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We report on multiconfiguration Breit-Pauli calculations for the photorecombination of Ti4+ ions. Through a
detailed comparison with the Test Storage Ring measurements of Schippers et al., we quantify the interference
effects for the broad, asymmetric, near-threshold, highly correlated 3p53d2�2F� resonances. We also discuss the
enhanced field ionization effects on recombined 3p6n� Rydberg states. This is due to the perturbation of the
below-threshold tails of two of the broad 3p53d2�2F� resonances, giving rise to a “forced autoionization”
phenomenon, increasing the field ionization effects. By accounting for interference for the lowest n=3,4
resonances, and field effects as n→�, excellent agreement between our computed results and the experimental
photorecombination spectrum is obtained.
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I. INTRODUCTION

The modeling of nonequilibrium laboratory and astro-
physical plasmas requires accurate recombination cross sec-
tions. For example, the use of titanium metal films deposited
on a carbon divertor, in order to reduce its erosion rate, re-
quires the knowledge of the excitation cross sections for ti-
tanium as an impurity in tokamak plasmas �1�. From an as-
trophysical perspective, due to their nuclear stability, ions of
transition elements in the fourth row of the Periodic Table
are often found in spectra of supernova remnants such as
Cassiopeia A �2�, where the abundance of 44Ti serves as a
probe for nucleosynthesis.

The burgeoning interest in atomic structure of low-
charged Ti ions �3–15�, particularly inner-shell excitation fol-
lowed by autoionization �16–28�, revealed that the descrip-
tion of resonances in Ti3+ can be surprisingly difficult. This
is also the case in dielectronic recombination �DR� of highly
charged ions, such as 207Pb53+ and 208Pb53+ �29�, where iso-
tope effects may open or close the DR channels by shifting
low-energy resonances above or below threshold. Further-
more, a recent measurement �30� of the Fe13+ recombination
rate coefficient indicated the need for improved data in the
temperature range where these ions form in photoionized
plasmas.

To address the need for accurate DR data, we have em-
barked on a research program to compute DR cross sections
for all ions of astrophysical interest �31�. To date, results
have been reported for all elements up through zinc for the
isoelectronic sequences ranging from H-like to Mg-like
�32–43�. Good agreement between theoretical results and ex-
perimental measurements, at the Test Storage Ring �TSR� in
Heidelberg, have been obtained within the experimental un-
certainty of 20% for most sequences. However, on progress-
ing into the M shell, theory does not compare as favorably
with experiment. This is most likely due to the more de-
manding atomic structure associated with third-row systems
for which the highly correlated 3p and 3d subshells can now
be populated. Because of the need for a more complex

atomic structure treatment, and following benchmark calcu-
lations �44,45� for iron ions with partially filled M shell, this
work aims to address DR of Ti4+ for which storage ring
experimental results also exist �24�.

The more general photorecombination �PR� process con-
sists of the coherent contributions from resonant DR and
direct radiative recombination �RR�. This is of considerable
importance for PR of Sc3+ and Ti4+ in that the existence of
two very broad asymmetric 3p53d2�2F5/2,7/2

� � resonances had
been theoretically established �46,47� and experimentally un-
veiled in the near-threshold region �24,48�. Those findings
present the impetus for this work and a special challenge
when using our multiconfiguration Breit-Pauli �MCBP�
method, as generally used for DR computations �49�, since
interference effects between resonant and direct coherent
pathways are neglected in the lowest-order, computationally
efficient mode.

For the near-threshold region, a less-efficient next-
highest-order perturbative approach �46� is used. This has the
advantage of treating nonperturbatively all interference ef-
fects for the low-lying broad resonances. From earlier PR
work on Sc3+ �46,48,50–53�, it is well established that for
low-charged Ar-like ions, there exist broad, asymmetric,
highly correlated, near-threshold 3p53d2�2FJ

�� resonances that
deserve special theoretical attention. For the higher-energy
DR computations, where numerous Rydberg series of nar-
row, noninterfering resonances prevail, we use the lower-
order, highly efficient AUTOSTRUCTURE program �49�. Thus
both an adequate description of the low-energy interfering-
resonance region and an efficient method for treating the
Rydberg limits, with additional consideration of external
electric field effects, is obtained.

The rest of the paper is organized as follows. We first
address the computational approaches in Sec. II, and present
the atomic structure for Ti4+ and Ti3+. Next, we analyze the
available experimental data in Sec. III, and describe a decon-
volution method for inferring the PR cross section from the
experimental rate coefficient. Near-threshold recombination
spectra and the complete Rydberg series are compared to the
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latest experimental and other theoretical studies in Sec. IV,
and a brief summary follows in Sec. V.

II. THEORETICAL METHODOLOGY

The perturbative method used in our present study ne-
glects higher-order effects such as resonance-background
�the background being RR� and resonance-resonance inter-
ferences �54�, which in turn has the advantage of analytically
averaging the resonant recombination pathways of entire Ry-
dberg series �55�. This implementation is commonly referred
to the independent-processes isolated-resonance distorted-
wave �IPIRDW� approximation, where both electron-
electron and electron-photon interactions are treated to first
order. We have assessed that this is a reliable approximation
except in rare cases such as the broad, highly correlated
3p53d2�2F�� resonances. Nonetheless, in a many-body third-
order perturbative study of low-lying resonances in PR cross
sections of highly charged uranium ions, Pindzola, et al. �56�
demonstrated that even though resonance-background inter-
ference effects are not evident in the total DR cross section,
they are present in partial DR cross sections and thus observ-
able �57� in high-resolution x-ray spectra associated with the
recombination event �58�. Therefore we complement our in-
vestigation of the near-threshold resonance region with a
higher-order perturbative approach.

A. Processes of interest

The specific PR processes of interest are the following:

e− + Ti4+�3p6� → Ti3+**�3p53dn�

3p54sn�
�

DR ↓
RR↘

Ti3+*�3p6n�� + �� ,

�1�

where an initial electron incident upon a Ti4+ target ion
�forming a continuum state c� is either directly captured via
RR into a Ti3+* bound state b or captured into a doubly
excited Ti3+** autoionizing resonance state d. This interme-
diate state then decays radiatively to the same final bound
state b, completing the PR process. It is customary to denote
the Ti4+ target states as N-electron states, and the Ti3+ bound,
resonance, and electron-plus-ion scattering states as
�N+1�-electron states. The present work investigates DR
resonances formed by inelastic single-electron �3p→3d ,4s�
excitations from the Ti4+ ground state, giving rise to 16 Ry-
dberg series of intermediate autoionizing 3p53dn� and
3p54sn� states. The incoherent partial-wave contributions for
each J� in Eq. �1� can be described as

�e− + 3p6�J,�=odd → �3p5�3dn��

3p5�4sn�� �J,�=odd

↘ ↓
�3p63d�3/2,5/2.

�2�

At this point we note that, quantum mechanically, the
transitions in Eq. �2�, through different resonances d and/or

the direct continua c, to the same final bound state b, consti-
tute coherent pathways and therefore interference effects
may arise. While such cases are rare in PR �55,59�, we have
predicted theoretically �46,47� that the 3p53d2�2F�� reso-
nances formed in Sc2+ and Ti3+ exhibit asymmetric features
associated with resonance-background and/or resonance-
resonance interference effects.

To handle this particular case of n�=3d, where these reso-
nances occur in the near-threshold region, we extend our
usual MCBP calculations at lowest order to include next-
highest order interference effects.

B. Theoretical treatment of PR

For the treatment of the entire PR process as a function of
the electron’s center-of-mass �c.m.� energy �, we resort to the
well-established IPIRDW approximation, as is usually in-
voked in the operative mode of the AUTOSTRUCTURE atomic
code �49� and other codes �60,61�. Here we outline only the
main operative expressions for DR cross sections within an
IPIRDW framework; details may be found elsewhere �44�. A
key advantage of the IPIRDW approach is that its
independent-processes aspect allows the separation of the
photorecombination cross section �PR into nonresonant �RR

and resonant �DR contributions. The isolated-resonances as-
pect offers a further simplification of resonant contributions
to �DR that can be calculated as an incoherent sum over all
bound and resonant states,

��DR��� =
2

�
	

b
	

d

Sc→b
d /�̄d

1 + �d
2 , �3�

with reduced c.m. energy �d=2��−�d� / �̄d and �partial� inte-
grated resonant strength

Sc→b
d = 4.95 	 10−12�Mb eV2 s� 	

gd

2gion

Ad→c
a Ad→b

r

	c�Ad→c�
a + 	sAd→s

r
.

�4�

Here gd and gion are the statistical weights of the reso-
nance and final ionic states, respectively, and the summation
indices c� and s in Eq. �4� run over all states that are attain-
able from a given resonant state d either by autoionization or
by radiative decay. Hence a sum over c� accounts for reso-
nant scattering �excitation� and gives the total autoionization
rate Ad

a. The sum over s includes not only bound states that
are below the Ti4+3p6 first ionization limit Eth

�1�, but also may
consider radiative cascade through other autoionizing states,
giving the total radiative rate Ad

r .
The partial autoionization rates, Ad→c

a , are computed using
an energy-normalized distorted wave coupled to a target
wave function to represent the continuum wave function 
c�,
and a bound-state wave function for the resonance 
d�, yield-
ing an autoionization rate, according to Fermi’s Golden Rule
�62�, as

Ad→c
a = 2�
�c
V
d�
2, �5�

where V=	 j
i
1
rij

represents the electron-electron interaction
operator. Likewise, the spontaneous radiative decay rate of
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the resonance state 
d� to a bound state 
b� is given by

Ad→b
r =

4

3
�3�d→b

3 
�b
R
d�
2, �6�

with photon energy �d→b, fine-structure constant �, and
electric-dipole moment R=	iri in atomic units. In order to
directly compare our theoretical results with experimental
results �24�, Eqs. �3� and �4� implicitly assume that both the

resonance position, �d=Ed−Eth
�1�, and the total width, �̄d

=��Ad
a+Ad

r�, are in units of eV. In addition, the summation
index d in Eq. �3� runs over resonant states, given in Eq. �1�
for 3�n�1000 and 0���10, whereas the index b covers
all true bound states, omitting radiatively decayed states that
subsequently reionize due to the motional Stark effect; this is
discussed more fully in Sec. IV C 1. The use of the IPIRDW
approximation has the further advantage of easily mapping-
out and analytically integrating the numerous narrow reso-
nance profiles.

Additional formulas that are often needed for comparison
with other data are relations, in the length gauge, among the
radiative transition rate Au→l

r , the line strength S, and the
oscillator strength f:

Au→l
r �ns−1� = 32.1298
Eul

2 gl

gu
f , �7�

f =
2
Eul

3gl
S; �8�

with the energy difference 
Eul and line strength S in atomic
units, and statistical weights gu and gl of the upper and lower
states, respectively.

However, from previous investigations of Sc3+ and Ti4+

�12,24,46–48,50–53�, we anticipate the existence of very
broad, strong resonances near the 3p6 threshold for which
this efficient approximation is no longer valid, and so we first
discuss the more general, unified theory of photorecombina-
tion, followed by the simplified IPIRDW approximation.

C. Interference effects in the PR cross section

For near-threshold energies ��1.85 eV, it is necessary to
consider the unified process of an incident electron wave ��,J
upon the Ti4+ 3p6�1S0� target state, comprising an initial con-
tinuum 
c�, that can either be �i� directly captured into the
ground state 3p63d of Ti3+, or �ii� dielectronically captured
�with rate equal to the inverse autoionization rate Ad→c

a � to
intermediate autoionizing states 
d�= 
3p53d2 ,3p53d4s�, fol-
lowed by radiative decay to bound states 
b� of Ti3+. This is
schematically illustrated in Fig. 1 and can be represented as

e− + Ti3+ = 
c� ↔ 
d� = Ti3+**�3p53d2,3p53d4s�
↘ ↓


b� = Ti3+*�3p63d� + �� .

Here we have determined theoretically �see Sec. IV� that
seven resonances exist. The two 3p53d2�2F5/2,7/2

� � resonances,
labeled as d1,2, are broad, asymmetric, highly correlated, and
straddle the first ionization limit Eth

�1�. The remaining five

3p53d4s resonances consist of the two doublets 2P1/2,3/2
� , la-

beled as d3,4, and the three quartets 4P1/2,3/2,5/2
� , denoted as

d5,6,7. Fine-structure splitting in the ground state of the re-
combined Ti3+ ion yields two 3p63d�2D3/2,5/2� levels, shown
in Fig. 1 as b1 and b2, respectively. Radiative decay of all
seven 3p53d
3d ,4s� near-threshold resonances is predomi-
nantly to the bound states due to the strong 
3d ,4s�→3p
core transitions.

The partial cross section for PR of a free electron, at
energy �=Ec−Eth

�1� above the ground state Eth
�1� of the target

ion, into a bound state b of a recombined ion, is given by
�46,63�

�c→b
PR ��� =

8�

3

gb

2gion

�3�c→b
3

k�

Mb→c
2, �9�

where �c→b is the frequency of the radiation field, k is the
linear momentum of the continuum electron, gb and gion are
the statistical weights of the bound state b in the recombined
ion and the ground state of the target ion, respectively. Mb→c
is the complex photoionization �PI� matrix element of the
corresponding transition and is expressed as

Mb→c = �c
R
b��1 + 	
d

Qb→c
d − ıBd→c

a

�d + ı � . �10�

The reduced c.m. energy, in the vicinity of a doubly excited
state d, is given by the energy-detuning-from-resonance pa-

rameter �d=2�Ed−Ec� / �̄d, with total width �̄d=Ad
a+Ad

r and

autoionization branching ratio Bd→c
a =Ad→c

a / �̄d. �The broad
resonances d found in the near-threshold region have auto-
ionization rates Ad→c

a much greater than radiative rates Ad→b
r ,

and thus Bd→c
a �1.�

Note that, for a single resonance embedded in a single
continuum and decaying to a single bound state, Eqs. �9� and
�10� give a familiar Fano profile �64,65�. In particular, the
partial PR cross section profile can be described as

(1)
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FIG. 1. �Color online� Schematic diagram of the most relevant
near-threshold Ti4+ photorecombination pathways. Two broad,
asymmetric 3p53d2�2FJ

�� resonances straddle the first 3p6�1S0� ion-
ization limit Eth

�1�=0.
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� = �a�q + ��2/�1 + �2�

with an asymmetry parameter q=Qb→c
d given by

Qb→c
d =

�c
V
d��d
R
b�

��̄d/2��c
R
b�
. �11�

In principle, the sum in Eq. �10� includes all
NJ�-accessible doubly excited states d of a given symmetry
J�. The total PR cross section is then obtained by summing
Eq. �9� over all partial waves J�, all intermediate states d,
and all recombined bound states b. To factor out the near
threshold energy dependence, we consider an energy-scaled
cross section

��PR��� =
8�

3 	
J�

	
b=b1

b2 gb

2gion

�3�c→b
3

k

	
�c
R
b�
2�1 + 	
d=1

NJ�

Qb→c
d − ı

�d + ı
�2

. �12�

D. Atomic structure and AUTOSTRUCTURE

Determination of partial and total perturbative �MCBP�
DR cross sections requires the computation of autoionization
and radiative rates of an exceedingly large number of reso-
nances. To represent accurately the important Ti4+ 3p6 and
3p53d N-electron target states, it is usually necessary to em-
ploy a configuration-interaction expansion including single-,
double-, and even triple-electron promotions from the single-
configuration description. We then construct all possible �N
+1�-electron configurations by coupling a bound �n�� or
continuum ���� orbital to each N-electron configuration. For
photoionized plasma temperatures �kBT�1 eV�, core-
excitation contributions from intrashell single-electron pro-
motions �
nc=0� completely dominate over inter-shell exci-
tations �
nc�1�. This is also typical at collisionally ionized
plasma temperatures �4.7�kBT�44.8 eV �66�� since our
highest 3p53d target level resides below the lowest 3p54s
level.

1. The Ti4+ target ion states

In order to compute accurately the atomic structure of an
N-electron system, an optimal configuration interaction ex-
pansion is required. Of crucial importance is that the number
of N-electron configurations used to describe all the target
states should be small enough that the associated
�N+1�-electron problem involving scattering, resonance, and
recombined wave functions is computationally feasible. At
this stage, we devote great care to determination of a bound
orbital basis, 
1s ;2s ;2p ;3s ;3p ;3d ;4s�, that has been opti-
mized in the Slater-type-orbital model potential of Burgess,
et al. �69� by varying the scaling parameters, �n�, to mini-
mize the equally weighted-sum of MCBP eigenenergies of
the nine lowest 3p6, 3p53d, and 3p54s target terms, with
mass-velocity and Darwin corrections included. The scaling
parameters �n� enter the potential by scaling the radial coor-
dinate, as discussed by Eissner et al. �70� in the context of
the Thomas-Fermi potential.

We then iteratively reoptimize the radial scaling param-
eters �3� and �4s while “freezing” the closed-core parameters
�1s and �2�. The purpose of such a reoptimization is not only
to improve the initial energy levels in the Ti4+ ion, but, more
importantly, to reproduce the critically evaluated data of Shi-
rai et al. �68� for the dominant 3p6�1S0�→3p53d�1P1

� � radia-
tive transition. The final stage of our successive reoptimiza-
tion of radial functions is the confirmation of stationarity of
the computed eigenenergies and radiative data with respect
to small variations in �nl of both the core and valence orbit-
als. The resultant radial scaling parameters of the core orbit-
als are �1s=1.168 38, �2s=0.961 23, and �2p=1.008 22,
whereas for the valence orbitals we obtain �3s=1.056 53,
�3p=0.9895, �3d=1.174, and �4s=1.31.

In Table I, we present MCBP eigenenergies as well as the
best existing experimental data �68� for Ti3+ and Ti4+. The
differences between our results and the experimental values
are less than 1%, except for the 3p54s �3PJ

�� levels that are
about 4% less than the NIST values �68�. This is an accept-
able trade-off in the aforementioned optimization of one-
electron orbitals, which prioritizes the radiative parameters
in Table II for the dominant 3p6�1S0�→3p53d�1P1

� � core ex-
citation. Thus it is customary to adjust empirically small de-
viations in computed energies for the target ion so that the
series limits in the recombined ion match the excitation
thresholds found in the NIST Atomic Spectra Database �71�.

For resonant states converging to the 3p53d �1P1
� � limit,

the dominant radiative decay pathways in Eq. �1� involve
core relaxation of the inner 3d electron at a rate closely
matching the dominant entry in Table II. The resonance
strengths, as given in Eq. �4�, intimately depend upon the
accuracy of the most prevalent radiative rates.

Table II shows excellent agreement between calculated
and observed radiative parameters for the strongest target-ion
transitions—well within the experimental uncertainty of 18%
�68�. Thus we are confident that the absolute strength of the
computed DR cross section in the vicinity of the 3p53d �1P1

� �
excitation threshold should be accurate to better than 18%.

2. The Ti3+ recombined ion

We have investigated all possible �N+1�-electron con-
figurations that are constructed by attaching a bound, n�, or
continuum, ��, orbital to the 17 target-ion thresholds listed in
the upper part of Table I. The total DR cross section �DR is
then routinely determined according to Eq. �3� by computing
the relevant �N+1�-electron autoionization and radiative
rates for all resonant states up to n=1000 and �=0–10.

An accurate atomic description of the near-threshold reso-
nances is of particular importance, since this energy region is
spanned by low-lying 3p53d2 and 3p53d4� resonant features
characterized by strong electron-electron correlation. The
atomic structure calculations were performed using orbitals
with radial scaling parameters �n� optimized according to the
following criteria. The energy of the ground state in the re-
combined Ti3+ ion together with its first ionization limit Eth

�1�

should closely match the values found in the NIST Atomic
Spectra Database �71�. Therefore we report the converged
scaling parameters for core orbitals to be �1s=1.168 97, �2s
=0.996 82, and �2p=1.01, followed by values for the valence
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orbitals �3s=1.112 947, �3p=1.024 559 2, �3d=1.113 85,
�4s=1.1563, �4p=1, �4d=0.949, and �4f =1.

The lower part of Table I illustrates the efficiency of this
optimization by analyzing the resulting MCBP eigenenergies
for certain low-lying bound and resonant states in the Ti3+

ion. Also shown for comparison are other recent theoretical
and experimental results. Theoretically, Kingston and Hib-
bert �14� have performed bound-state calculations quite simi-

lar to our MCBP calculations �except here we are concerned
with continuum states and higher-n states as well� using the
well-established CIV3 code �72�. Multiconfiguration
Hartree-Fock �MCHF� calculations have also been reported
�67�. Experimentally, in addition to the Test Storage Ring
�TSR� photorecombination �PR� measurements of Schippers,
et al. �24�, and the Advanced Light Source �ALS� photoion-
ization �PI� measurements of Schippers, et al. �12�, there

TABLE I. Energies �in Rydbergs and relative to the Ti4+ 3p6�1S0� ground state� of the Ti4+ target states
�top� and the Ti3+ initial bound and intermediate resonance states �bottom�.

Ti4+

K Config. Level K�%� Presenta MCHFb NISTc

1 3p6 1S0 1�100� 0.00000 0.00000 0.00000

2 3p53d 3P0
� 2�99.9� 2.50011 2.36958 2.50088

3 3p53d 3P1
� 3�99.7� 2.50959 2.37796 2.50937

4 3p53d 3P2
� 4�99.1� 2.52884 2.39531 2.52704

5 3p53d 3F4
� 5�100� 2.61259 2.49031 2.61786

6 3p53d 3F3
� 6�98.1� 2.63191 2.50552 2.63402

7 3p53d 3F2
� 7�98� 2.65039 2.52032 2.64976

8 3p53d 3D3
� 8�75�; 12�25� 2.81151 2.67882 2.80150

9 3p53d 1D2
� 9�57�; 11�41� 2.82021 2.67384 2.79645

10 3p53d 3D1
� 10�99.7� 2.83290 2.69374 2.81811

11 3p53d 3D2
� 11�57.6�; 9�41.6� 2.83798 2.69581 2.81976

12 3p53d 1F3
� 12�73.9�; 8�24.2� 2.85083 2.71554 2.83799

13 3p53d 1P1
� 13�64.8�; 17�34.5� 3.62450 3.52383 3.60243

14 3p54s 3P2
� 14�99.9� 3.79145 3.82264 3.95799

15 3p54s 3P1
� 15�97.8� 3.82776 3.84568 3.98087

16 3p54s 3P0
� 16�99.9� 3.84828 3.87231 4.01017

17 3p54s 1P1
� 17�65.1�; 13�33.3� 4.00523 3.91017 4.04377

Ti3+

K Config. Level lab. K�%� Theory Experiment

1 3p63d 3D3/2 b1 1�94� −3.180079a −3.180079c

−3.180076d,e

−3.180066f,g

2 3p63d 3D5/2 b2 2�94� −3.176457a −3.176597c

−3.176279h −3.176609i,e

58 3p53d2 2F5/2
� d1 58�42.8�; 26�33.9�; 0.009501a 0.014�6�f,j,g

73�6.4�; 283�5.5� 0.009521h 0.02211d,j,e

59 3p53d2 2F7/2
� d2 59�40.6�; 28�34.8�; 0.026153a 0.02635i,j,e

71�7.9�; 282�5.4� 0.023721h 0.033�3�k,j,l

62 3p53d4s 2P1/2
� d3 62�74.5�; 72�13.5� 0.084312a 0.084171h,e

0.066121h

64 3p53d4s 2P3/2
� d4 64�71.4�; 74�14.6� 0.100646a 0.101446i,e

0.081521h 0.099003f,m,g

aPresent MCBP calculations �using 17
levels for Ti4+ and 360 levels for Ti3+�.

bMCHF �theoretical� �67�.
cNIST �experimental� �68�.
dVSS �experimental� �10�.
eVacuum spark spectroscopy.
fALS �experimental� �12�.

gPI of Ti3+.
hCIV3 �theoretical� �14�.
iVSS �experimental� �13�.
jUnresolved 3p53d2�2F��.
kTSR �experimental� �24�.
lPR of Ti4+.
mDenoted as 3p53d4s�2F�.
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exist the vacuum spark spectroscopy �VSS� observations of
Ryabtsev et al. �13� and the NIST values �68�.

If the inverse reaction in Eq. �1� is of main interest, then,
using the principle of detailed balance, as discussed further
below, we can study Ti3+ PI cross sections from each bound
state to the pertinent electron continua. For this purpose,
Table III lists our calculated parameters for radiative transi-
tions between ground and near-threshold configurations in
Ti3+.

We can see from Table III that our MCBP rates are sys-
tematically higher than other existing data �13,14�. Neverthe-
less, for the dominant radiative transitions, our results are
within 5% of the experimental values whereas the CIV3 rates
are about 28% lower, despite their resonance positions coin-
ciding well with ours �see Table I�.

III. REDUCTION OF PR DATA

The superior quality of DR data obtained using merged
ion and electron beams is unquestionably the main reason

why investigations of this fundamental recombination pro-
cess are now performed almost exclusively at ion storage
ring facilities equipped with electron coolers. The latest gen-
eration of heavy-ion storage ring facilities �73� allows direct
measurement �in absolute scale� of the PR rate coefficient
with an unprecedented energy resolution. This in turn offers
a fruitful test ground for sophisticated computational tech-
niques, such as relativistic many-body perturbation theory
and its estimates of the screened quantum electrodynamical
effects in lithiumlike ions �74�.

The only experimental work on PR of Ti4+ ions was per-
formed at TSR Heidelberg �24� in which an overall velocity-
averaged rate coefficient was reported. In this section we
offer a brief overview of all necessary steps that were under-
taken in our theoretical interpretation of these experimental
findings.

A. Theoretical PR rate coefficient

The standard approach �75� for comparing theoretical cal-
culations to experimental measurements is to compute the
PR cross section �PR and convolute it with the anisotropic
Maxwellian distribution of electron velocities �76�:

�theor�
v� =� d3v�v�PR�v�f�v� ,
v� . �13�

Here f�v� ,
v� is a strongly anisotropic distribution function
involving the transverse and longitudinal velocity compo-
nents, v� and v�, of the incident electron. These are param-
etrized in turn by the corresponding temperatures, kBT� and
kBT�, that dictate the shape of the DR resonances. 
v is the
detuning of the electron longitudinal velocity in the c.m.
frame of the ions.

This particular form of presenting the PR data is problem-
atic at low energies in that the shape of DR resonances is
strongly affected by the electron beam transverse tempera-
ture, kBT�. Namely, besides an energy dependent broaden-
ing, the convolution in Eq. �13� introduces an additional red-
shift and asymmetry of resonances. For example, using the
TSR experimental parameters reported by Schippers et al.
�24�, any narrow resonance found within �=kBT� will, after
convolution, possess a full width at half maximum �FWHM�
of 
�1/2�1.1	kBT� and will be shifted to lower energies
by ��−�0.25	kBT�. Furthermore, in this example the con-
volution in Eq. �13� introduces �17% of the red asymmetry
in the resulting rate coefficient profile. Given the additional
asymmetry, shift, and width introduced by the cooler distri-
bution, it would seem desirable to filter out these effects.
Thus any accurate assessment of resonance positions, widths,
and shapes would benefit by direct comparison between the
theoretical prediction for �PR and an experimental “cross
section,” which in turn can be obtained, in principle, by de-
convoluting the measured rate coefficient using Eq. �13�.

B. Deconvolution of experimental PR spectra

We have developed a deconvolution procedure that is able
to convert the measured PR rate coefficient �expt and produce
a cross section �expt

PR for the broader features of the recombi-

TABLE II. The breakdown of radiative data for transitions from
the ground state of Ti4+ found in NIST database and obtained in this
work. Numbers in square brackets are powers of 10.

Transition Ar �ns−1� S �a.u.� f� fv

3p6�1S0�→3p53d�1P1
� � 1.283�+2� 3.018 3.65 3.16

1.263�+2�a,b 3.02a,b 3.63a,b

3p6�1S0�→3p53d�3D1
� � 5.8�−2� 2.87�−3� 2.7�−3� 3.3�−3�

4.0�−2�a,c 2.0�−3�a,c 1.9�−3�a,c

aNIST �68�.
bAssigned experimental uncertainties: �18%.
cAssigned experimental uncertainties: �50%.

TABLE III. Comparison of computed radiative decay data for
selected near-threshold resonances in Ti3+ that are relevant to the
investigation of interference effects.

Transition Label Ar �ns−1� S �a.u.� f

3p63d�2D3/2�→3p53d2�2F5/2
� � b1→d1 97.1 6.707 1.783

92.5a

66.1b 1.213b

3p63d�2D5/2�→3p53d2�2F5/2
� � b2→d1 5.52 0.382 0.067

3.99b 0.049b

3p63d�2D5/2�→3p53d2�2F7/2
� � b2→d2 103.4 9.403 1.673

99.5a

71.2b 1.155b

3p63d�2D3/2�→3p53d4s�2P1/2
� � b1→d3 19.3 0.403 0.111

19.4a

17.6b 0.104b

3p63d�2D3/2�→3p53d4s�2P3/2
� � b1→d4 2.3 0.093 0.026

2.1b 0.024b

3p63d�2D5/2�→3p53d4s�2P3/2
� � b2→d4 18.1 0.74 0.137

16.2b 0.127b

aExperimental �VSS� �13�.
bTheoretical �CIV3� �14�.
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nation spectrum. Here we outline only the main deconvolu-
tion features; further details are given in �77�. First, integra-
tion over the velocity space in Eq. �17� is performed in the
c.m. energy domain. In this setting, the angular integration is
carried out by use of the Gauss-Kronrod quadrature formula
�78,79�, while integration over c.m. energies follows the
adaptive algorithm given in �77�. Second, besides the experi-
mental rate coefficient �expt, the only required input is the
electron beam transverse kBT� and longitudinal kBT� tem-
peratures, which must be deduced from the experimental
conditions �24�.

We begin our iterative deconvolution by guessing the ini-
tial estimate for the underlying experimental cross section
�expt

PR,�0�. One frequently used estimate assumes monoenergetic
electrons �an “apparent” cross section� �80�, and is obtained
by dividing the rate coefficient by the velocity: �expt

PR,�0�

=�expt /v. We note that another choice may simply be an
arbitrary number without significant computational penalty.
By convoluting through Eq. �13�, we arrive at a first approxi-
mation �expt

�1� for the experimental rate coefficient, which cor-
responds to the red colored curve�1� found in the inset of Fig.
2. In the next step, we deconvolve the residual �expt

�1� −�expt
with help of the set of �k functions �77� evaluated at Gauss-
Kronrod abscissas �k. This step gives us the correction 
�
that is then added to the initial guess �expt

PR,�0�, resulting in an
updated guess for the cross section �expt

PR,�1�. The convolution
of such an updated cross section constitutes the second itera-
tion and leads to an improved approximation �expt

�2� for the
experimental rate coefficient. We then repeat this process un-
til the successive corrections become sufficiently small, giv-
ing us the converged synthetic PR cross section �expt

PR that

will reproduce the experimental rate coefficient when used in
Eq. �13�.

Convergence of this algorithm depends on the signal-to-
noise ratio of the experimental data. Any strong scattering of
experimental points within a FWHM of the distribution func-
tion, f�v� ,
v�, will be propagated through the deconvoluted
cross section due to the inability of f�v� ,
v� to follow “un-
expected� changes. Noise propagation induces a slow adjust-
ment of the deconvoluted cross section points, spreads itself
in energy region around strong irregularities, and requires a
larger number of iterations until convergence is met. This
conclusion is supported by Fig. 2, where, at energies above
1 eV, full convergence is achieved after 100 iterations. How-
ever, as the inset of Fig. 2 shows, for energies below 1 eV,
the rate of convergence is five times slower, for two reasons.
First, for a collision energy of �=kBT�, the rate coefficient
�theor��� has FWHM of about 2.2kBT� that is too broad to
account efficiently for its sudden increase at ��1 meV.
Namely, even for bare ions, the measured recombination
rates at very low energies show strong enhancements over
the standard predictions �81�. This enhancement is under-
stood to arise primarily from transient field-induced recom-
bination during the merging process of electron and ion
beams �82� and its modeling is beyond the scope of this work
as it requires a detailed knowledge of the experimental setup.
Second, for collision energies below 185 meV, the experi-
mental spectra contain a noisy pattern in the vicinity of the
d1 resonance, and it is here that convergence is slowest. It is
worth noticing that the experimental rate coefficient of iso-
electronic Sc3+ ions �48� also suffers from a similar noisy
pattern at about 3 eV. The origin of this oscillatory feature in
the experimental data is unclear since our MCBP results, and
those of Ref. �14�, support the conclusion that below
�0.4 eV there are only broad d1,2 resonances.

C. Maxwellian-averaged PR rate coefficients

In the case of an isotropic Maxwellian plasma with tem-
perature T, the incoherent DR �Lorentzian� contributions in
Eq. �13� yield a smooth and broad Maxwellian rate coeffi-
cient that possesses distinct maxima at certain temperatures
2 /3Ei, and may be modeled accurately by the fitting formula

�DR�T� = T−3/2	
i

ci exp�− Ei/T� . �14�

In the case of plasmas that are not in local thermodynamic
equilibrium, a parametrized entropic form of �DR�T� may be
used instead �83�. Over a wide range of temperatures present
in stellar atmospheres, any underlying resonant structure in
the computed DR cross section becomes smeared out. How-
ever, in certain environments like H II and starburst regions
�84�, where the photoionized plasma temperature T is less
than �1 eV, the low-energy resonant features play a decisive
role in the nature of the emitted radiation.

To illustrate this further, we show the present MCBP re-
sults for the Ti4+ Maxwellian rate coefficients in Fig. 3, and
we make a number of comparisons in Table IV. First, as Fig.
3 reveals, at low plasma temperatures �kBT�1 eV� the total
DR contribution is an order of magnitude larger than the RR.
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FIG. 2. �Color online� The lower portion of the figure illustrates
the outcome of a fully converged, hundred-iteration deconvoluted
cross section that is then reconvoluted �red solid curve� to closely
follow the experimental rate coefficient �circles�. The inset shows
different stages in the deconvolution of the low-energy part of the
experimental data: �1� red curve, initial estimate; �2� blue curve,
fifth iteration; �3� green curve, slowly converged 500-iteration re-
sults. The shaded pattern represents an energy dependent FWHM of
the rate coefficient spectra for experimental temperatures kBT�

=0.1 meV and kBT�=7.3 meV.
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This is due to the strong, near-threshold 3p53d2 and 3p53d4�
resonances. Second, Fig. 4 addresses the discrepancy of 45%
and 144% among the current high-temperature DR results
and those of Hahn �85� and Landini et al. �86�, respectively.
We note that the empirical rate formula of Hahn �85� incor-
porated fitting parameters via the modified atomic transport
code MIST �87�. Intriguingly, the previously recommended
DR data of Mazzotta, et al. �88� agree within 6% of our n
�5 DR contribution, even though their compilation refers to
the empirical results of Hahn �89�. Namely, DR data of Maz-
zotta et al. �88� are inferred by using the Burgess general
formula �90�. However, these data are then scaled down by

the same factor of 0.426 that had been used to align the
Burgess results for Fe8+ with the results of Hahn �89�. In
their study, Mewe et al. �91� used the parametrized empirical
formula based upon the renormalized results of Jacobs et al.
�92� and Ansari et al. �93� for 3p→3d, 3p→4s, and 3p
→4d core excitations in Fe8+. However, the discrepancy of
163% between our present results and those of Mewe et al.
�91� cannot be attributed to our under-representation of all
possible 3p→4� core excitations since our preliminary cal-
culations show that these resonances contribute �5% to the
high-temperature peak in Fig. 4. Our present RR contribution
is computed over the temperature range 1.6	102–1.6
	108 K following the methodology of Badnell �94� and
shown in Fig. 3. It is twice the recommended value of Maz-
zotta et al. �88�, and may be reproduced with �1% accuracy
by using the functional form �94–96�,

�RR�T� =
A�T0/T

�1 + �T/T0�p−�1 + �T/T1�p+
,

with the following fitting parameters: A=3.989
	10−10 cm3 s−1, B=0.5658, C=0.1065, T0=95.17 K, T1
=4.776	10+7 K, T2=3.534	10+5 K, and p�

=1�B�C exp�−T2 /T�.

IV. RESULTS AND ANALYSIS

We now outline the relevant theoretical aspects, including
the important low-n interference effects �in both PR and PI�
and the high-n external electric field effects, that need to be
included in our calculations. Results are then shown in vari-

TABLE IV. Fitting coefficients Ei �K� and ci �cm3 s−1 K3/2� for
the Ti4+ ground state DR rate coefficient as given by Eq. �14�.
Uncertainties are determined as the maximum deviation between
fitted and computed rate coefficients over the temperature range
1.6	102–1.6	108 K and are enclosed in parentheses, where v�u�

��p�

denotes v�u�	10�p.

E1 E2 E3 E4

c1 c2 c3 c4 Config.

4.098�3�
�+5� 5.646�2�

�+5�

1.880�2�
�−3� 7.264�3�

�−2� 3s23p53dn�a

2.062�5�
�+4� 1.026�9�

�+5� 3.003�3�
�+5�

7.225�4�
�−5� 5.251�4�

�−4� 4.891�1�
�−3� 3s23p53d4�b

1.183�6�
�+1� 6.846�4�

�+1� 2.055�2�
�+2� 5.352�4�

�+2�

2.730�2�
�−7� 7.707�7�

�−7� 1.813�3�
�−6� 4.580�5�

�−6� 3s23p53d2

E5 E6 E7 E8

c5 c6 c7 c8 Config.

1.395�5�
�+3� 3.728�2�

�+3� 1.015�3�
�+4� 4.651�7�

�+4�

1.265�2�
�−5� 3.535�2�

�−5� 6.775�5�
�−5� 3.338�7�

�−4� 3s23p53d2

a5�n�1000, ��10.
b��3.

FIG. 3. �Color online� Field-free Maxwellian rate coefficients
for Ti4+; see Table IV. Red dashed curve, total DR due to 3p53dn�
resonances; grey dashed curve, total RR with �max=200.

FIG. 4. �Color online� Comparison of existing field-free
Maxwellian-averaged DR ground-level rate coefficients for Ti4+.
Red dashed curve, total DR due to 3p53dn� resonances; �a� black
open circles, field-influenced TSR experiment by Schippers et al.
�24�; �b� black dotted curve, compilation by Landini and Monsi-
gnori �86�; �c� black dash-dotted curve, empirical formula of Hahn
�85�; �d� black solid curve, recommended value by Mazzotta et al.
�88�; �e� black dashed curve, empirical results of Mewe et al. �91�.
A typical electron-collisional �66� and photoionized �97� plasma
temperature ranges for Ti4+ are also indicated.
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ous energy regions and compared to the experimental Ti4+

PR spectrum �24� and the Ti3+ PI spectrum �12�.

A. Low-energy region

Figure 5 enlarges a part of the experimental spectra in the
energy range 0–5.5 eV. Interpretation of experimental fea-
tures relies on current field-free computations of resonance
positions, strengths, and widths, as discussed in Sec. II D.
We begin with a detailed analysis of the resonance features
seen in Fig. 5, where all parameters given are from our
MCBP calculations, except where noted.

The spectrum below 1 eV is dominated by two broad
3p53d2�2F5/2,7/2

� � resonances, with convoluted contributions
at resonance that are about ten times the background RR
contribution �see Fig. 3�. A group of five 3p53d4s resonances
is also determined to exist between 1 and 1.5 eV, but only
the two 2P1/2,3/2

� states are strong enough to be seen on this
scale. It is interesting to note, in Figs. 5 and 7, that the
experimental rate coefficient exhibits a narrow peak at
1.213 eV, precisely where our calculations predict the exis-
tence of a weak 3p53d4s�4P5/2

� � resonance.
A further analysis of this near-threshold region below

�1.5 eV is given in Sec. IV A 1 since there we need to con-
sider interference effects. We proceed with our lowest-order
MCBP description of the two 3p53d4s�2F7/2,5/2

� � resonances
located at 2.768 and 3.037 eV. These positions are in good
agreement with the experimental VSS values of 2.772 and
3.063 eV, but about 0.4 eV lower than the theoretical CIV3
positions �14�. For the 3p53d4s�2F7/2

� � resonance, our total

width �̄d=151 meV is essentially due to autoionization
Ad→c

a �Ad→b
r , and the integrated strength Sd as given in Eq.

�4� is therefore dependant only on the dominant radiative rate
Ad→b2

r =1.5 ns−1. This is about six times smaller than the ex-

perimental TSR value inferred from the peak height in Fig. 5,
and about 2.7 times smaller than the experimental VSS
value. A similar conclusion is reached for the nearby
3p53d4s�2F5/2

� � resonance, having a total width of 90 meV.
These resonances are members of a weak Rydberg series
converging to the 3p53d�3FJ

�� limits, as illustrated in Fig. 9,
and failure to reproduce accurately the resonance strengths is
the consequence of a trade-off introduced during orbital op-
timization on the dominant ionic core excitation 3p6�1S0�
→3p53d�1P1

� �, as discussed in Sec. II D.
The most prominent features seen in Fig. 5 are the two

3p53d2�2D5/2,3/2
� � resonances at 4.272 and 4.310 eV, respec-

tively; these are within 225 meV of the experimental VSS
value �13�. The total integrated strength of the 3p53d2�2D5/2

� �
resonance obtained in this work is Sd�2.1 Mb eV2 and pre-
dominantly comes from radiative decay into the state b2.
This is because the autoionization in Eq. �4� dominates �Aa

=1367.5 ns−1�Ar=149.6 ns−1�, and thus Sd�Ar. The ex-
perimental VSS value of Ar=163.6 ns−1 �13� is 9% higher
and cannot be entirely due to the difference in transition
energies.

The 3p53d2�2D3/2
� � resonance, on the other hand, has an

autoionization rate of Aa=101.5 ns−1, which is comparable to
its radiative decay rate Ar=119.8 ns−1 into the ground state,
and it is in good agreement with the experimental VSS value
Ar=128.5 ns−1 �13�. Thus its overall integrated strength is
Sd�0.6 Mb eV2. This is an example of how strong an influ-
ence the branching ratio for radiative decay in Eq. �4� may
have on the DR resonance strengths; even though the domi-
nant radiative transition rates are within 10% of the experi-
mental VSS values �13�, the total experimental TSR strength
of the 2D� composite peak in Fig. 5 appears to be 2.3 times
weaker than the calculated strength.

For the 3p53d2�2P3/2
� � resonance at 4.401 eV, our com-

puted total integrated strength of Sd�0.66 Mb eV2 is about
30% lower than the experimental TSR value. However, its
position agrees well with the experimental VSS value of
4.391 eV �13�. This resonance radiatively decays into b1 and
b2 bound states with rates of 21.1 and 51.4 ns−1, respectively,
and autoionizes at a rate of 774.5 ns−1, implying that the
integrated strength depends mostly on the radiative decay
rates that are, in this case, about half the VSS value. Further-
more, our autoionization width of 0.5 meV is much smaller
than the VSS value of 9.9 meV.

The last resonance from 3p53d2 configuration is identified
in Fig. 5 as 2P1/2

� with position 4.512 eV, total width
1.2 meV, and integrated strength 0.446 Mb eV2 matching the
TSR experiment very well. However, the VSS experimental
position is somewhat lower at 4.266 eV, the VSS radiative
rate into b1 is 51% larger �143 ns−1�, and the VSS autoion-
izing width of 16.1 meV exceeds our computed value of
1.17 meV. At 4.591 eV, the 3p53d4s�2D5/2

� � resonance is too
weak to be of any significance to the present analysis. The
stronger 3p53d4s�2D3/2

� � resonance parameters show good
agreement between the theoretical and TSR experimental
values; both agree in position ��4.77 eV�, total width
��0.7 meV�, and integrated strength ��0.25 Mb eV2�. The
dominant radiative rates are 15.3 and 10.8 ns−1 into b1 and b2
bound states, respectively, and the autoionization rate is Aa

=1060.7 ns−1.

FIG. 5. �Color online� Overview of Ti4+ rate coefficient spectra
for low collisional c.m. energies. The color code used for these
field-free calculations are as follows: red bars, position indicators
for 3p53d2 resonances; yellow bars, position indicators for 3p53d4s
resonances; blue curve, total DR rate coefficient obtained in the
present work; white area, TSR experiment �24�.
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We conclude our analysis of the low energy region with
the 3p53d4s�2F5/2,7/2

� � resonances at 5.046 eV. Both reso-
nances have comparable autoionization rates, 0.11 and
0.13 fs−1, but most of the integrated strength �Sd

=0.11 Mb eV2� derives from radiative decay of the 2F5/2
�

resonance into the bound state b2 at a rate of Ar=7.3 ns−1.
The 2F5/2

� experimental VSS resonance is reported at 5.0 eV,
well separated from the 2F7/2

� resonance at 5.1 eV, and has an
autoionization width that is 0.8 times our MCBP value and a
radiative width that is 2.8 times our MCBP value.

1. Near-threshold photorecombination

We now investigate the lowest 3p6 threshold region
��→0, see Fig. 6�, where we are primarily interested in com-
parisons between detailed theoretical and experimental reso-
nance profiles in order to quantify further resonance interfer-
ence effects. We evaluated our higher-order PR expression in
Eq. �12� using the computed resonance parameters shown in
Table V for the most important near-threshold resonances.
Since the PR cross section �PR��� has a 1 /� type depen-
dence, we focus instead on the scaled quantity ��PR���, see
Eq. �12�, in order to factor out the threshold divergence.

A comparison between lowest-order and higher-order the-
oretical results and experimentally inferred results for the
scaled PR cross section are given in Fig. 7. Strong
resonance-background interference effects are clearly seen.
Inclusion of the �finite� asymmetry parameters from Table V
leads to asymmetric 2F� resonances as opposed to the IP-
IRDW symmetric Lorentzian profiles.

We note that Eq. �12� could be used as a fitting function
with optimized resonance profile parameters to reproduce the
deconvoluted TSR experimental results �24�. However, we
choose instead to use our same computed atomic data for the
purpose of comparison with high-resolution synchrotron fa-
cility photoionization measurements �12�. As is demon-
strated, there is a much better level of agreement between

computed and measured resonance profiles, indicating an in-
consistency between the theoretically deconvoluted experi-
mental PR spectra and the direct PI measurements.

2. Near-threshold photoionization

Using Eqs. �9�–�12�, and the principle of detailed balance,

�b→c
PI =

2gion

gb�2�b→c
2 ��c→b

PR , �15�

photoionization results are easily and accurately computed.
This is helpful for studying further the near threshold reso-
nance region because recent synchrotron radiation measure-
ments have also been performed for Ti3+ �12�.

The comparison of Fig. 8 leads to the conclusion that the
degree of interference effects in the theoretical PI spectrum
of Ti3+ have been indirectly confirmed experimentally
through ALS studies.

The inset in Fig. 8 reveals the details about the underlying
photoabsorption transitions in the composite PI pattern. Con-
trary to the fractional metastable abundance inferred from
ALS studies �12�, we use the statistical values of
3p63d�2D3/2� and metastable 3p63d�2D5/2� abundances of
�3/2=4 /10 and �5/2=6 /10. The experimental values reported
were instead �3/2=0.45�2� and �5/2=0.55�2� �12�. In addi-
tion, to account for the finite experimental photon energy
resolution, the theoretical cross sections shown in Fig. 8
were convoluted with energy-dependent FWHM Gaussians
spanning �20–80 eV �12�.

As a further investigation into these strong asymmetry
effects, we performed independent, nonperturbative calcula-

TABLE V. The comparison of partial autoionization rates Ad→c
a

and asymmetry parameters Qc→b
d for selected near-threshold reso-

nances formed in Ti3+ that are relevant for investigation of interfer-
ence effects. Numbers in brackets are experimental uncertainties,
where available.

Transition Label Ad→c
a �fs−1� Label Qc→b

d

3p53d2�2F5/2
� � d1→c 2.55a

c→
d1

b1
6.16a

↘3p6�f�2F5/2
� � 2.19b 1.42�6�c

c→
d1

b2
−5.51a

3p53d2�2F7/2
� � d2→c 2.54a

↘3p6�f�2F7/2
� � 2.28�15�d,e 1.82�18�e,f

c→
d2

b2
6.16a

3p53d4s�2P1/2
� � d3→c 0.056a

c→
d3

b1
232a

↘3p6�p�2P1/2
� � 0.060�3�c

3p53d4s�2P3/2
� � d4→c 0.052a

c→
d4

b1
261a

↘3p6�p�2P3/2
� � 0.079�3�c

c→
d4

b2
247a

aPresent MCBP calculations using a 360-level nonorthogonal basis
expansion from Ti3+ ground state.
bVSS experiment �10�.
cVSS experiment �Table 1 of Ref. �13��.
dALS PI experiment �12�.
eFit of unresolved experimental resonances.
fTSR PR experiment �24�.
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FIG. 6. �Color online� Dominant part of the Ti4+ rate coefficient
spectra consisting of near-threshold states: white area, TSR experi-
ment �24�; solid curves, contributions coming from 3p53d2 �cyan�
and 3p53d4s �blue� resonances; grey dotted curve, nonresonant RR
contribution.
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tions using the well-established R-matrix method �98,99� that
incorporates interference effects and has been improved
upon by including various types of radiation damping
�100–102�. This approach was used together with our present
higher-order perturbative method to predict the strong asym-
metry in the 3p53d2 resonances in photorecombination of
Sc3+ �46�. However, as in that study, convergence of atomic
structure in the present study, most notably the near-
threshold resonance positions, was not achieved due to the
orthogonal-basis restriction of this particular R-matrix imple-
mentation. Nevertheless, our resultant PR or PI resonance
profiles, while having resonance positions well above thresh-
old ��1.0–1.2 eV�, and therefore contributing fully to the
cross section, still exhibited the same overall good asymme-
try agreement with the experimental and/or theoretical re-
sults shown in Fig. 8. While we could proceed to increase the
orbital and/or configuration basis so as to bring our
orthogonal-basis atomic structure calculations to conver-
gence, we have learned that recent R-matrix calculations for
photoionization of Sc2+ and Ti3+ �103,104� are well under-
way toward achieving convergence.

B. Intermediate-energy region

Interpretation of the complex experimental TSR spectra
above 5.5 eV requires consideration of multiple, overlapping
Rydberg series of resonances, as illustrated in Fig. 9. For
brevity, we focus on the most prominent and unambiguous
resonant features. The four 3p53d4s�2D3/2,5/2

� � and
3p53d4s�2P3/2,1/2

� � resonances give two prominent peaks at
5.8 and 15.4 eV, respectively. The strongest is the
3p53d2�2P3/2

� � resonance at 15.379 eV, with total integrated
strength of Sd=1.71 Mb eV2 and total width of 146 meV. In
between are 60 3p53d4p states, and the 3p53d4d members
with the strongest 2D5/2,3/2

� resonances at 20.507 eV.

Five additional 3p53d4p resonances are found at around
the 20 eV region: 2P1/2,3/2 at 21.23 eV, 2D3/2,5/2 at 21.65 eV,
and 2S1/2 at 22.09 eV.

The triple-peak structure at 24.3 eV and the peak at
35.08 eV are due to the 3p53d4f resonances, and the stron-
gest radiative decay of the two 2G7/2,9/2 resonances at
35.08 eV states is to the 3p64f�2F5/2,7/2

� � bound states at rates
of 110.8 and 121.1 ns−1, respectively. In between are three
composite peaks of 3p53d4d resonances: 2F5/2,7/2

� at 29.8 eV,
2P1/2,3/2

� at 31.9 eV, and 2D5/2,3/2
� at 33.7 eV. It is in this

region that different Rydberg series start to overlap. For ex-
ample, nine 3p53d�1P1

� �n� resonances with n=5 overlap with
three relatively strong peaks at 32.3 and 37.8 eV that are due
to the 3p53d5s �2P1/2,3/2

� � and 3p53d5d �2F5/2,7/2
� � resonances,

whereas the total integrated strength of the peak found at
34.6 eV is due to roughly equal contributions from the
3p53d5p �2P1/2,3/2, 2D3/2,5/2, and 2S1/2� resonances.

It is seen in Fig. 9 that our computed rate coefficient
spectrum agrees reasonably well with the TSR measurements
�24�, and equally well with the stronger resonances from the
VSS measurements �13�. On the other hand, for certain col-
lision energies, the computed resonant strength may differ
from experimental findings by as much as a factor of 2. Such
a discrepancy was discussed earlier in Sec. IV A where the
3p53d2 �2D5/2

� � resonance at 4.272 eV had roughly twice the
strength. A second large discrepancy is found at 29.8 eV,
where the combined strength of the dominant 3p53d4d
�2F5/2,7/2

� � resonances constitutes only one third of the mea-
sured strength. Including nearby overlapping resonances re-
duces this difference to a factor of 1

2 . Another example of

FIG. 7. �Color online� Demonstration of interference effects
found in the near-threshold region of PR spectra of Ti4+: black
points, deconvoluted TSR of Schippers et al. �24�; red dashed
curve, lowest-order perturbation method result of Eq. �3�, and blue
solid curve as its next-highest order modification in the form of Eq.
�12� containing interference effects.

FIG. 8. �Color online� Comparison between computed and ex-
perimental PI cross sections for Ti3+. Gray points with error bars,
merged photon-ion beams experiment of Schippers et al. �12�; the-
oretical PI cross sections computed via Eq. �15�: red dashed curve,
IPIRDW using Eq. �3�; blue solid curve, using Eq. �12� including
interference effects. The inset identifies the structure of the compos-
ite blue solid curve, where the heights of certain resonances have
been modified only to conform visually to the rest of the curves.
The energy scale is given relative to the first ionization threshold
Eth

�1�=43.267 eV.
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computed resonance strengths being weaker than experimen-
tally observed ones is seen in the vicinity of the
3p53d�3P0,1,2

� � thresholds. This discrepancy could be attrib-
uted to too small a value �4.85 �s−1� for the 3p53d �3P1

� �
→3p6 �1S0� radiative rate, despite reasonable agreement with
other computed and experimental data �68� as shown in
Table II.

C. Dominant Rydberg series Region

Most of the measured DR strength in Fig. 10 is found in
the energy region 42–50 eV and is due to resonance series
associated with the dominant

e− + 3p6�1S0� → 3p53d�1P1
� �n� → 3p6n�

dipole-allowed core excitation. Here these higher-lying n
members are affected by motional electric fields inside the
storage-ring bending magnets, as discussed in Sec. IV C 1.

It is important to emphasize that the computed field-free
DR rate coefficient in Fig. 10 is on average 35% higher than
the experimental rate coefficient in the 42–48 eV range, and
about four times larger at the peak height at 49 eV. This
discrepancy is mostly removed by inclusion of the subtle
field ionization of loosely bound Rydberg states in the re-
combined Ti3+ ion. Specifically, good agreement with the
experiment is achieved through a modeling of the theoretical
curve by modifying the field-free cross section by the com-
puted survival probability. Modeling of the survival probabil-
ity of the 3p6n� recombined states, due to the possibility of
field ionization, is now described.

1. External field effects

It is a common assumption in Eq. �1� that, upon the
completion of the two-step DR process, the newly formed

Rydberg states Ti3+*�3p6n�� will radiatively decay into en-
ergetically lower states before these recombined ions enter
the charge-state-analyzing dipole �CSAD� magnet. This as-
sumption is valid only for Rydberg states having radiative
cascading lifetimes less than a flight time � f =422 ns �24�.
Field-ionization effects in the CSAD magnet strongly depend
on the atomic properties of Rydberg states in the presence of

a motional electric field F� . Taking into account radiative
decay of Rydberg states during a flight time � f, it was sug-
gested that the survival probability P�n� should be a simple
step function �24�:

P�n� = �1 n � ncut = 30

0 n 
 ncut = 30
� .

This is based on the semiclassical approximation that the
maximum height of the total potential V�r�=−Z /r
−Fr cos � on the downhill region �=0 defines the cutoff
principle quantum number ncut:

Vmax = − 2�ZF = − Z2/2ncut
2 .

However, in order to reproduce the actual TSR spectra, a
nonzero survival probability for n�200 states had to be al-
lowed. Based on the maximum magnetic rigidity �1.5 Tm� of
the TSR CSAD magnets and the imposed limit of
600 keV /amu on the energy of the Ti4+ beam �24�, we can
expect the maximum field strength in the CSAD magnet to
be Fmax�3.2	10−6 a.u. Based on these experimental find-
ings, we now describe the basic modeling of field ionization
effects.

Depending on the strength of the external motional elec-
tric field F, hydrogenic levels split into upshifted �n1
n2�
and downshifted �n2
n1� sublevels that correspond to blue
and red Stark states, respectively, each with energy
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FIG. 9. �Color online� Overview of Ti4+ rate coefficient spectra
for intermediate energies containing Rydberg series of resonances
converging to 3p53d core excitation thresholds. Color codes used
for the field-free results are as follows: cyan, n=3; blue, n=4; red,
n=5; green, n=6; yellow, n=7; gray, n�8; white area, TSR experi-
ment �24�.

FIG. 10. �Color online� Ti4+ rate coefficient, consisting of the
dominant Rydberg states converging to 3p53d�1P1

o� limit: gray area,
experiment �24�; blue curve, field-free MCBP results; dashed red
curve, results incorporating motional field effects via a perturbed
hydrogenic approximation, and only considering single radiative
transitions; solid red curve, results also including full radiative
cascade.
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E�n1 ,n2 , 
m
 ;�� and width ��n1 ,n2 , 
m
 ;�� described by para-
bolic quantum numbers n1, n2 and the absolute value of the
magnetic quantum number m �62�. Additional dependence on
external field strength is usually introduced through the pa-
rameter �=n3F /4Z*

3 , where n=n1+n2+ 
m
+1 is the princi-
pal quantum number and Z* is the effective nuclear charge.
The bound portion of the electronic wave functions in the
presence of an external field is described by a good quantum
number n1, and, for energies well below the classical ioniza-
tion limit, Vmax, also by the quantum number n2. However,
for energies just below Vmax, the eigenspectrum contains
resonances with tunneling ionization rates that vary rapidly
with n2 �105�, so that blue Stark states require stronger fields
for ionization than red Stark states.

In contrast to hydrogenic systems, the field-free problem
of hydrogenlike ions is not separable in parabolic coordi-
nates due to the finite ionic core giving a non-Coulombic
potential inside the ionic-core charge cloud �equivalently, the
quantum defect is nonzero, see Ref. �106�, p. 87�. Conse-
quently, n1 is only an approximate quantum number and the
zero-field energies correspond to spin-orbit coupled n�sjmj
eigenstates. Bound states of high n1, with low autoionization
rates that are exponentially dependent on the field strength,
become coupled to lower-n resonances above the Stark-split
continua �see Ref. �106�, Fig. 6.18�, acquiring much stronger
autoionization rates. In addition, within each symmetry block
mj, the interaction among high n1 states at avoided crossings
will result in a redistribution of autoionization rates �107�.

The evolution of Ti3+*�3p6n�� Rydberg states in the
present work is analyzed with the help of Stark maps, con-
structed for every symmetry block mj by means of the com-
plex resonance spectrum, E�n1 ,n2 ;��− ı��n1 ,n2 ;�� /2. The
imaginary part of the complex resonance energy is used to
infer the survival probability P�n ,F� of the Rydberg mani-
fold n for a given external field strength F. Our approach in
computing the average survival probabilities P�n� is based
on the method introduced for DR of Mg+ �108�, and previ-
ously used for DR of Be+ ions �109�, with several modifica-
tions. First, the hydrogenic field-ionization lifetimes
��n1 ,n2 ,m ;F� of Damburg and Kolosov �110� are replaced
by the values of Hoe et al. �111� that give field-ionization
rates ���� in terms of the energies E��� of hydrogenic Stark
levels and are more accurate for high-n manifolds. Second,
computation of the Stark maps is based on direct diagonal-
ization of the energy matrix

Hnn��F� = �n,n�En
0 + �n�
F� · r�
n� , �16�

where the zero-field energies En
0 are the MCBP eigenenergies

described in Sec. II B. We use our values to determine the
state-resolved effective nuclear charges Z* that enter into the
screened hydrogenic wave functions 
n� used to represent the
n�200 potassiumlike Ti3+*�3p6n�� states.

In the evaluation of the field-dependent perturbation ma-
trix elements in Eq. �16�, for increasing field strengths in
steps of 160 V /cm up to Fmax, we have used the closed-form
results of Ref. �112�. Each energy level in the generated
Stark maps is traced through numerous �avoided� crossings
to the classical ionization limit Vsp, which is valid for hydro-

genic Stark states belonging to m=0 symmetry �see Ref.
�106�, p. 83�. Hydrogenic Stark states of m�0 symmetry
have the first ionization threshold at slightly higher energies
�113�, as recently discussed by Menéndez et al. for potas-
sium atoms �114�. This small increase of the classical ioniza-
tion limit will result in nonvanishing survival probabilities,
P�n ,Fmax�
0, even for n�34 manifolds.

In the experimental environment, the behavior of P�n�, as
it varies from unity for low n to zero for high n, depends on
the population distribution of Ti3+*�3p6n�� states at the mo-
ment they enter the CSAD magnet. In order to compare our
field-free computed results to the experimental results, we
scaled our computed results according to

�field��� = 	
n

P�n��n
field-free��� . �17�

Our field-free MCBP calculations for the radiative transition
rates of high-n Rydberg states indicate that the dominant
n�→n��� radiative decay path involves the �=n−1 and ��
=n�−1=n−2 states. The field-free relaxation times �min
along this path can be summarized in the following form:

�min�ns� � ��0.548/Z*�4n5 single transition

�0.358/Z*�4n6 full cascade,
� �18�

which in turn implies that during the flight time � f only n
�14 Rydberg states will cascade to the ground state before
entering the CSAD magnet. It is important to note that before
reaching the CSAD magnet, the recombined ions pass
through �i� the toroidal magnet used for deflecting the elec-
tron beam out of the ion’s beam path, �ii� the correction
dipole magnet, and �iii� the focusing �quadrupole� magnets.
As a result, due to intramanifold �same n, different �� field-
induced level mixing, we can expect a considerable reduc-
tion in radiative lifetimes of the majority of high-� states
within the n
45 manifolds, and a significant shortening of
their stabilization times before entering the CSAD magnet.
Such field-induced radiative decay �known as “delayed cut-
off”� is responsible for a small but nonzero contribution of
high-n DR resonances far beyond the “hard cutoff” nmax
�24�, and has been previously observed as well �see, for ex-
ample, Refs. �115–117��. Modeling of the delayed cutoff is
beyond the scope of the present work as it requires detailed
knowledge of the experimental setup �118�; here we instead
assume that the average survival probability P�n� of 50�n
�200 manifolds is 0.16, where we adopted 1:3:39 ratios for
the magnetic flux densities in toroid, correction, and CSAD
magnets, respectively �109�.

So far we have exploited the fact that potassiumlike
Ti3+*�3p6n�� Rydberg states can be represented sensibly
within an independent-particle approximation. However,
since the first classification of “an extraneous 2F5/2

� level” of
the 3p53d2 configuration by Swensson and Edlén �7�, the
atomic structure of Ti3+ has received considerable experi-
mental and theoretical attention, due in large part to the ex-
istence of 39 bound and six autoionizing Ti3+**�3p53d2�
doubly excited, strong �3p→3d core transition� resonances.

In our MCBP calculations, the strongest zero-field pertur-
bation of Rydberg series converging to the first ionization
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limit is the appreciable mixing of the 3p6nf�2F�� and
3p53d2�2F�� states �see also Ref. �14�, p. 2219�. For example,
the admixture of the 3p53d2 bound-levels peaks at 22% and
8% for the two 3p65f states, respectively. Although less than
1% for 3p6nfn�6 states, even weak mixing leads to an en-
hanced autoionization rate due to the much larger 3p53d2

autoionization transition matrix element. Thus the motional
electric field in the CSAD magnet may give rise to a so
called “forced autoionization” phenomenon �see Ref. �106�,
p. 461, and Fig. 11�.

For the present case, all n�34 Rydberg manifolds will
open up directly to Stark induced continua and, more impor-
tantly, will undergo forced autoionization through coupling
with the 3p53d2�2F5/2,7/2

� � resonances. Our computed
“forced” autoionization rates �in ns−1� for 3p6n� states,
where n� �Z*

3 /16F�1/4, are as follows:

Aa ��
2S: 4.91�3�

�+5�n−3; 2P�:1.21�1�
�+6�n−3

2F5/2
� : 1.50�5�

�+7�n−3/2; 2D:1.78�1�
�+7�n−3

2F7/2
� : 1.74�5�

�+8�n−5/2; 2G:1.7�1�
�+4�n−3

else: 0; 2H�:8.5�1�
�+0�n−3

� �19�

with numbers in parentheses and square brackets being fit-
ting uncertainties and powers of ten, respectfully.

The departure of autoionization rates in Eq. �19� from n−3

scaling for the 3p6nf levels stems from small admixtures of
the 3p53d2�2F5/2,7/2

� � levels, which can be expressed for all
n� �Z*

3 /16F�1/4 Rydberg manifolds as


�3p6nf 
d1,2�
2 � �d1:2.6�1�n−3/2

d2:30�1�n−5/2 � . �20�

Through intermanifold mixing induced by the external field
F, we can also expect n�34 Rydberg manifolds to inherit
the weak autoionizing character especially in the vicinity of

perturbing 3p53d2�2F�� bound states. In order to assess quali-
tatively the spread of Stark induced autoionization rates in
each symmetry block mj, we use a complex scaling approach
in evaluating the field-dependent perturbation term in Eq.
�16�.

The complex scaling technique has been extensively used
to treat resonant phenomena in atomic and molecular physics
�119� and chemistry, as reviewed by Moiseyev �120�. Its
novel implementations are found in diverse fields, such as
investigation of the properties of shallow quantum wells in
the regime of strong quantum confinement �121�, or evalua-
tion of leaky modes for various resonating structures in wave
guides �122�. The mathematical foundation of complex scal-
ing, within the theory of dilatation analyticity for Coulombic
systems, has been described by Combes and co-workers
�123,124� and by Simon �125�, the main result being that,
under the interior scaling transformation r→r exp�ı��,
bound states of the original �real� Hamiltonian remain unaf-
fected while the continuous spectrum rotates in the complex
plane. This rotation reveals so-called “hidden” complex ei-
genvalues of the transformed Hamiltonian that are stabilized
with respect to changes in the transformation parameter �.

Extension of the complex scaling method to Stark systems
�126–129�, where the potential does not vanish at infinity, is
applicable only for ��� /3, which limits not only the reso-
nance widths and positions but also the strength F of electric
fields that can be treated by this method. Our modeling of the
joint evolution of the 3p53d2 states and the n�50 Rydberg
states in weak fields ���0.002� relies on direct diagonaliza-
tion of the Hamiltonian in Eq. �16� in its complex-scaled
form,

Hnn��F;�� = �n,n�En
0 + �n���� 
F� · r�
n���� , �21�

using the following approximations. First, all 3p6n� and
3p53d2 states were represented by screened, complex-rotated
hydrogenic wave functions 
n����. Second, the �field-
dependent� imaginary part of the diagonal elements of the
perturbation matrix were replaced by values found in Eq.
�19� and Table V, since the two near-threshold
3p53d2�2F5/2,7/2

� � resonances are too broad to satisfy the re-
quirement ��� /3. Third, stationarity of the �complex� ei-
genvalues has been confirmed for several values �5°, 10°,
and 15°� of the transformation parameter �.

Interpreting the imaginary part of the complex eigenval-
ues as the “forced” autoionization rates, we compute the av-
erage survival probabilities P�n� of the 3p6n� states in the
CSAD magnet. The dwell time of the Ti3+*�3p6n�� Rydberg
states in the CSAD magnet is taken to be 100 ns with an
average slew rate of 292	109 V /cm s.

Our computed survival probabilities, at various levels of
sophistication, are shown in Fig. 12, as well as the inferred
probability. A comparison between results with and without
the inclusion of the 3p53d2 perturbers indicates that a signifi-
cant modification of survival probability exists for principal
quantum number as low as n=6. While we have reproduced
theoretically the qualitative feature of the inferred survival
probability, there is quantitative disagreement that we assess
to be due to additional experimental environmental condi-
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FIG. 11. �Color online� Partial PR contributions using Eq. �12�
and continued below threshold, showing the overlap of the
3p53d2�2F� resonances with the 3p6n� recombined Rydberg states,
giving rise to “forced autoionization.”
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tions not taken into account here and/or inaccuracies due to
our hydrogenic approximation. Nevertheless, the general be-
havior of either probability curve indicates that field ioniza-
tion effects are prominent throughout the Rydberg series, and
furthermore, that forced autoionization due to 3p53d2 per-
turber states is important.

V. SUMMARY AND CONCLUSION

In our study of argonlike Ti4+ PR, we have found that the
broad, highly correlated, threshold-straddling, asymmetric
3p53d2�2F5/2,7/2

� � resonances play a distinct role. At low
incident-electron energies, the threshold PR behavior is

dominated by those two resonances that only contribute par-
tially to the total Maxwellian rate coefficient, due to their
straddling of threshold. Further, there is noticeable asymme-
try in the resulting resonance profile that can be observed
experimentally at TSR via PR measurements and at ALS via
PI measurements. Theoretical modeling of the resultant Fano
profile was performed including higher-order resonant-direct
�DR/RR� interference effects, and was found to quantify the
asymmetry behavior, in good agreement with ALS PI results.

At higher incident-electron energies, as the excited thresh-
olds give rise to the dominant 3p53dn� Rydberg series of
resonances, we find that the recombined series 3p6n� are
strongly perturbed by the below-threshold tail of those same
3p53d2�2F�� states. This leads to forced autoionization and a
reduction in the experimentally observed DR strength. The
reduction factor is the survival probability of recombined
Rydberg states against reionization due to field effects and
can be modeled qualitatively by a hydrogenic, perturbed Ry-
dberg series approach.

In conclusion, we find that higher-order correlation, inter-
ference effects for broad resonances, and field ionization ef-
fects, in order to reproduce observation, need to be consid-
ered for a proper treatment of PR in argonlike Ti4+. We have
performed similar calculations for computing the PR rate
coefficients for the remainder of the argonlike isoelectronic
sequence, and will be presenting this astrophysically impor-
tant data in future publications.
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