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The mutual neutralization of H+ and H− at low collision energies is studied by means of a molecular
close-coupling approach. All degrees of freedom are treated at the full quantum level also taking into account
the identity of the nuclei. The relevant 1�g

+ and 1�u
+ electronic states as well as the associated nonadiabatic

radial couplings are calculated for internuclear distances between 0.5 and 50a0. Following a transformation
into a strictly diabatic basis, these quantities enter into a set of coupled equations for the motion of the nuclei.
Numerical solution of these equations allows the cross sections for neutralization into the H�1�+H�n�, n
=1,2 ,3 final states to be calculated. In the present paper, results are reported for the collision energy region
0.001–100 eV, with special emphasis on the important energy region below 10 eV. The low temperature rate
coefficient is obtained from a parametrization of the calculated cross section and is estimated to be valid over
the range 10–10 000 K.
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I. INTRODUCTION

The mutual neutralization of H+ and H− is the prototype
reaction for electron transfer between two oppositely charged
ions. With only two protons and two electrons involved, it is
the simplest ion-ion reaction possible. Here, calculations
should be able to provide accurate results, which could serve
as benchmarks in the development of new theoretical meth-
ods and models. Furthermore, the reactants have well defined
quantum states and are relatively easy to prepare in the labo-
ratory. A detailed comparison between experiment and theory
should thus be possible and should provide a natural starting
point to understanding more complicated ion-ion collision
phenomena. However, the simplicity of this reaction is de-
ceptive, a fact which has stimulated a large number of stud-
ies in the past. Nevertheless, surprisingly few of these have
investigated the neutralization cross section for collision en-
ergies below a few eV, which plays an important role in
determining the H− abundance in low temperature ionized
environments. A compelling example from astrophysics is its
influence on the gas phase formation of H2, in particular, in
the chemistry of the primordial gas, where one of the main
reaction paths involves H− as an intermediate �1–3�.

Bates and Lewis �4� were the first to study the mutual
neutralization of H+ and H−, which is written schematically
as

H+ + H− → H�1� + H�n� ,

where n is the main quantum number of the excited hydro-
gen atom. Their calculations were based on the semiclassical
Landau-Zener model �5,6� in which the reaction is thought to
proceed along a system of horizontal covalent potential en-
ergy curves crossed by an attractive ion-pair potential. This
pioneering study was later followed by others, among them

Olson et al. �7� and more recently, Eerden et al. �8�. Fussen
and Kubach �9� have gone beyond the Landau-Zener concept
and investigated the reaction at low collision energies using a
one electron close-coupling model.

The only measurement of the neutralization cross section
for collision energies below 3 eV is the merged beam experi-
ment of Moseley et al. �10�. Their results seem to indicate a
cross section that is approximately a factor of 3 higher than
obtained in most of the cited theoretical studies. However,
the theoretical results are mutually consistent and, for higher
energies, also in more or less good agreement with the mea-
surements reported by Szucs et al. �11� and Peart and Hayton
�12�. This intriguing situation has led to the suspicion that
the low energy cross section of Moseley et al. is overesti-
mated �11–14�.

In this paper we report results of a fully quantum me-
chanical ab initio study of the reaction at hand. We are
mainly concerned with the collision energy region
0.001–10 eV, but the calculations have been extended up to
100 eV in order to facilitate comparison with the cited ex-
periments. The present study is based on a molecular close-
coupling expansion of the total wave function. Accurate elec-
tronic structure methods have been used to calculate
adiabatic states and nonadiabatic couplings of both gerade
and ungerade symmetry over a wide range of internuclear
distances. Subsequently, a transformation into a strictly di-
abatic representation has been performed and the diabatic
quantities entered into a set of coupled equations for the
motion of the nuclei. By numerically solving these equa-
tions, we have been able to calculate the neutralization cross
sections for scattering within both the gerade and ungerade
inversion symmetries. Finally, the identity of the nuclei has
been accounted for by properly combining the gerade and
ungerade cross sections.

The paper is organized as follows. Section II describes the
theoretical framework underlying the present study. Section
III describes the electronic structure calculations and dis-
cusses the resulting potential energy curves and coupling ma-*stenrup@physto.se
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trix elements. Section IV gives a brief account of the numeri-
cal treatment of the scattering problem. Section V presents
and discusses the calculated neutralization cross sections and
the reaction rate coefficient. Section VI concludes the paper
and summarizes the main results. Unless stated otherwise,
vector and matrix quantities are written in boldface and
atomic units are used.

II. THEORY

A. Molecular expansion: Adiabatic and diabatic formulations

Consider a diatomic system composed of two nuclei and
N electrons. The masses and charges of the nuclei are de-
noted by Mi and Zi, respectively. Let R= �R ,� ,�� be the
internuclear separation vector and ri a vector pointing from
the center of mass of the nuclei to the ith electron. All vec-
tors are expressed with respect to a space fixed axis system.
For convenience, the notation r= �r1 ,r2 , . . . ,rN� will occa-
sionally be used. In these coordinates, the center of mass
motion of the total system can be separated out, and the
Hamiltonian takes the form �15�

H = −
1

2�
�R

2 + Hel, �1�

where � is the reduced mass of the nuclei and Hel is the
electronic Hamiltonian. Neglecting terms of the form
�2�M1+M2��−1�ri

·�rj
, it follows that

Hel = −
1

2
�r

2 +
Z1Z2

R
+ �

i�j=1

N
1

�ri − r j�

− �
i=1

N

� Z1

� �

M1
R + ri� +

Z2

� �

M2
R − ri�	 . �2�

The total wave function ��R ,r� satisfies the time-
independent Schrödinger equation

H��R,r� = E��R,r� , �3�

where E is the total energy in the center of mass system. We
expand ��R ,r� in terms of electronic and nuclear states,
�i

a�R ,r� and 	i
a�R�, according to

��R,r� = �
i=1




�i
a�R,r�	i

a�R� = �a�a, �4�

where �i
a�R ,r� are normalized solutions to the electronic

Schrödinger equation

Hel�i
a�R,r� = �i

a�R��i
a�R,r� . �5�

The electronic energies �i
a�R� depend parametrically on R

and obey the noncrossing rule �16�. The particular choice of
basis functions defined by Eq. �5� is called the adiabatic rep-
resentation and is denoted by the superscript “a.” Inserting
the expansion �4� into Eq. �3� and using the orthonormality
of the electronic states yields a set of coupled differential
equations for the motion of the nuclei:


−
1

2�
1�R

2 −
1

�
Fa · �R −

1

2�
Ga + Va��a = E1�a, �6�

with

Fij
a �R� = ��i

a��R�� j
a
 , �7�

Gij
a �R� = ��i

a��R
2 �� j

a
 , �8�

Vij
a �R� = ��i

a�Hel�� j
a
 . �9�

By definition, the matrix Va is diagonal and contains the
adiabatic potential energy curves �i

a�R�. The matrix vector Fa

and the matrix Ga both have off-diagonal elements, which
are the nonadiabatic couplings between different electronic
states. In addition, Ga also has diagonal elements commonly
referred to as adiabatic energy corrections. If the electronic
wave functions are taken to be real, the chain rule for deriva-
tives can be used to show that Fa is antisymmetric, i.e.,

Fij
a �R� = − F ji

a �R� . �10�

The electronic states approximately correlate with the
separated atomic limits and therefore each term in Eq. �4�
defines a scattering channel. To determine the outcome of
any collision process, we need to solve the coupled equations
out to the asymptotic region where these limits are reached.
However, it has been known for a long time that a product of
the form 	i

a�R��i
a�R ,r� does not properly describe the trans-

lational motion of the electrons along with the nuclei
�17–19�. This can lead to difficulties of both formal and prac-
tical nature. One of the most prominent is the appearance of
nonvanishing couplings at large or even infinite internuclear
distances �18–20�. However, it is demonstrated in Sec. V B
that the influence of these couplings on the present results is
expected to be small.

The nonadiabatic coupling terms in Eq. �6� often vary
rapidly with R and may cause problems in the numerical
solution procedure. Furthermore, the presence of Fa leads to
differential equations that contain both first and second order
derivatives. It is therefore desirable to transform Eq. �6� into
an electronic basis where some or all of the nonadiabatic
couplings disappear. Following Mead and Truhlar �21�, we
shall refer to a representation in which all three components
of Fa vanish as strictly diabatic. From this point on, it is
assumed that the total wave function can be represented in a
finite set of M adiabatic basis functions. The transformation
may then be written in terms of an orthogonal matrix Tij�R�
�22� as

�i
d�R,r� = �

j=1

M

� j
a�R,r�Tij

T�R� . �11�

In order for the total wave function to be preserved, the
nuclear states must transform according to

	i
d�R� = �

j=1

M

	 j
a�R�Tij

T�R� . �12�

Using the relation �12� to replace the adiabatic states in Eq.
�6� yields after some manipulation,
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−
1

2�
1�R

2 −
1

�
Fd · �R −

1

2�
Gd + Vd��d = E1�d, �13�

with

Fd = TT�1�R + Fa�T , �14�

Gd = TT�1�R
2 + 2Fa · �R + Ga�T , �15�

Vd = TTVaT . �16�

The first derivative coupling Fd expressed in the new basis is
seen to vanish provided that T is a solution to the equation

�1�R + Fa�T = 0 . �17�

In the special case where all electronic states have the same
angular momenta projection onto the molecular axis, only
the radial component of Fa can be nonzero �21�. Equation
�17� then reduces to

�1
d

dR
+ ��R��T�R� = 0 , �18�

where

�ij�R� = ��i
a� �

�R
�� j

a� . �19�

Assuming that the first derivative couplings between the
adiabatic states with i
M and those with i�M are zero;
also Gd can be shown to vanish �22�. The coupled equations
then take the form


−
1

2�
1�R

2 + Vd��d = E1�d. �20�

In the strictly diabatic representation, the nonadiabatic
couplings transform into off-diagonal elements of the poten-
tial matrix Vd �electronic couplings� and as a consequence,
the diagonal elements of this matrix �diabatic potentials� no
longer obey the noncrossing rule. As will be illustrated in
Sec. III C, the strictly diabatic representation may show little
resemblance to the simple and intuitive curve crossing pic-
ture often referred to as diabatic.

B. Asymptotic boundary conditions
and the integral cross section

The interpretation of 	i
d�R� is usually simplified by re-

quiring that

lim
R→


T�R� = 1 , �21�

which makes the adiabatic and the diabatic representations
coincide in the region where the scattering wave function is
evaluated. Thus, in any of the representations, the physical
situation is that of an incoming plane wave in some entrance
channel j, and outgoing spherical waves in all channels,
which are energetically allowed. The direction of the incom-
ing plane wave can be chosen along the space fixed z axis. If
the potential falls off reasonably fast �23�, the appropriate
boundary conditions are given by

	i
d�R� �

R→

�ije

ikjz + f ij�E,��
eikiR

R
, �22�

where f ij�E ,�� is the scattering amplitude for entering the
collision in channel j and leaving it in channel i. Since the
potential matrix is spherically symmetric, the scattering am-
plitude is independent of the azimuthal angle �. The
asymptotic wave number ki is defined as

ki = �2��E − Ei
th��1/2, �23�

where Ei
th= limR→
 Vii

d�R� is the corresponding threshold en-
ergy. In the case of a Coulomb potential, the exponents in
Eq. �22� have to be modified with logarithmic phase factors,
which arise due to the long-range nature of this interaction
�23�.

Evaluating the probability fluxes associated with the two
terms in Eq. �22� leads to the familiar multichannel expres-
sion for the integral cross section:

�ij�E� =
2�ki

kj
�

0

�

�f ij�E,���2 sin �d� . �24�

If the adiabatic states are connected by nonvanishing cou-
plings at infinity, neither the boundary condition �21� nor the
scattering formalism developed below will be appropriate. In
this case, the couplings can be manually cut at some large
but finite internuclear distance. This procedure is usually jus-
tified if the collision energy is low enough, but its validity
should be considered from case to case.

C. Scattering formalism

The conventional approach to solving Eq. �20� is to ex-
press 	d�R� in terms of a partial wave expansion,

	i
d�R� =

1

R
�
l=0




Alui,l�R�Pl�cos �� , �25�

where Pl�cos �� are the well known Legendre polynomials
�24� and Al are constants to be chosen so that the boundary
conditions �22� are fulfilled. The radial wave functions ui,l�R�
can be shown to satisfy the equations

�−
1

2�

d2

dR2 +
l�l + 1�
2�R2 �ui,l�R� + �

j=1

M

Vij
d uj,l�R� = Eui,l�R� ,

�26�

subject to the physical boundary conditions ui,l�0�=0. If the
corresponding derivatives ui,l� �0� are chosen appropriately,
these equations have M linearly independent solutions,
which can be combined into a square matrix ũ. It follows
that


1
d2

dR2 + Ql�ũl = 0 , �27�

where

Ql = 2��E1 − Vd� −
l�l + 1�

R2 1 . �28�
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It is now assumed that the potential matrix is diagonal
beyond some radius � and here has elements corresponding
to either pure Coulomb or pure short-range interactions. In
this region, Eq. �27� is analytically solvable and the radial
wave functions may be expressed in terms of the incoming
and outgoing wave solutions, �ij,l�R� and �ij,l�R�, as defined
in the Appendix. These are essentially the same as adopted
by Johnson �25� but have been extended to cover the Cou-
lomb case. Thus,

ũl�R� =
R��

�l�R� − �l�R�Sl, �29�

which defines the scattering matrix Sl. Inserting this expres-
sion into the partial wave expansion �25� and comparing with
the boundary conditions �22� leads to the well known for-
mula

f ij�E,�� =
1

2i�kikj�1/2�
l=0




�2l + 1��Sij,l
oo − �ij�Pl�cos �� ,

�30�

for the scattering amplitude in terms of the open-open or
physical partition of Sl. The integral cross section for scat-
tering from channel j to channel i is readily evaluated to be

�ij�E� = �
l=0




�ij,l�E� , �31�

where

�ij,l�E� =
�

kj
2 �2l + 1��Sij,l

oo − �ij�2. �32�

Instead of working with Sl directly, it is convenient to
introduce the reactance matrix Kl �26�, which is defined by

ũl�R� =
R��

al�R� − bl�R�Kl, �33�

where aij,l�R� and bij,l�R� are regular and irregular solutions
to Eq. �27� explicitly given in the Appendix. Combining the
definitions above together with those from the Appendix
leads to the relationship �25�

Sl
oo = �1 + iKl

oo�−1�1 − iKl
oo� , �34�

between the open-open partitions of Sl and Kl. This expres-
sion resembles the Cayley transform and, since Sl

oo is both
symmetric and unitary, implies that Kl

oo is real �23�.
Finally, we introduce the logarithmic derivative

yl = ũl�ũl
−1, �35�

which transforms the radial Schrödinger equation into the
numerically more stable matrix Riccati equation �27,28�

yl� + Ql + yl
2 = 0 , �36�

while the boundary condition at the origin becomes that of a
diagonal matrix with infinite elements. This is the set of
coupled equations that we ultimately have to solve. The re-
lationship between yl and Kl is easily seen to be

Kl = �yl���bl��� − bl�����−1�yl���al��� − al����� . �37�

D. Modifications in the case of identical nuclei

Up to this point in the discussion complications that might
arise if the nuclei are identical have been ignored. These may
be considered in two steps. Firstly, since the charges of the
nuclei that enter Hel are equal, the electronic states will be
either symmetric �gerade� or antisymmetric �ungerade� under
inversion of r. If the nuclei are labeled A and B, and
� ,� ,� , . . .. represent groups of electrons in some definite
quantum states, each asymptotic channel will be a linear
combination of two configurations, say A���+B��� and
A���+B���. Such linear combinations cannot describe the
situation where a nucleus is known to carry a certain number
of electrons in a certain quantum state �unless �=��. Local-
ization of the electron cloud can be achieved by forming
proper linear combinations of the gerade and ungerade solu-
tions. The g /u symmetry is explicitly indicated as a super-
script and the channel index i is allowed to include all other
quantum numbers. The appropriate scattering amplitudes are
then given by �23�

f ij
di�E,�� =

1

2
�f ij

g �E,�� + f ij
u �E,��� , �38�

and

f ij
ex�E,�� =

1

2
�f ij

g �E,�� − f ij
u �E,��� , �39�

corresponding to the direct and exchange reactions

A��� + B��� → A��� + B��� , �40�

and

A��� + B��� → A��� + B��� . �41�

Here, the amplitudes f ij
g and f ij

u are given by the usual for-
mula �30� applied to the gerade and ungerade manifolds
separately.

A second complication arises from the fact that the
masses of the nuclei are also equal. Consequently, it is im-
possible to distinguish direct scattering in the direction �
from exchange scattering in the direction �−�. This effect
can be accounted for by adding the direct and exchange am-
plitudes coherently. The fully symmetrized scattering ampli-
tudes are �29�

f ij
��E,�� = f ij

di�E,�� � f ij
ex�E,� − �� , �42�

where the sign depends on whether the spatial part of the
wave function should be symmetric ��� or antisymmetric
��� under exchange of the nuclei. To illustrate this point we
consider a hydrogen quasimolecule where the two protons
are known to be in a singlet spin state. According to the Pauli
principle, the total wave function �spin part included� must
be antisymmetric under exchange of the nuclei. Since the
singlet spin state itself is antisymmetric under such an opera-
tion, the spatial part of the wave function is forced to be
symmetric. Thus, f ij

+ is the appropriate choice of amplitude.
The integral cross section is obtained by taking the modu-

lus square of Eq. �42� and integrating the result over the unit
sphere:
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�ij
+�E� = �

l even
�ij,l

g �E� + �
l odd

�ij,l
u �E� , �43�

and

�ij
−�E� = �

l odd
�ij,l

g �E� + �
l even

�ij,l
u �E� , �44�

where �ij,l
g and �ij,l

u are given by Eq. �32� applied to the
gerade and ungerade manifolds, separately. The subscript
even �odd� indicates that only even �odd� partial waves
should be summed over. In the particular case of the hydro-
gen quasimolecule, the total spin state of the nuclei is either
a singlet �para hydrogen� or a triplet �ortho hydrogen�. Tak-
ing into account the degeneracy factors �1 and 3� and the
exchange symmetry of these spin states, the symmetrized
integral cross section for an ensemble of particles with ran-
domly oriented spins is

�ij
sym�E� =

1

4 �
l even

�ij,l
g �E� +

3

4 �
l odd

�ij,l
g �E� +

3

4 �
l even

�ij,l
u �E�

+
1

4 �
l odd

�ij,l
u �E� . �45�

This can be compared with the expression

�ij
dist�E� =

1

2�
l=0




�ij,l
g �E� +

1

2�
l=0




�ij,l
u �E� , �46�

obtained by treating the nuclei as distinguishable, and thus
adding the direct and exchange amplitudes incoherently.

In deriving Eqs. �45� and �46� we have assumed that all
final states exist in both gerade and ungerade versions. This
is not always the case. Of particular interest to the present
study are processes in which the final electronic state corre-
sponds to �=� and exists only in a gerade version. In this
case, Eqs. �45� and �46� are still valid �setting �ij,l

u =0�, al-
though the arguments leading to these formulas are some-
what modified.

III. ELECTRONIC STRUCTURE CALCULATIONS

The electronic states relevant to the present study are
those of H2. The amount of data published for this system is
of course substantial. Of particular relevance here are the
very accurate electronic structure calculations reported by
Wolniewicz and co-workers �30–36� using explicitly corre-
lated basis functions and the calculations by Detmer et al.
�37� using a nonspherical Gaussian basis set. Reactions like
the present one, however, require the calculation of not only
a large number of excited states but also the associated non-
adiabatic couplings for a wide range of internuclear dis-
tances. To the best of our knowledge, a complete and accu-
rate set of data for these quantities does not exist in the
literature. We have therefore performed ab initio electronic
structure calculations of all the relevant potential energy
curves and nonadiabatic couplings. Where such data is avail-
able, our results have been compared with the benchmark
calculations of Refs. �30–36�.

A. Potential energy curves

We have calculated the adiabatic potential energy curves
and the associated electronic wave functions corresponding
to the seven lowest 1�g

+ states and the six lowest 1�u
+ states,

here denoted as �1–7�1�g
+ and �1–6�1�u

+, respectively. All
calculations have been performed at the full configuration
interaction �FCI� level using a modified version of the DAL-

TON 2.0 program package �38�. The molecular orbitals have
been obtained in an �11s ,8p ,7d ,2f� spherical Gaussian basis
set contracted to �9s ,8p ,7d ,2f�. The compact basis func-
tions of this set have been taken from the augmented
correlation-consistent polarized valence quadruple zeta �aug-
cc-pVQZ� basis set of Dunning and co-workers �39,40�,
while the more diffuse ones have been approximately opti-
mized to obtain a good representation of the excited states.
The basis set is given in Table I.

Figure 1 shows the �2–7�1�g
+ and �1–6�1�u

+ potential en-
ergy curves in the range 0.5–50a0. As is well known, only
one bound state of the negative hydrogen ion exists, the 1Se

ground state �41�. Accordingly, there is one gerade and one
ungerade electronic state that asymptotically correlate with
the H++H− ion-pair limit. As the internuclear distance is de-
creased from infinity, the ion-pair configuration is succes-
sively carried on through a series of avoided crossings in-
volving states correlated with the H�1�+H�n� covalent
limits. In the neighborhood of these crossings, the first de-
rivative radial couplings �19� are significant and are able to
cause transitions between different adiabatic states.

Beginning with the gerade symmetry, the �1–6�1�g
+ mani-

fold consists of states correlated with the n=1,2 ,3 covalent
limits. Corresponding to each limit H�1�+H�n� there are n of
these states in total. The 71�g

+ state has the ion-pair configu-
ration from 36a0 up to approximately 280a0. Here, the adia-
batic wave function changes character into the n=4 covalent
configuration while the ion-pair configuration is carried on to

TABLE I. Specification of the spherical Gaussian basis set used
in the present study.

Type Exponent Type Exponent

sa p 0.0275700

s 0.7977000 p 0.0094220

s 0.2581000 p 0.0031910

s 0.0898900 p 0.0010470

s 0.0251300 d 2.0620000

s 0.0078770 d 0.6620000

s 0.0029256 d 0.1900000

s 0.0008852 d 0.0635300

s 0.0002917 d 0.0211100

p 2.2920000 d 0.0070570

p 0.8380000 d 0.0023460

p 0.2920000 f 1.3970000

p 0.0848000 f 0.3600000

aContraction of six primitive s functions with exponents �82.64,
12.41, 2.824, 0.7977, 0.2581, 0.08989� and coefficients �0.002 006,
0.015 343, 0.075 579, 0.256 875, 0.497 368, 0.296 133�.
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another higher excited state. At such large distances, how-
ever, the motion of the nuclei is highly diabatic and the
change of character of the adiabatic wave functions will not
induce any significant ionic-covalent transitions �4,42,43�.
With these considerations in mind, we will refer to the 71�g

+

state as that which is correlated with the ion-pair limit.
In the ungerade symmetry, the �1–5�1�u

+ manifold con-
sists of states correlated with the n=2,3 covalent limits
while the 61�u

+ state, with the same considerations as above,
can be said to correlate with the ion-pair limit. Because of
symmetry restrictions, there can be no singlet ungerade state
dissociating into the n=1 covalent limit. Note that while the
gerade and ungerade states behave very differently at small
internuclear distances, these differences vanish quickly as the
separation of the nuclei is increased. In fact, at 10a0 the
energy difference for all excited states is less than 9
�10−4Eh �Hartree� and at 30a0 it is less than 5�10−5Eh.

Figure 1 illustrates the two avoided crossings near 12 and
36a0, which are related to a change from ionic to n=2 and 3
covalent character �or vice versa� of the adiabatic wave func-
tions, respectively. In what follows we will refer to them
simply as the n=2 and 3 curve crossings. Figure 1 also
shows a rich pattern of avoided crossings taking place at

smaller internuclear distances. This region, however, is to a
large extent shielded by the centrifugal term in Eq. �26� and
the influence of the resulting radial couplings upon the total
neutralization cross section is rather small �see Sec. V B�.
The higher excited 1�g,u

+ states that are not considered in the
present study are only accessible to the system through
avoided crossings at small internuclear distances �37�. The
error introduced by excluding these states is therefore ex-
pected to be of less significance. In principle, also rotational
couplings to states of 1� symmetry should be considered.
However, due to the presence of strong radial couplings in
the vicinity of the n=2 and 3 curve crossings, and due to the
low collision energies considered in the present study, these
are assumed to be negligible �9,44�.

To evaluate the quality of our calculated potential energy
curves, we have compared them with those reported by
Wolniewicz and co-workers. Their calculations cover the
11�g

+ state out to 12a0 �32,34�, the �2–6�1�g
+ states out to

20a0 �33�, and the �1–6�1�u
+ states out to 150a0 �36�. The

potential energy curve for the 41�g
+ state has been recalcu-

lated and extended out to 80a0 �35�. With the energy scale
used in Fig. 1, these potentials would entirely overlap with
ours. A more detailed comparison shows that the largest en-
ergy difference is obtained for the inner part �R
1.5a0� of
the 11�g

+ ground state potential, which is of little importance
to the present study anyway. Here, our computed values are
approximately 5.7�10−4 to 1.5�10−3Eh higher in energy
compared to those in Ref. �34�. For all of the excited states,
our calculated energies are approximately 1.0�10−4 to
5.6�10−4Eh higher than in Refs. �33,35,36�. It is of particu-
lar interest to estimate the quality of the �4–7�1�g

+ and
�3–6�1�u

+ states near the critical n=3 curve crossing. Con-
cerning the ungerade states, the covalent parts of our poten-
tials are within 1.6�10−4Eh and the ionic parts within 3.0
�10−4Eh to those reported in Ref. �36�. Due to the near
degeneracy of the gerade and ungerade states, we expect this
accuracy to be common to both inversion symmetries. The
quality of the adiabatic states and, in particular, their energy
splitting at the n=3 curve crossing will be discussed further
in the next section.

B. Radial couplings

We have calculated the first derivative radial couplings
�19� between all of the adiabatic states considered in the
previous section. The accurate evaluation of these quantities
is not trivial. The magnitude and shape of the radial cou-
plings are usually very sensitive to the quality of the elec-
tronic wave functions and it is essential that not only the
individual states are good in a variational sense, but also that
the relative energies of these states are well represented. In
regions where two or more adiabatic states become nearly
degenerate, further complexity is added by the fact that a
minor change in the atomic basis can cause the potential
energy curves to artificially pseudocross, giving rise to dra-
matic effects in the radial couplings. These effects do not
change the outcome of the dynamics but can obscure both
interpretation and comparison with other results.

To evaluate the radial couplings we have implemented a
three point version of the finite difference method described

-0.75

-0.70

-0.65

-0.60

-0.55

0 10 20 30 40 50

P
ot

en
tia

le
ne

rg
y

(u
ni

ts
of

E
h)

Internuclear distance (units of a0)

H(1) + H(2)

H(1) + H(3)

H+ + H-

-0.75

-0.70

-0.65

-0.60

-0.55

0 10 20 30 40 50

P
ot

en
tia

le
ne

rg
y

(u
ni

ts
of

E
h)

Internuclear distance (units of a0)

H(1) + H(2)

H(1) + H(3)

H+ + H-

(b)

(a)

FIG. 1. Adiabatic potential energy curves for �a� the �2–7�1�g
+

states and �b� the �1–6�1�u
+ states of H2. The separated atomic

limits are indicated at the far right of each subfigure. For a discus-
sion of the particular ion-pair limit, see the main text.
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in Ref. �45�. This method provides a systematic way to con-
verge the calculations toward the exact result in the particu-
lar type of basis and wave function being considered. We
have examined carefully how the calculated radial couplings
depend on the derivative step length �R, as well as the nu-
merical accuracies �MO and �CI, with which the molecular
orbitals and the CI wave functions are obtained. Stable and
converged results were observed when �R=5�10−5a0,
�MO=10−14Eh, and �CI=10−13Eh. The antisymmetry condi-
tion �10� can be used as a simple consistency check of the
results. In the present case, most of the calculated coupling
elements satisfied this condition to at least four significant
digits. For practical reasons, it is still desirable to have a
coupling matrix that is fully antisymmetric. This has been
accomplished by taking each element to be the geometrical
mean of �ij and −� ji.

The radial couplings are too many to discuss in full detail
and so we will focus on those relevant for the important
n=2 and 3 curve crossings. The notation �i , j�g is used to
label the radial coupling between the ith and jth 1�g

+ state
�and similarly for the ungerade states�. Due to symmetry,

gerade and ungerade states are not coupled to each other.
In Fig. 2 we show the radial couplings among the

�2–4�1�g
+ and �1–3�1�u

+ states in the neighborhood of the
n=2 curve crossing. As can be expected from the appearance
of the potential energy curves, each of the �2,4�g and �1,3�u
couplings show a rather broad peak near the crossing point at
12a0 resulting from the exchange of ionic and n=2 covalent
character between the adiabatic wave functions. Similar
shapes and magnitudes, although displaced to larger internu-
clear distances, are also exhibited by the �2,3�g and �1,2�u
couplings, which connect the adiabatic states tending to the
n=2 covalent limit. The �3,4�g and �2,3�u couplings are, on
the other hand, much less pronounced in the crossing region.
For comparison, also plotted in Fig. 2 are the results obtained
by Wolniewicz and Dressler �30,33�, which include the radial
couplings among all of the �2–4�1�g

+ states and between the
1 and 21�u

+ states. The overall agreement with the present
results is very good, in particular, in the region up to approxi-
mately 16a0. For larger internuclear distances some devia-
tions can be observed. These are most likely due to a slight
unbalance in our description of the nearly degenerate n=2
adiabatic states. However, as mentioned at the very begin-
ning of this section, the physical relevance of these types of
effects is expected to be small.

Figure 3 illustrates the radial couplings among the adia-
batic states associated with the n=3 curve crossing. Here, the
gerade and ungerade states are almost completely degenerate
and so only the results for the former of these, i.e., the
�4–7�1�g

+ manifold of states, are shown. All the couplings
appear as peaklike structures with their maxima located in
the region 35.5–37.0a0. The most prominent of these is the
�4,7�g coupling, which reaches its maximum value at 35.9a0.
This coupling arises from the exchange of ionic and n=3
covalent character between the 4 and 71�g

+ adiabatic states.
We note that the location of its maximum agrees well with
the crossing point of the pure ionic and covalent energies at
36.0a0 obtained from the ground state energy �46� and the
polarizability �47� of the H− ion. The calculations of
Wolniewicz and Dressler do not extend out to the n=3 curve
crossing and thus no direct comparison of the radial cou-
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plings can be made. However, in the ungerade symmetry we
can compare the energy splitting of the 3 and 61�u

+ states at
35.9a0. Here, we obtain the value 3.8�10−4Eh, which is in
very good agreement with the value 3.9�10−4Eh calculated
from the results of Ref. �36�.

C. Adiabatic to diabatic transformation

In order to obtain the adiabatic to diabatic transformation
�ATDT� matrix, we have numerically solved Eq. �18� using
the radial couplings described in the preceding section as
input data. The solution has been obtained with a matrix
version of the Runge-Kutta Fehlberg method �48�. The
boundary condition T=1 has been imposed at R=50a0 and
the integration has been performed inwards. As hinted above,
several of the nonadiabatic couplings are nonvanishing as R
tends to infinity. In practice, our choice of boundary condi-
tion corresponds to setting these couplings to zero beyond
50a0. Since this kind of assumption has to be made in the
calculation of the scattering matrix anyway, no additional
error is introduced due to the diabatization procedure itself.
In the present case, the transformation to a strictly diabatic
basis is merely for computational reasons and is not dis-
cussed further. It is worth noting, however, that the diabatic
potential energy curves we obtain here are far from the in-
tuitive ones conventionally used in connection with the H2
system �see Fig. 4�.

IV. NUMERICAL PROCEDURES

The logarithmic derivative �35� has been calculated by
numerically solving the matrix Riccati equation �36� from
0.54a0 out to 50a0. For this purpose we have used an algo-
rithm developed by Johnson �27,28� with the grid size set to
5�10−3a0. Knowledge of the logarithmic derivative in the
final integration point has allowed us to calculate the partial
cross sections �32� for scattering within the gerade and un-
gerade inversion symmetries. The fully symmetrized integral
cross sections have been obtained by combining the partial

cross sections according to Eq. �45�. To determine at which
point the series in Eq. �45� could be truncated, a simple con-
vergence criteria was introduced. This was set to terminate
the summation if the ratios of the partial cross sections and
the accumulated integral cross sections remained less than
10−4 for 25 terms in succession. Over the energy range con-
sidered here, this led to the inclusion of approximately 250–
3500 partial waves.

V. RESULTS AND DISCUSSION

A. State-dependent cross sections

The calculated cross sections for scattering into the
H�1�+H�n�, n=1,2 ,3 final states are shown in Fig. 5. It is
clear that the n=3 process dominates the others over almost
the entire energy range, which is reasonable considering the
favorable location of the n=3 curve crossing at around 36a0.
In contrast, the n=2 transitions occur much further in and are
more easily suppressed by the centrifugal barrier. Only for
collision energies above 5 eV, where the n=2 cross section
exhibits a minimum, is this process able to compete with
neutralization into the n=3 final states. This phenomena was
first noted by Bates and Lewis �4� and has been confirmed, at
least on a qualitative level, by almost every study since then
�7–9�. Neutralization into the n=1 final state is insignificant
at all energies and is included only for completeness. As the
collision energy approaches zero, all cross sections gain the
characteristic E−1 dependence that can be expected for reac-
tions which are governed by the Coulomb interaction. Here,
the n=3 cross section is approximately a factor of 50 larger
than the n=2 cross section.

Some weaker oscillations can be observed over a large
part of the energy range. The reason for this structure is not
completely clear, but the most likely explanation is in terms
of Stückelberg oscillations, i.e., in terms of quantum interfer-
ence arising because there are several competing routes
through the potential landscape leading to the same
asymptotic limit.
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The close-coupling results of Fussen and Kubach �9� have
also been plotted in Fig. 5 for comparison. The agreement
between their n=3 cross section and the present one is good.
The difference is about 20 percent at 1 eV and increases
slightly with the energy. Comparing the n=2 cross sections,
the two calculations are seen to agree well above the mini-
mum at 5 eV, whereas at lower energies the differences are
more pronounced. A rationale for this discrepancy may be
found by considering how the inversion symmetry of the
electronic states is approached.

For this purpose we show in Fig. 6 a comparison of our
fully symmetrized cross sections �same as in Fig. 5� together
with the pure gerade and ungerade cross sections calculated
in the conventional way. We first note that the n=3 cross
section is fairly insensitive to the choice of inversion sym-
metry over the whole energy range. Consequently, the effect
of averaging over these symmetries is expected to be small.
A similar observation can be made regarding the n=2 cross
section above 5 eV. However, at lower energies the gerade
and ungerade results differ strongly. This indicates not only

that our way of combining the gerade and ungerade cross
sections will affect the final result, but also that any two
approaches that treat the inversion symmetry differently may
lead to different outcomes. In the one electron model of Fus-
sen and Kubach, this inversion symmetry is actually broken,
and as a consequence their results are likely to differ from
ours. It should be emphasized though, that at the energies
where this happens the contribution from the n=2 channels
to the overall reaction is small. It should also be noted that
the effects of treating the nuclei as indistinguishable are very
small, and it is equally good to use the simpler formula �46�
in favor of Eq. �45� to weight the gerade and ungerade partial
cross sections.

B. Total neutralization cross section

In Fig. 7 we show the calculated total neutralization cross
section, i.e., the sum of the n=1,2 ,3 cross sections. As could
be expected from the previous subsection, this cross section
shows a rather smooth behavior over the entire energy range.
At low collision energies, the curve approximately resembles
the E−1 behavior discussed above. The cross section then
continues to fall off until it reaches a broad minimum at
around 20 eV. This minimum obviously results from the
nearly constant n=3 cross section in combination with the
rapid increase in the formation of n=2 final products.

To examine the influence of the nonvanishing asymptotic
couplings upon the cross section, the point at which the loga-
rithmic derivative is evaluated has been varied over the range
50–80a0. The boundary condition on the ATDT matrix has
been varied accordingly. At the collision energies 0.001, 1,
and 100 eV, the relative variation in the cross section was
seen to be 4�10−4, 7�10−4, and 1�10−3, respectively. We
conclude that the effects of the nonvanishing asymptotic cou-
plings over the energy range considered here are negligible.
This is consistent with the conclusions drawn by Borondo et
al. �43�.

Additional tests have been performed in order to estimate
the relevance of the radial couplings at small internuclear
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distances �as discussed in Sec. III A�. This has been done by
setting all radial couplings up to a certain distance R0 to zero
before the diabatization procedure is carried out. Choosing
R0=6a0 reduces the total neutralization cross section at
0.001, 1, and 100 eV collision energy by 8.6, 9.9, and 5.9
percent, respectively. These variations in the cross section
can be considered small �although not insignificant� and may
be taken as an upper limit for the influence of the higher
lying 1�g,u

+ adiabatic states not included in the present study,
which are coupled to the lower lying states mainly at small
internuclear distances. A more detailed study of these effects
is currently being pursued.

In Fig. 7 we also show the results of earlier studies rel-
evant for the mutual neutralization of H+ and H− at low
collision energies. Up to the present date, no measurements
of this cross section have been reported for collision energies
below 0.15 eV. In the region 0.15–3 eV, the only experi-
mental results that are available are those of Moseley et al.
�10�. A comparison shows that these are a factor of 2 to 3
larger than the present data. At energies above a few eV,
experiments have been conducted by Szucs et al. �11� and
Peart and Hayton �12�, among others. In the region 3–10 eV,
their results point towards a cross section that is slightly
lower than ours, which is most evident for the first few data
points of Peart and Hayton, whereas for collision energies
above 10 eV all three studies agree favorably. Compared
with earlier theoretical studies, our results match within 30%
the close-coupling calculations of Fussen and Kubach �9�
and within 40% the Landau-Zener calculations of Bates and
Lewis �4�. Our results also more or less overlap with the
Landau-Zener results obtained by Eerden et al. �8�.

It may be worthwhile to review the accumulated data on
the mutual neutralization of H+ and H− at low collision en-
ergies �below a few eV�. There are now several calculations
of this cross section that are mutually consistent within a few
tens of percent. These employ such diverse methods as semi-
classical Landau-Zener theory as well as model Hamiltonian
and ab initio close-coupling schemes. In the upper part of the
energy region, the theoretical results are in more or less
agreement with several of the available experiments. One of
these might even suggest a cross section that is slightly lower
than predicted by theory. It is a fact, however, that the only
measurement that has been published for collision energies
below 3 eV shows a cross section that is considerably higher
than others reported. To clarify this situation, new experi-
mental efforts are obviously required. Recently, such mea-
surements have been undertaken by the group of Urbain �49�
at the Université Catholique de Louvain, Belgium, using a
merged beam apparatus in the energy range 0.001–0.2 eV.
Although uncertainties of the order of 50% still exist, pre-
liminary results from this experiment seem to support the
neutralization cross section obtained from the various theo-
retical treatments.

C. Rate coefficient

At low collision energies, the total neutralization cross
section may be parametrized in terms of the relative velocity
v as �10�

��v� = Av−2 + Bv−1 + C + Dv . �47�

To determine the unknown coefficients of this expression, we
have performed a least square fit to our calculated cross sec-
tion in the region 0.001–4 eV. The result is

A = 4.77 � 10−2 cm4 s−2,

B = − 1.73 � 10−9 cm3 s−1,

C = 1.22 � 10−14 cm2,

D = − 1.57 � 10−21 cm s,

corresponding to a maximum error of 6% in the parametrized
cross section. By integrating Eq. �47� over a Maxwellian
velocity distribution, the associated rate coefficient ��T� is
obtained as follows:

��T� = A
 2�

�kT
�1/2

+ B + 2C
2kT

��
�1/2

+
3DkT

�
, �48�

where T is the ion temperature and k is the Boltzmann con-
stant. We estimate the above results to be valid over the
temperature range 10–10 000 K. For comparison, the rate
coefficient we obtain at 300 K is 1.73�10−7cm3 s−1.

VI. SUMMARY

In this paper we have considered the mutual neutralization
of H++H− into H�1�+H�n�, n=1,2 ,3 at low collision ener-
gies. To arrive at the present results, we have used a molecu-
lar close-coupling approach with all degrees of freedom
treated quantum mechanically. Adiabatic potential energy
curves and nonadiabatic radial couplings have been calcu-
lated at the FCI level of theory employing a large Gaussian
basis set. These quantities are in good agreement with those
obtained from more sophisticated electronic structure meth-
ods �30–36�. Using a strictly diabatic representation of the
potential energy curves and coupling matrix elements, we
have calculated state-dependent and total neutralization cross
sections taking into account the identity of the nuclei.

The present results conform to the conventional view that
for collision energies up to a few eV, almost all neutral prod-
ucts go into the n=3 final states. Furthermore, a proper
weighting of the gerade and ungerade cross sections turns
out to be important only for the n=2 formation at low colli-
sion energies, where these cross sections anyway are small.
In the collision energy region below a few eV, our total neu-
tralization cross section is in good agreement with previous
theoretical studies �4,8,9�, but is a factor of 2 to 3 lower than
that measured by Moseley et al. �10�.
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APPENDIX

Here, we provide analytical expressions for the solution
matrices al, bl, �l, and �l, which are used in the definitions
of the reactance and scattering matrices of Sec. II C. Open
and closed channels are distinguished depending on whether
the total energy is greater or less than the corresponding
threshold energy. The channels are labeled short range �co-
valent� if

Vii
d�R� =

R��
Ei

th, �A1�

and Coulombic if

Vii
d�R� =

R��
Ei

th +
Q1Q2

R
, �A2�

where Q1 and Q2 are the net charges situated on each of the
nuclei. The asymptotic wave number ki for open channels
has been defined in Eq. �23�. For closed channels,

ki = �2��Ei
th − E��1/2. �A3�

It is further convenient to introduce the scaled coordinate
�i=kiR and the Coulomb parameter

�i =
�Q1Q2

ki
. �A4�

We look for pairs of linearly independent solutions to the
radial Schrödinger equation �27� in the region R��. These
are chosen such that aii,l�R� and bii,l�R� behave as regular and
irregular solutions, and �ii,l�R� and �ii,l�R� as incoming and
outgoing wave solutions, respectively. For open short-range
channels, two linearly independent solutions are the Riccati-

Bessel functions of the first and second kind, S̃l��i� and

C̃l��i�, respectively �24�. We adopt the definitions �25�

aij,l = �ijki
−1/2S̃l, �A5�

bij,l = �ijki
−1/2C̃l, �A6�

�ij,l = �ijki
−1/2�− iS̃l + C̃l� , �A7�

�ij,l = �ijki
−1/2�iS̃l + C̃l� . �A8�

For open Coulomb channels, the radial Schrödinger equation
is solved by the regular and irregular Coulomb functions

F̃l��i ,�i� and G̃l��i ,�i�, respectively �24�. Accordingly,

aij,l = �ijki
−1/2F̃l, �A9�

bij,l = �ijki
−1/2G̃l, �A10�

�ij,l = �ijki
−1/2�− iF̃l + G̃l� , �A11�

�ij,l = �ijki
−1/2�iF̃l + G̃l� . �A12�

Finally, in the case of closed short-range channels, possible

solutions are �iĩl��i� and �ik̃l��i�, where ĩl��i� and k̃l��i� are the
modified spherical Bessel functions of the first and second
kind, respectively �24� �first and third kind in the cited ref-
erence�. Appropriate definitions are �25�

aij,l = �ij2
1/2�−1/2�iĩl, �A13�

bij,l = �ij2
1/2�−1/2�ik̃l, �A14�

�ij,l = �ij�2��1/2�iki
−1�ĩl + �− 1�l�−1k̃l� , �A15�

�ij,l = �ij2
1/2�−1/2�iki

−1k̃l. �A16�

Closed Coulomb channels play no role in the present study
and are therefore not considered.
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