)™".

Figure 5 shows the calculated dissociation probability
from v=0, 1, and 2 by changing the value of n_, for the total
angular momentum J=0. The contribution from the Rydberg
states is not negligible at low energies especially for the low
initial vibrational state. The results of n.,=3 and 4 are actu-
ally the same. Irregular behavior near the zero energies is
seen for the Rydberg contribution being limited (n.,=50) in
v=0 and 1 although the result is almost converged numeri-
cally. This irregular behavior can be removed by taking ac-
count of the many Rydberg states (n.,<6). If we cut all of
the Rydberg states, the magnitudes of V. ,(R) changes dis-
continuously at e=0. This discontinuity induces a singularity
of the calculated K matrix near the zero energy [20] and
affects to the dissociation probability.

The calculated dissociation probability was compared
with the first-order calculation in Fig. 6. The higher-order
effect enhances the probability from the initial vibrational
state v=0 and reduces that from v=2 drastically. As the re-
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=] N
£ 0.154 iolE -
© [
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FIG. 5. (Color online) The dissociation probability by the CI for
J=0; contribution from the Rydberg states (e<0). Solid line indi-
cates the dissociation from v=0, dashed line indicates from v=1,
and dotted line indicates from v=2. The marks show the lowest
principal quantum number (n.,) of the included Rydberg states: O,
New=3; +, ne=4 (all points coincide with n.,=3); A, n.,=6; O,
1, =50. The vertical lines indicate the zero collision energies for
each initial vibrational state v.
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FIG. 6. (Color online) Effect of off-the-energy-shell contribu-
tion for J=0. The marks and line types indicate the initial vibra-
tional state, line type indicates the same meaning as in Fig. 5; circle,
v=0; square, v=1; triangle, v=2. The large filled mark, present
result with v < 17; small filled mark, present result with v <9; open
mark, first-order calculation with v <17.

sult, the magnitudes of those two probabilities become the
same order although the first-order calculation gives quite
large probability for v=2. The v=2 initial state is energeti-
cally more suitable for the dissociation than the v=0 since
the energy level of v=2 exceeds the energy of the potential
curve crossing between the ionic and dissociative states
whereas the v=0 energy level does not as is seen in Fig. 1.
The vibrational excitation by the CI exceeds this advantage
of the initial state condition. The difference between the first-
order and the higher-order calculation is clear below
—0.4 a.u. The off-the-energy-shell contribution has turned
out to be crucial for precise description of the dynamics.
The calculation with less vibrational states (v<9) is also
shown in Fig. 6. Even for lower initial vibrational states, the
higher vibrational states are required as the basis functions.

PHYSICAL REVIEW A 79, 012715 (2009)

D. Fitting by analytic functions

In order to solve the LS equation, it is preferable to rep-
resent the CI strength by analytic functions. In the previous
study [10,17-20], the calculated I'(e,R) was fitted by a func-
tion of

I(R,€) =A(R) e - &,(R)]"™ exp[- a(R)(e~¢,)], (24)

where €, is the lower energy satisfying I'(R, €,)=0 and it is
represented by the following form:

€,(R) =-0.054 66 — 0.201 056
Xexp[—10.858 97(R — 1.947 84)*].  (25)

We set I'(e,R)=0 below e<¢,. The functions A(R), (R),
and a(R) are quadratic polynomials of R as is shown in Table
II. These functions are optimal in a sense of least-squares
method. The comparison between the calculated result and
the fitted one was shown in Fig. 6 of Ref. [10] and a part of
those is shown in Fig. 7. It is notable that there are some
differences between the calculated and fitted values espe-
cially at the low energies in Fig. 7, since we are now inter-
ested in the low-energy collisions.

Figure 8 shows the difference in dissociation probability
between the previous study (analytic function fitting) [19,20]
and the present one (spline fitting). A small set of the vibra-
tional states (v=<9) are employed to the calculation in this
figure. A large difference is seen especially at low energies.
The more older result using the Simpson quadrature adopted
for Eq. (5) with the analytic function fitting [10,17,18] is also
shown in Fig. 8. Although the Simpson quadrature does not
give a completely converged result, the difference from the
converged Chebyshev quadrature is not as large in the shown
low-energy region.

E. Separable approximation

We call it separable approximation if I'(e,R)=f(¢e)g(R).
The separable approximation had great advantage if g(R)
could be the adiabatic resonance width I'(€,,R), where €.
is the resonance energy of incident electrons. In this case, the
first-order perturbation treatment gives the same result for
the separable and nonseparable interactions. The I'(.,R)

TABLE II. Fitting parameters for I'(e,R), where every unit is a.u. Each of A, v, and « is represented by

a+bR+cR.
Parameter R b c
A(R) <12 —0.03944975 0.067907
1.2-1.8 0.390665 —0.596665 0.254433
1.8-2.4 —-0.17686 0.1674685 0.0053219
24< 1.85496 —-1.601835 0.389777
v(R) <1.68 1.47856 -2.23734 1.00105
1.68-2.2 —7.09649 7.78586 -1.91822
22< 7.9612 -5.95936 1.21852
a(R) <1.835 2.31616 -2.2291 0.968003
1.835=< 3.21778 -2.14261 0.654317
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FIG. 7. (Color online) Adiabatic resonance width I'(e,R): Func-
tion fitting and separable approximation. The marks indicate the
calculated values at each R: O, R=2.0a.u.; [, R=2.6 au.; /A, R
=1.2 a.u. The solid curves show nonseparable function fitting, the
dotted curves are for separable approximation (see the text).

can be obtained from any electron scattering calculation of
fixed nuclei. Unfortunately, the energy dependence of I'(e,R)
around the €., sensitively depends on the R as is shown in
Fig. 9. Figure 9 shows the calculated I'(e,R) as the function
of €— €.

Another separable form can be obtained by neglecting the
R dependence of the €,, v, and « in Eq. (24). We fixed those
parameters at the value of R=2.0 a.u., which is the equilib-
rium internuclear distance of hydrogen molecular ion. They
are €,=—0.249 863, v=0.802 350, @=1.549 828. The func-
tion A(R) presenting the R dependence was determined by
the least-squares method. The resulting A(R) function be-
came

A(R) >
———=-0.299 63+0.589 26R + 0.035 399R*. (26)
A(2.0)

Some values of this separable form are also shown in Fig. 7.
The difference between the separable and nonseparable form
is clear on the graph, especially outstanding for e<0. The
value of €, at R=2.0 a.u. is as small as —0.24 a.u. although it
becomes about —0.1 a.u. at R=1.0 a.u. or 2.6 a.u.

In Fig. 10, the dissociation probabilities obtained by the
separable approximation is compared with those obtained by
the function fitting mentioned in the preceding section. The
number of adopted vibrational states is 18 (v=<17). The
separable approximation is poor especially at low collision
energies. At the zero collision energy, which is indicated by
the vertical line in Fig. 10, that approximation underesti-
mates about one-half for v*=1 and one-third for v*=0. As
the collision energy increases, the result by the separable
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FIG. 8. (Color online) Comparison with previous calculations of
dissociation probability for J=0. The line types indicate the initial
vibrational state as in Fig. 5. The marks indicate method of calcu-
lation: @, by Chebyshev quadrature with spline interpolation; O, by
Chebyshev quadrature with function fitting [19,20]; B, by Simpson
quadrature with function fitting [10,17,18]. The vibrational states of
v =<9 are used in this figure.

approximation approaches to those by the nonseparable cal-
culation. This means that the contribution from e<0 is im-
portant. The poorness of the separable approximation be-
comes more outstanding if we compare it with the result by
spline interpolation. Therefore, the results obtained by the
separable approximation [21] is not very accurate.
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FIG. 9. Adiabatic resonance width I'(e,R) as the function of
€—¢€,, for R=1.2, 2.0, 2.6 a.u.
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FIG. 10. (Color online) Comparison of dissociation probability
by the separable and nonseparable approximations for J=0. The
shape of mark and line type indicates the initial vibrational state as
in Fig. 6. The adopted adiabatic resonance width is indicated by the
type of marks: full, spline fitting; bold open, function fitting; thin
open, separable approximation of function fitting. The vibrational
states included are v<17.

IV. DISSOCIATIVE RECOMBINATION

A. MQDT formalism

The calculation of DR cross section by the MQDT was
given in the previous studies [13,25]. Schneider et al. also
presented a formula for the DR [33]. As far as our under-
standing, their formula is identical to our previous formula
although those notations are different. We here summarize
some key formulas of the method. First, we diagonalize the
K-matrix obtained by the preceding section,

1
D UpaKer p(EpE)Ug g=— —Ouptan 7, (27)
a/"BI
where U is the unitary matrix diagonalizing the matrix K.

The smoothed K-matrix R defined in MQDT is obtained by
the formula

R = E GJA(SC_I)JWAGJA, (28)
A
where
2Nt +1
G/MNHY = | ——— s * C(€+N+J A=A*"A), (29)
G™MJ4Ao) = 817, Oxn (30)

Ot = Z 00 BlcosLmuin(R) + 7, WM +i(R)

vl

XYM R)HU'E (31)

vl,a’
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FIG. 11. (Color online) Reduced DR cross section of
HD*(v*=0,N*=0). The adopted adiabatic resonance width is pre-
sented by dotted lines, function fitting; solid lines, supline interpo-
lation. The horizontal long lines with cross marks present the ener-
gies of rotational (N) and/or vibrational (v) excited Rydberg states,
of which principal quantum numbers (n) are less than 58. The low-
est horizontal long line is for v=0, and the higher one presents the
higher v up to v=7. The two numbers indicate N/n.

C”dA =cos(7’MU! d o (32)

and S is obtained by replacing the cos function to the sin in
the above two equations, where ug,(R) denotes adiabatic
quantum defect and y’*(R) is the vibrational wave function
with the total angular momentum (AM) J, electronic AM
around the molecular axis A, and vibrational state v, and
M +7(R) denotes the mixing matrix of the electronic partial

waves €* in the eigenchannel €. The superscript+means the
quantity of ion molecule or incident electron, and suffix d
indicates the quantity of the dissociative state. The real
K-matrix R, which satisfies the boundary conditions, are
given [34] by

R=R,,— Ry(R..+tan wmv)"'R,, (33)

where the suffix o(c) indicates open (closed) channels, and v
is the effective principal quantum number. The cross section
of the DR is obtained using the S-matrix S=(1-iR)7!(1
+iR) as the following [25]:

2J+1

INT + E |SJd u*N*€+|2 (34)

‘Td VN P pE

Here k is the wave number of the incident electron, p is the
ratio of the initial multiplicity to the final one.

B. Dissociative recombination of HD*

The do partial wave is the most dominant partial wave
contributing to the resonance state ¢,;. We took into account
only this do partial wave as the electronic continuum state
¢. in HD" +e. We employed the same electronic parameters
as the previous calculation [12,30] except for the dissociative
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FIG. 12. Dependence of DR cross section for HD* on the initial rotational quantum number N* for v*=0.

potential curve (see Fig. 1): Ionic potential curve and the
adiabatic quantum defect. The contribution from the two-
electron excited state was carefully excluded from the adia-
batic quantum defect. The minor component so contributes
about 30% at most to the DR [33]. We consider that the
contribution of s wave is negligible at low energies because
the s wave does not induce the rotational excitation, which
will turn out to be the main mechanism of the DR in the
following section.

In Fig. 11, we show an example of the present DR cross
section of HD* of which initial vibrational state (v*) is v™*
=0, and the rotational state (N*) is N*=0. The vertical axis
shows the cross section multiplied by the collision energy,
which is sometimes called reduced cross section (cm? eV),
in order to see the cross section accurately over a wide range
of collision energy. The result using function fitting for the
adiabatic resonance width is also shown by the dotted line.
The energy of rotational and/or vibrational excited Rydberg
state is shown by the horizontal long line and cross mark in
the upper part of the figure. Almost all peak structures appear
at the energies of rotational excited and vibrational unexcited
Rydberg states. This indicates the indirect process through
the rotational excitation is the dominant mechanism of low-
energy DR. The result using the function fitting gave the

same peak positions as the present accurate interpolation, but
the magnitudes are different, especially outstanding is the
structure seen around 0.045 eV.

We show the rotational dependence of the DR cross sec-
tion in Fig. 12, where the initial vibrational state is in the
ground state (v*=0), and the rotational state (N*) is N*
=0-3. Strong dependence on the initial rotational state is
seen at the energy lower than 0.1 eV.

We compare the calculated rate coefficients with experi-
mental results [24,35] for the DR of HD*(v=0). The calcu-
lated result was convoluted by the energy resolution of
1 meV for transversal to the incident beam direction and
0.05 meV for the longitudinal one. The convoluted rate co-
efficient Y°°" is represented by the convolution of the cross
section o(E) with the collision energy E using the convolu-
tion function I(E,E,) [36],

[2 1 [1 (*
Yo = | —— —f dEEo(E)I(E,E,). (35)
mm kT, VkT,J,

The convolution function is given by
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FIG. 13. (Color online) The rate coefficient of DR for HD" with
v*=0. The experiments shown with dots, TARN II [35]; bold dotted
curve, CRYRING [24]; bold dashed-dotted curve, TSR [24]. The
calculations are bold solid curve, the present result; thin solid curve,
analytic function fitting; bold dashed curve, the first-order approxi-
mation without the CI; thin dashed curve, the first-order calculation
with the CI (see the text).

1 [ w7, E, E
I(E,E,)) =~ exp -—
2 VE(T,-T) KT, -T) kT,

X[erf(B) —erf(a)], (36)

(a)zl\/@_,/&\/I, (37)
B k\T, T, KTy NT, =T,

The T, and T, respectively, show the fluctuation tempera-
tures of the longitudinal and transverse directions. We also
convoluted the rate coefficient on the initial rotational states
assuming the thermal distribution of 300 K.

The convoluted rate coefficients are shown in Fig. 13,
where these are compared with the experiment by the three
storage ring facilities: TARN II [35], CRYRING, TSR [24].
The rate coefficients measured by these three facilities excel-
lently agree with each other on the resonance structure as the
peak positions. The magnitude of the rate measured by TSR
is, however, about 2 times larger than that by TARN II. The
magnitudes tend to be large as the resolution of experiment
becomes high [36]. The present calculation represents almost
all resonance structure in the experiments except for several
peaks at the collision energies of 8 meV and 0.12 eV. More
detailed study is required by specifying the initial rotational
state. The present calculation represents the experiment by
TSR fairly well including the absolute magnitude.

where

PHYSICAL REVIEW A 79, 012715 (2009)
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FIG. 14. (Color online) Dependence of DR cross section for
HD™* on the initial vibrational state. The number beside the curve
indicates the vibrational quantum number. The electron fluctuation
and the rotational state distribution are the same as those of Fig. 13.

We also show three types of calculations other than the
present one in Fig. 13. The present calculation consists of the
solution of the LS equation (Sec. II) with B-spline fitting
(Sec. I B). The other calculations are that with analytic
function fitting (Sec. III D), the first-order approximation us-
ing the dissociative potential curve neglecting the CI, and
that including the CI (see Fig. 1). Large effect of the off-the-
energy-shell contribution is clearly seen in the difference be-
tween the first-order calculation and the present result. The
rate is enhanced over one order of magnitude by the off-the-
energy-shell contribution at the collision energies lower than
0.2 eV, which has been already pointed out in the previous
calculation [17,18]. By using the dissociative potential curve
where the CI is included, the first-order approximation gives
a considerably improved result on the magnitude of the rate
coefficient. It is, however, not enough to represent the ex-
periments or the present calculation both on the magnitudes
and on the structure by the indirect process. The result using
the spline fitting for the adiabatic resonance width agrees
with the experiments better than that by analytic function
fitting. The DR depends on the detail of adiabatic resonance
width in the full space of €’ and R.

An important off-the-energy-shell effect can be seen in
the dissociation probability given in Fig. 6. The dissociation
probability from v=2 states is drastically decreased by the
off-the-energy-shell effect. On the other hand, this effect en-
hances the probability of the dissociation from v=0 states.
These effects on the dissociation probability also appear in
the DR rate coefficients. The dependence of DR on v™ is
shown in Fig. 14: The off-the-energy-shell contribution re-
markably affects the dependence on the initial vibrational
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state in the DR. This vibrational dependence of the DR cross
section has been measured by Zajfman et al. at the zero
collision energy [37,38]. The present calculation and that ex-
periment gave weak dependence on the initial vibrational
states whereas the first-order calculations gave sensitive de-
pendence on it.

V. CONCLUDING REMARKS

The off-the-energy-shell contribution to the DR of HD*
was investigated based on the realistic electronic states ob-
tained by ab initio method. The result by the first-order cal-
culation needs to be corrected at least for the processes re-
lated to the lowest two-electron excited state. The DR cross

PHYSICAL REVIEW A 79, 012715 (2009)

section depends on the detail of the CI as the function of the
energy and internuclear distance. The dissociative processes
are largely affected by the off-the-energy-shell contribution
of negative energies. The DR at low energy has turned out to
be induced by the indirect process with rotational excitation.
The DR rate coefficient of the HD" including the off-the-
energy-shell contribution nicely represents the resonance
structure in the experimental DR rate coefficient.
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