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Two path integral representations for the T matrix in nonrelativistic potential scattering are derived and
proved to produce the complete Born series when expanded to all orders. They are obtained with the help of
“phantom” degrees of freedom which take away explicit phases that diverge for asymptotic times. In addition,
energy conservation is enforced by imposing a Faddeev-Popov-like constraint in the velocity path integral.
These expressions may be useful for attempts to evaluate the path integral in real time and for alternative
multiple scattering expansions. Standard eikonal-type high-energy approximations and systematic expansions
immediately follow.
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I. INTRODUCTION

Nonrelativistic quantum mechanical scattering in a local
potential is usually described in the framework of time-
dependent or time-independent solutions of the Schrödinger
equation �see, for example, Ref. �1��. Path-integral methods
in quantum mechanics, on the other hand, are mostly applied
to the discrete spectrum, e.g., for harmonic �2� or anhar-
monic oscillators, in particular for evaluating the energy
splitting in the double-well potential �3�. In contrast, the tran-
sition matrix for the continuous spectrum is rarely repre-
sented as path integral. Even if available, many representa-
tions turn out to be rather formal, e.g., requiring infinitely
many differentiations �4,5� or infinite time limits to be per-
formed �6,7�. This is not only impractible but also unfortu-
nate since a convenient path integral representation may lead
to new approximations and may be extended readily to the
many-body problem or quantum field theory.

Also the long-standing problem how to evaluate real-time
path integrals by stochastic methods needs a suitable path
integral representation as starting method. There has been
significant progress in dealing with real-time path integrals
for dissipative systems �8� and with coherent-state path inte-
grals for autocorrelation functions �9� but in closed systems
and infinite scattering times only zero-energy scattering
seems to be tractable by Euclidean Monte Carlo methods
�10� at present �for other attempts, see Refs. �11,12��.
Medium- and high-energy many-body scattering has to rely
on multiple scattering expansions apart from the very re-
stricted few-body cases where exact quantum mechanical
calculations are possible �13�.

One of the most simple and versatile multiple scattering
versions—Glauber’s approach—is based on the time-
honored eikonal approximation where the particle is assumed
to travel along a straight-line trajectory. This restricts the
application usually to high-energy, forward scattering. For
potential scattering systematic improvements to this approxi-
mation have been worked out long ago �14,15� but even at
high energies the convergence of these expansions is unsat-
isfactory for some classes of potentials. There are numerous

other studies which try to extend the range of validity of the
eikonal approximation �see, e.g., Ref. �16��. Clearly a path
integral representation for the T matrix which naturally gives
rise to these high-energy approximations would be useful
both for the analytical and �perhaps� for the numerical prob-
lems mentioned above.

As one of the merits of a path integral approach is its
direct extension to field theory one may also expect applica-
tions in the relativistic domain where the usual procedure for
an eikonal approximation consists of simplifying individual
diagrams and resumming them �17�.

In the present work we will derive a path-integral repre-
sentation of the T matrix in potential scattering which is
similar to the one given by Campbell et al. �18� many years
ago �see also Refs. �19,20��. However, ours is not a phase-
space path integral as developed there but a particular path
integral over velocities which is a significant reduction in
complexity. The most obvious application is at high energy
where a new sequence of high-energy approximations imme-
diately follows. However, the main aim of the present work
is not to give another high-energy approximation but to dem-
onstrate that path integral methods lead to new, conceptually
�albeit not technically� simple results which may be extended
to the many-body case.

Preliminary results have already been presented elsewhere
�21� and a �slightly different� account is included in a text-
book on path integrals �22�. These previous attempts suffered
from ambiguities in the limit of large scattering times where
energy conservation and the elimination of “dangerous”
phases from the S matrix have to be achieved. In particular,
the order in which these procedures were taken seemed to
give many, at first sight equivalent formulations which how-
ever did not stand up to further scrutinity. In the present,
detailed account we first eliminate these phases by introduc-
ing “phantom” degrees of freedom �dynamical variables with
the wrong-sign kinetic term� and then isolate the variables
whose large-time behavior gives rise to energy conservation
by a suitable insertion of unity into the path integral. This is
the classical Faddeev-Popov trick which first was utilized by
Campbell et al. for path-integral descriptions of potential
scattering. The resulting path-integral representation of the T
matrix is shown to be valid by explicitly working out the
Born series to arbitrary order. We give two versions of this
path-integral representation corresponding to different refer-*roland.rosenfelder@psi.ch
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ence paths �straight-line or eikonal and “ray”� about which
the quantum fluctuations have to evaluated.

This paper is organized as follows. In Sec. II we introduce
velocity path integrals which are particularly suited for our
purposes. Sections III and IV describe how “phantom” de-
grees of freedom naturally arise and the implementation of
our particular Faddeev-Popov constraint. The “ray” represen-
tation is developed in Sec. V and systematic high-energy
expansions are worked out in Sec. VI. These are tested nu-
merically for scattering from a Gaussian potential in Sec. VII
followed by our conclusions and outlook. More technical
details can be found in three appendixes.

II. VELOCITY PATH INTEGRALS FOR THE S MATRIX

Consider nonrelativistic scattering in a local potential
V�r� which vanishes asymptotically so that the correspond-
ing Hamiltonian �also� has a continuous spectrum. The initial
momentum of the particle with mass m is ki ��=1� and the
final momentum k f. Our scattering states are normalized ac-
cording to �� f ��i�= �2��3��3��k f −ki�. Time-dependent scat-
tering is formulated in the interaction picture �1� in which the
free propagation has been removed. The S matrix is then just
the matrix element of the time-evolution operator in the in-
teraction picture

ÛI�tb,ta� = eiĤ0tbÛ�tb,ta�e−iĤ0ta, Û�tb,ta� = exp�− iĤ�tb − ta��
�1�

taken between scattering states and evaluated at asymptotic
times

Si→f = lim
T→�

�� f�ÛI�T,− T���i�

= lim
T→�

ei�Ei+Ef�T�� f�Û�T,− T���i�

¬ �2��3��3��ki − k f� − 2�i��Ei − Ef�Ti→f . �2�

The second line defines the T matrix after the energy con-
serving � function has been factored out. Then Ei=ki

2 / �2m�
=k f

2 / �2m�=Ef =k2 / �2m��E is the common scattering en-
ergy.

To find a path integral representation of the T matrix we
start from the standard path integral expression for the matrix
element of the time-evolution operator U�xb , tb ;xa , ta�
��xb�exp�−iĤ�tb− ta���xa� �2� in which one integrates func-
tionally over all paths starting at xa at time ta and ending at
xb at time tb. As usual this is realized by dividing the time
difference into N intervals �= �tb− ta� /N and integrating over
all intermediate points xk ,k=1, . . .N−1 with the exponential
of i times the classical action as weight.

For our purposes it is, however, more convenient to inte-
grate functionally over velocities �20,23� which is achieved
by multiplying the time sliced path integral for U with the
following factor:

1 = 	
k=1

N 
 d3vk��xk − xk−1

�
− vk� . �3�

The xk integrations can then be performed which gives x j
=x0+�i=1

j v j, or in the continuous notation the trajectory
x�t�=xa+�0

t dt�v�t��. However, one � function remains and
we obtain

U�xb,tb;xa,ta� = lim
N→�

� �m

2�i
�3N/2
 d3v1 ¯ d3vN��3��xb − xa − �

j=1

N

v j�exp�i�
j=1

N �m

2
v j

2 − V�x j = xa + �
i=1

j

vi���
� N3�ta,tb� 
 D3v��3��xb − xa − 


ta

tb

dtv�t��exp�i

ta

tb

dt�m

2
v2�t� − V„x�t�…�� . �4�

Here the “measure” is given by D3v=	k
Nd3vk and the nor-

malization factor

N�ta,tb� ª �
 Dv exp�i

ta

tb

dt
m

2
v2�t���−1

�5�

ensures that the Gaussian integral gives unity as is evident
from the discrete form. Note that the functional integral over
v does not require any boundary conditions which are all
contained in the remaining � function. A more symmetrical
form for the argument of the potential is obtained by writing

x�t� =
xa + xb

2
+

1

2



ta

tb

dt� sgn�t − t��v�t�� , �6�

where sgn�x�=x / �x� is the sign function. We have ẋ�t�=v�t�
and the boundary conditions for the paths are fulfilled due to
the � function in Eq. �4�.

We now write Eq. �2� as

Si→f = lim
T→�

ei�Ei+Ef�T
 d3xd3ye−ikf·xU�x,T;y,− T�eiki·y

�7�

and insert the representation �4�. Using the coordinates r
= �x+y� /2, s=x−y we then obtain
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Si→f = lim
T→�

ei�Ei+Ef�T
 d3re−iq·rN3�T,− T�

�
 D3v exp�i

−T

+T

dt�m

2
v2�t� − K · v�t���

�exp�− i

−T

+T

dtV„r + xv�t�…� , �8�

since the relative coordinate s is fixed by the � function in
Eq. �4�. Here we have defined the momentum transfer and
the mean momentum by

q = k f − ki, K =
1

2
�ki + k f� . �9�

Furthermore,

xv�t� =
1

2



−T

+T

dt� sgn�t − t��v�t�� , �10�

where the subscript denotes the dependence on the variable
over which one is integrating functionally �24�. The shift
v�t�→v�t�+K /m eliminates the linear term in the exponent
of the functional integral �8�. Since



−T

+T

dt� sgn�t − t�� = 2t for t � �− T, + T� �11�

and

Ei + Ef −
K2

m
=

2ki
2 + 2k f

2 − �ki + k f�2

4m

=
�ki − k f�2

4m
=

q2

4m
�12�

we obtain

Si→f = lim
T→�

exp�i
q2

4m
T�

�
 d3re−iq·rN3�T,− T� 
 D3v exp�i

−T

+T

dt
m

2
v2�t��

�exp�− i

−T

+T

dtV�r +
K

m
t + xv�t��� . �13�

Note that Eq. �12� is valid without energy conservation
which has not been imposed �derived� yet. With no interac-
tion we obtain

Si→f
�0� = lim

T→�
exp�i

q2

4m
T��2��3��3��q� = �2��3��3��ki − k f�

�14�

and therefore we will consider

�S − 1�i→f = lim
T→�

exp�i
q2

4m
T� 
 d3re−iq·rN3�T,− T� 
 D3v exp�i


−T

+T

dt
m

2
v2�t���exp�− i


−T

+T

dtV�r +
K

m
t + xv�t��� − 1�

�15�

in the following. Since the potential vanishes at infinity Eq.
�15� is a well-defined integral.

III. ASYMPTOTIC TIMES: ELIMINATION OF
DANGEROUS PHASES

The path integral representation �15� is exact but suffers
in the present formulation from the explicit appearance of a
“dangerous phase” q2T / �4m� proportional to T, in the first
exponential of Eq. �15�. It can be checked, of course, that
this phase cancels in each order of perturbation theory so that
the limit T→� can indeed be performed but one would like
to have a formulation where this phase does not appear at all.
This can be achieved by recognizing that each power of q2

arises from applying the three-dimensional Laplacian −� to
the factor exp�−iq ·r� in the integral over r. An integration
by parts then lets it act on the potential term �25�. In order to
reduce it to a shift operator one may “undo the square,” for
example by a three-dimensional path integral

exp�−
i

4m
T�� = N*3�T,− T� 
 D3w

�exp�− i

−T

+T

dt
m

2
w2�t� 	 


−T

+T

dt
1

2
f�t�w�t� · �� .

�16�

Here f�t� should fulfill



−T

+T

dtf2�t�=
!

2T �17�

and the normalization again ensures that the pure Gaussian
integral gives unity.

Note that the sign of the quadratic term in the exponent
necessarily is reversed if one wants to have a real shift op-
erator whereas the linear term can have any sign. Real argu-
ments of the potential are mandatory if an analytic continu-
ation of the potential into the complex plane is to be avoided.
Such a procedure would depend on the specific analytic
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properties of the potential and would have to be considered
on a case-by-case basis. We will call w�t� an “antivelocity”
and choose the negative sign in the linear term for conve-
nience. Also we will take

f�t� = sgn�− t� �18�

so that the shift operator simply becomes

exp�−
1

2



−T

+T

dt sgn�− t�w�t� · �� = exp�− xw�0� · ��

�19�

and the antivelocity degrees of freedom are as close to the
velocity ones as possible. Then we obtain the following path-
integral representation for the S matrix:

�S − 1�i→f = lim
T→�


 d3re−iq·r�N�T,− T��6
 D3vD3w

�exp�i

−T

+T

dt
m

2
�v2�t� − w2�t���

��exp�− i

−T

+T

dtV�r +
K

m
t + xv�t� − xw�0��� − 1� .

�20�

There is an interesting analogy with the Lee-Wick approach
to quantum electrodynamics where also fields with a wrong-
sign kinetic term are introduced �26� to remove all infinities.
These “phantom” degrees of freedom are often described in
an indefinite inner product space �27�. In our case, however,
they are not conjectured but necessarily appear when elimi-
nating the asymptotically diverging phase q2T / �4m� in the S
matrix.

At first sight the present approach to remove the infinite
phase looks as if the phase space path integral used in Ref.
�18� has come back through the backdoor in disguise of a
functional integration over velocities and antivelocities.
However, since the argument of the potential in Eq. �20� only
depends on the fixed quantity xw�0�, the path integral over
the antivelocity is not a full functional integral but could be
replaced by an ordinary one. Such a representation corre-
sponds to using

exp�−
i

4m
T�� = �
 d3w exp�− imTw2��−1

�
 d3w exp�− imTw2 	 Tw · �� , �21�

i.e., a constant antivelocity w, instead of Eq. �16�. This may
offer definite advantages in all cases where an additional
functional integration would be costly as in attempts to
evaluate the real-time path integral numerically. However,
compared to Eq. �16� it has the disadvantage that an explicit
dependence on the time T formally remains and that v, w are
treated differently. Therefore we will use the time-dependent
antivelocity w�t� in the following applications.

IV. FADDEEV-POPOV METHODS FOR THE T MATRIX

How to extract the T matrix from the S matrix? For weak
interaction one can develop in powers of the potential and
one finds that in each order an energy-conserving � function
can be factored out.

To achieve this without a perturbative expansion of the S
matrix one can use the trick which Faddeev and Popov �FP�
have introduced in field theory for the quantization of non-
Abelian gauge theories as was first proposed in Ref. �18�: We
note that in the limit T→� the action in the path integral
�20� is invariant under the transformation

t = t̄ + 
, r = r̄ −
K

m

, v�t� = v̄�t̄� , �22�

since



−T

+T

dtV�r +
K

m
t + xv�t� − xw�0��

= 

−T−


T−


dt̄V�r̄ +
K

m
t̄

+
1

2



−T−


T−


dt�v̄�t��sgn�t̄ − t�� − xw�0�� . �23�

For finite 
 and T→� one may expect that the change in the
integral limits is of no relevance and therefore that the action
remains invariant under the above transformation. Actually
the limit T→� is nontrivial and needs a more rigorous in-
vestigation which is beyond the scope of the present inves-
tigation. Instead we will verify that our procedure is correct
by checking that each term of the Born series emerges from
our path integral representations.

FIG. 1. �Color online�. Scattering geometry for a potential of
radius R, the impact parameter b, the ray made by the incoming and
outgoing momenta ki,f, and the mean momentum K= �ki+k f� /2.
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If the action is assumed to be invariant under the trans-
formation �22� then it does not depend on the component of
the vector r which is parallel to K, leading to a singularity
when integrating over that component. This singularity is
just the energy-conserving � function we are looking for. We
can extract it by first fixing it and then integrating over all
possible values: For example, we multiply the path integral
�15� by the following factor:

1 =
�K�
m



−�

+�

d
��K̂ · �r +
K

m

� + �� , �24�

where � is an arbitrary fixed �“gauge”� parameter and K̂
=K / �K� the unit vector in the K direction.

We now perform the transformation �22� in the path inte-
gral and obtain

�S − 1�i→f =
�K�
m

lim
T→�



−�

+�

d

 d3r exp�− iq · r + iq ·
K

m

���K̂ · r + ���N�T,− T��6
 D3vD3w

�exp�i

−T

+T

dt
m

2
�v2�t� − w2�t����exp�− i


−T

+T

dtV�r +
K

m
t + xv�t� − xw�0��� − 1� . �25�

To simplify the nomenclature the original variables are used
again. The only dependence on 
 in the integrand now re-
sides in the factor exp�−i
q ·K /m� and thus the integration
over it produces the energy-conserving � function �28�

2���q · K

m
� = 2��� k f

2

2m
−

ki
2

2m
� . �26�

In addition, after the transformation the longitudinal compo-
nent of r is set to the value −�. Noting that q� =0 we then
obtain the following expression for the T matrix:

Ti→f
�3−3� = i

K

m

 d2be−iq·b�N�6
 D3vD3w

�exp�i

−�

+�

dt
m

2
�v2�t� − w2�t����ei�K�b,v,w� − 1� .

�27�

Here we have taken the limit T→� and have written the
corresponding Gaussian normalization factor as

N ª N�+ �,− �� . �28�

In Eq. �27� the phase �K is defined as

�K�b,v,w� = − 

−�

+�

dtV�b +
K

m
t + xv�t� − xw�0� − �K̂�

¬ − 

−�

+�

dtV„�K�t�… �29�

while b�r� denotes the transverse component of the vector
r �the impact parameter�. With  being the scattering angle,
we have

q � �q� = 2k sin�

2
�, K � �K� = k cos�

2
� . �30�

Writing �=Kt0 /m we see that the “gauge parameter” can be
traded for an arbitrary time t0 in the reference path b+K�t

− t0� /m. We expect that �=0, i.e., t0=0 is the most symmet-
ric choice �see below�.

As an exact path-integral representation of the T matrix
�27� is one of the major results of this paper. The superscript
“3-3” indicates that in addition to the three-dimensional ve-
locity variable a three-dimensional antivelocity is used to
cancel divergent phases in the limit of asymptotic times. Us-
ing Eq. �4� backwards it is also possible to write the result as
an ordinary path integral over paths x�t�, y�t� instead of ve-
locities v�t�, w�t�. These paths have to fulfill boundary con-
ditions x�	T�= 	x0 /2, y�	T�= 	y0 /2 and one has to inte-
grate over x0, y0 at the end. However, this brings neither
simplifications nor new insights and so we will not pursue it
further. Instead we will show in the next section that one can
obtain the desired cancellation of divergent phases with a
one-dimensional �longitudinal� antivelocity only.

V. RAY REPRESENTATION

The representation �27� can be simplified by a simulta-
neous shift of the impact parameter and the velocities

v�t� =
q

2m
sgn�t� + v��t�, w�t� =

q

2m
sgn�t� + w��t� ,

�31�

b = b� − xv���0� + xw���0� . �32�

This transformation is suggested by a stationary phase ap-
proximation to Eq. �27�

�

�v�s�
−T

+T

dt�m

2
v2�t� − V„�K�t�…�=

!

0, �33�

which gives for the stationary values of velocity and impact
parameter

mvstat�s� = 

−T

+T

dt � V„�K�t�…
1

2
sgn�t − s� ,
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mwstat�s� = 

−T

+T

dt � V„�K�t�…
1

2
sgn�− s� , �34a�

q = − 

−T

+T

dt�bV„�K�t�… . �34b�

We thus find w�
stat�s�=q / �2m�sgn�s� and for small scattering

times �29� t or asymptotic external times s also

v�
stat�s� �

q

2m
sgn�s� , �35�

which suggests the shift �31�. However, doing so introduces
additional terms in the exponent since

m

2



−T

+T

dtv2�t� =
m

2



−T

+T

dtv�2�t�

+ q ·
1

2



−T

+T

dt sgn�t�v��t� +
q2

4m
T

=
m

2



−T

+T

dtv�2�t� − q · xv���0� +
q2

4m
T .

�36�

Similarly

m

2



−T

+T

dtw2�t� = 

−T

+T

dtw�2�t� − q · xw���0� +
q2

4m
T ,

�37�

so that

m

2



−�

+�

dt�v2�t� − w2�t�� = 

−�

+�

�v�2�t� − w�2�t��

+ q · �xw���0� − xv���0��

�38�

is independent of the time T used for regularization. But
finite terms remain which are then canceled by the shift �32�
of the impact parameter. Note that only the transverse com-
ponent of xv� and xw� can appear in Eq. �32� since the impact
parameter necessarily is a two-dimensional vector. This
asymmetry between perpendicular and parallel components
can be traced back to the constraint �24� and will persist in
the following formulas. Using the relation �30�



−T

+T

ds sgn�s − t�sgn�s − t�� = 2�T − �t − t���,

t,t� � �− T, + T� �39�

we find from Eqs. �10� and �31� that

xv�t� =
q

2m
��t� − T� + xv��t� , �40�

xw�0� =
q

2m
�− T� + xw��0� . �41�

Therefore the argument of the potential term also becomes
�formally� T independent

�K�t� → �ray�t� = b� +
pray�t�

m
t − �K̂ + xv��t� − xv���0�

− xw���0�K̂ . �42�

Here

pray�t� = K +
q

2
sgn�t� = ki��− t� + k f��t� �43�

is the new momentum along which the particle mainly trav-
els: for t�0 it is the initial momentum and for t�0 it is the
final momentum. This is also what one expects intuitively at
high energies and is depicted in Fig. 1. Note that the magni-
tude of pray�t� is k for all t and therefore the velocity of the
high-energy particle along the “rays” remains the asymptotic
k /m instead of the unnatural K /m=k cos� /2� /m.

After the shifting of arguments the integrand does not
depend on xw��0�, i.e., w��t� anymore. Therefore the inte-
gration over the perpendicular components of w�t� can be
performed trivially cancelling the corresponding Gaussian
normalization constants. Choosing �=0, omitting the prime
for the shifted variables and writing w for w� the new path
integral representation now reads

Ti→f
�3−1� = i

K

m

 d2be−iq·bN3N*
 D3vDw

�exp�i

−�

+�

dt
m

2
�v2�t� − w2�t���

��ei�ray�b,v,w� − 1� �44�

with only one �longitudinal� antivelocity which is indicated
by the superscript “3-1”. The phase is given by

�ray�b,v,w� = − 

−�

+�

dtV�b +
pray�t�

m
t + xv�t� − xv��0�

− xw�0�� . �45�

Note that both path integral representations of the T matrix
are not impact parameter representations in the strict sense
since both the phases � and the factor K=k cos� /2� carry an
angle dependence whereas in an exact impact parameter rep-
resentation of the T matrix this dependence would only re-
side in the factor exp�−iq ·b� �31�. As a consequence, unitar-
ity of the S matrix, i.e., validity of the optical theorem is not
immediately evident although these are exact path integral
representations.

A. Microreversibility

It is worthwhile to explore how microreversibility �time
reversal� of the T matrix �32� is realized in the present path
integral approach. This is the invariance under the exchange
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ki → − k f, k f → − ki, �46�

i.e.,

q → q, K → − K . �47�

We first note that the gauge parameter � has to vanish since

it multiplies the odd vector K̂ in the argument �K�t� of the
phase

�=
!

0. �48�

This is also evident from the FP constraint �24�, where the
argument of the � function would have different parity upon
time-reversal or simply by considering � as an arbitrary time
scale t0 for the longitudinal motion which would destroy the
time-symmetry between initial and final states.

However, microreversibility does not constrain the dy-
namical variable v�t�. Let us discuss that for the case of an
one-dimensional antivelocity with the phase �ray�b ,v ,w�
given in Eq. �45�: the impact parameter b is unaffected, but
the reference path obviously changes under the transforma-
tions �47�:

pray�t�
m

t → −
K

m
t +

q

2m
�t� . �49�

This can be compensated �33� by changing the integration
variable t→−t:

�ray�b,v,w� → − 

−�

+�

dtV��ray�− t�� , �50�

where

�ray�− t� = b +
K

m
t +

q

2m
�t� + xv�− t� − xv��0� + xw�0�K̂

�51�

and

xv�− t� =
1

2



−�

+�

dt� sgn�− t − t��v�t��

=
1

2



−�

+�

dt� sgn�t − t���− �v�− t�� . �52�

Decomposing the variable v�t� into even and odd compo-
nents

v�t� = v+�t� + v−�t� with v	�− t� = 	 v	�t� �53�

one sees that the kinetic term is quadratic in both compo-
nents

m

2



−�

+�

dtv2�t� =
m

2



−�

+�

dt�v+
2�t� + v−

2�t�� . �54�

This allows us to transform

xv�− t� =
1

2



−�

+�

dt� sgn�t − t���− ��v+�t�� − v−�t��� �55�

into xv�t� by a simple change of integration variables

v+�t� → − v+�t� �56�

in the velocity path integral �leaving v− unchanged� and
demonstrates invariance of the phase �ray and of the whole T
matrix. Of course, the subtraction terms

xv��0� =
1

2



−�

+�

dt� sgn�− t��v��t��,

xw�0� =
1

2



−�

+�

dt� sgn�− t��w�t�� �57�

depend only on the time-odd components. For the case of a
three-dimensional antivelocity the arguments are even sim-
pler but completely analogous.

B. Tests

As a test for the correct treatment of the various limits and
shifts which we have performed, the Born series should be
obtained from the path integral representations T�3−3� and
T�3−1�. Here we only consider the first Born approximation
while terms of arbitrary order are evaluated in Appendix A.
The first-order T matrix is simply obtained by expanding the
corresponding phase to linear order and Fourier transforming
the potential

Ti→f
�3−3�Born =

K

m

 d2be−iq·b
 d3p

�2��3 Ṽ�p��N�6

�
 D3vD3w exp� im

2



−�

+�

dt�v2�t� − w2�t���
�


−�

+�

ds exp�ip · �b +
K

m
s + xv�s� − xw�0��� .

�58�

The functional integrals here are simple Gaussian ones of the
form

G�d�
ª Nd
 Ddv exp�i


−T

+T

dt�m

2
v2�t� + g�t� · v�t���

= exp�− i

−T

+T

dt
g2�t�
2m � �59�

and we let the time T go to infinity only at the end of the
calculation. From the relation �10� we read off gv�t�
=p sgn�s− t� /2 for the v integration and gw�t�=p sgn�−t� /2
for the w integration. Thus

Gv
�d=3�G

w

�d=3�* = exp�−
ip2

8m



−T

+T

dt�sgn2�s − t� − sgn2�− t���
= exp�− i

p2

8m
�2T − 2T�� = 1 �60�

and
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Ti→f
�3−3�Born =

K

m

 d2be−iq·b
 d3p

�2��3 Ṽ�p� lim
T→�



T

+T

ds exp�ip · b + ip ·
K

m
s� =
 d3pṼ�p���2��p� − q�

K

m
��K

m
p�� = Ṽ�q,0� � Ṽ�q�

�61�

as expected.
Although the ray representation �44� was derived by a simple shift of integration variables from Eq. �27� and therefore did

not involve any additional large-T limits it is instructive to derive the first Born approximation explicitly in this case too. We
have

Ti→f
�3−1�Born =

K

m

 d2be−iq·b
 d3p

�2��3 Ṽ�p� 
 D3vDw exp�i
m

2



−�

+�

dt�v2�t� − w2�t���
�


−�

+�

ds exp�ip · �b +
pray�s�

m
s + xv�s� − xv��0� − xw�0�K̂�� . �62�

From the master path integral �59� we obtain

Gv
�d=3�G

w

�d=1�* = exp�−
i

8m



−T

+T

dt�p�
2 �sgn�s − t� − sgn�− t��2

+ p�
2�sgn2�s − t� − sgn2�− t���� �63�

corresponding to perpendicular and parallel path integration
over the velocities v ,w. The longitudinal component of the
momentum p is completely cancelled by the contribution
from the antivelocity w but now a term remains in the expo-
nent which is proportional to p�

2 . Performing the t integra-
tion by means of Eq. �39� all T dependence cancels and we
obtain

Gv
�d=3�G

w

�d=1�* = exp�−
i

2m
p�

2 �s�� . �64�

Using the explicit form �43� of the momentum pray�s� it fol-
lows that

Ti→f
�3−1�Born =

K

m

 d2be−iq·b
 d3p

�2��3 Ṽ�p�

� 

−�

+�

ds exp�ip · b + ip ·
K

m
s + ip ·

q

2m
�s�

−
i

2m
p�

2 �s�� . �65�

The b integration leads to p�=q and therefore the leftover
term from the v� integration is taken away by the contribu-
tion from the modified reference path. Thus we obtain again
the correct first-order result �61�.

In Appendix A we show how to obtain the complete Born
series from these two path integral representations. This
demonstrates that they are completely equivalent to the stan-
dard �time-independent� scattering theory and can be utilized
without doubt.

VI. HIGH-ENERGY EXPANSIONS

The path integral representations �27� and �44� for the T
matrix are the natural starting points for high-energy ap-
proximations. Under these kinematical conditions one ex-
pects that the particle essentially moves along straight lines
with a constant velocity and that the functional integral over
velocity and antivelocity only describes the fluctuations
around this trajectory.

A. Eikonal expansion

Taking Eq. �27� �where the particle travels along the mean
momentum K� as reference one indeed finds that this is the
case. By setting

t =
m

K
z, v�t� =

�K

m
v̄�z�, w�t� =

�K

m
w̄�z� �66�

it is seen that the path integral �27� takes the form

Ti→f
�3−3� = i

K

m

 d2be−iq·b�N̄�6
 D3v̄D3w̄

�exp� i

2



−�

+�

dz�v̄2�z� − w̄2�z���
��exp�− i

m

K



−�

+�

dzV�b + K̂z +
1

�K
�xv̄�z�

− xw̄�0���� − 1� . �67�

In many applications �e.g., in atomic physics� the energy of
the incoming particle is not large compared to its rest mass.
Therefore we consider m /K not as small but as fixed in the
following. Equation �67� shows that this factor just multi-
plies the potential but—irrespective of its magnitude—a sys-
tematic expansion in inverse powers of K of the T matrix is
possible for fixed momentum transfer �or scattering angle�.
This is achieved just by expanding the phase simultaneously
in powers of v�t� ,w�t� and performing the functional integral
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term by term: At high energy the fluctuations around the
straight-line trajectory are indeed small. Of course, the con-
vergence will depend on size and smoothness of the potential
as higher and higher derivatives of it will appear in the ex-
pansion. In addition, since K=k cos� /2� becomes smaller in
backward direction the convergence of the expansion will
deteriorate for larger scattering angles. A rough estimate of
the validity of the expansion may be given by the require-
ment that the next order term of the Taylor expansion be
small compared to the leading term

� 1
�K

� V · xv̄� � V . �68�

Assuming that the velocity fluctuations are only relevant
within the range R of the potential one finds v̄=O�1 /�R� and
xv̄=O��R� and thus

KR � �R
�V

V
�2

� �R

a
�2

, �69�

where a is the scale over which the potential changes appre-
ciably.

Let us start with the lowest order term. Setting v=w=0 in
the argument �K�t� of the potential immediately gives

Ti→f � TAI
�0� = i

K

m

 d2be−iq·b�ei�AI

�0�
− 1� , �70a�

�AI
�0��b� = −

m

K



−�

+�

dzV�b + K̂z� , �70b�

because the functional integrals are trivially one by normal-
ization �34�. This is a variant of the eikonal approximation
due to Abarbanel and Itzykson �35� where K=k cos� /2� ap-
pears everywhere instead of the asymptotic momentum k.
For a spherically symmetric potential V�r� we have the stan-
dard result

�AI
�0��b� = −

2m

K



0

�

dzV��b2 + z2� . �71�

It is easy to calculate the next-to-leading order correction
by expanding the phase up to linear order in v�t� and w�t�,
and performing the shifted Gaussian integral by means of
Eq. �59�. The result is

Ti→f � TAI
�1� = i

K

m

 d2be−iq·b�exp�i�AI

�0� + i�AI
�1�� − 1�

�72�

with an additional phase function

�AI
�1��b� = −

1

8m
lim
T→�



−T

+T

ds
 dt1dt2 � V1 · �V2

��sgn�t1 − s�sgn�t2 − s� − sgn2�− s��

=
1

4m



−�

+�

dt1dt2 � V1 · �V2�t1 − t2� , �73�

where �Vi is an abbreviation for �V�b+K̂zi�. Again the con-

tribution from the antivelocity w naturally cancels explicit T
terms when the integration over s is performed with the help
of Eq. �39�. In Appendix B it is shown that for a spherically
symmetric potential the expression simplifies to

�AI
�1��b� = −

1

K
�m

K
�2�1 + b

�

�b
�


0

�

dzV2�r�, r � �b2 + z2.

�74�

This is identical with the phase 
1�b� in the systematic eiko-
nal expansion of Wallace �14� apart from the appearance of
K=k cos� /2� instead of k which is unimportant in this order
and for forward direction. Note that this additional phase
already appears in exponentiated form as conjectured by
Wallace.

One may wonder whether Eq. �74� is the correct result up
to order K−1 because the next order term is also of that order.
For insight into this question it is instructive to consider the
example of an one-dimensional �ordinary� integral

T�a,�� ª

 dx exp�ix2�exp�− iV�a + ��x��


 dx exp�ix2�
� �eiV�a+��x�� .

�75�

After expanding the function V in the exponent for small � as
V�a+��x�=V�a�+��V��a�x+¯, keeping terms up to order
x2 in the exponent, expanding higher-order terms, integrating
term by term and re-exponentiating one obtains

T�a,�� = N
 dx exp�− iV�a� + ix2�1 − �V��a�/2�

− ix��V��a���1 + O��3/2x3��

= exp�− iV�a� −
i�

4�1 − �V��a�/2�
V�2�a�

−
1

2
ln�1 − �V��a�/2���1 + O��2��

= exp�− iV�a� − i
�

4
V�2�a� +

�

4
V��a� + O��2�� .

�76�

Since the correction phase �AI
�1� was obtained by truncating

the Taylor expansion of the potential at first order it just
corresponds to the second term and we seem to have missed
another, purely imaginary phase linear in the potential which
is also first order in � or 1 /K. However, closer examination
shows that this is not the case. It is, of course, possible to
prove that assertion directly by evaluating the required func-
tional integrals. These are more general Gaussian integrals of
the type
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N
 Dv exp�i

−T

+T

dt�m

2
v2�t� + ��g�t�v�t��

+ �

−T

+T

dtdt�v�t�h�t,t��v�t���
= exp�− i

�

2m



−T

+T

dtg2�t� −
�

m



−T

+T

dth�t,t� + O��2��
�77�

and multidimensional extensions thereof. However, there is
an easier approach using the cumulant expansion �see, for
example, Ref. �36�� which in the one-dimensional example
of Eq. �75� reads

T�a,�� = exp�ic1�a,�� +
i2

2!
c2�a,�� + ¯ � , �78�

c1�a,�� = ��V�a + ��x�� , �79�

c2�a,�� = �2��V�a + ��x� − �V�a + ��x���2�, . . . . �80�

Of course, by expanding the cumulants in powers of � one
obtains the same result �76� as before. Application to the
eikonal expansion is straightforward: it is easy to calculate
the cumulants in closed form and since �AI

�1� is quadratic in
the potential we only have to expand the first cumulant in
inverse powers of K in order to obtain all terms which are
linear in the potential. This is very similar to working out the
first Born approximation and we obtain

− 

−�

+�

ds�V��K�s��� = −
 d3p

�2��3 Ṽ�p�

�

−�

+�

dseip·�b+�K/m�s��eip·�xv�s�−xw�0���

= −
 d3p

�2��3 Ṽ�p�

−�

+�

ds

�exp�− ip · �b +
K

m
s��

= −
m

K



−�

+�

dzV�b + K̂z� � �AI
�0��b� , �81�

where the �functional� average over v ,w with the weight
exp�im�dt�v2−w2� /2� gives one according to Eq. �60�.
Hence there are no higher-order terms linear in the potential
beyond the leading eikonal phase and Eqs. �72� and �73� are
correct up to and including order 1 /K.

B. Ray expansion

The path integral representation �44� gives rise to a dif-
ferent high-energy expansion because we expand around the
momentum pray�t� which takes into account the different
asymptotic directions before and after the scattering. While
this complicates the analysis and leads to an additional mo-

mentum transfer dependence some advantages at larger scat-
tering angles may be expected: Applying a similar scaling
argument as in Eqs. �66� and �67� one sees that now a sys-
tematic expansion in inverse powers of k is obtained which
we will call the “ray” expansion. A disadvantage is the ex-
pansion around a discontinuous reference path which
abruptly changes direction at t=0. This may deteriorate the
convergence properties of the expansion but may be rem-
edied by another choice of the function f�t� in Eq. �18� sub-
ject to the constraint �17�.

The lowest order term is obtained by setting v=0 in the
argument of V and immediately gives a new high-energy
approximation

Ti→f � Tray
�0� = i

K

m

 d2be−iq·b�ei�ray

�0�
− 1� �82�

with a phase �37�

�ray
�0��b,q� = −

m

k



−�

+�

dzV„��z�… , �83a�

��z� = b +
p�t = mz/k�

k
z = b +

q

2k
�z� +

K

k
z �83b�

�ray
�0��b,q� � −

m

k



0

�

dz�V�b − k̂iz� + V�b + k̂ fz�� .

�83c�

This has some similarity with the eikonal phase derived by
Lévy and Sucher �17� although these “symmetric” eikonal
expansions �38� are quite different from our approach.

For a spherically symmetric potential we have for the
leading order ray phase function

�ray
�0��b,�� = −

2m

k



0

�

dzV„��z�… , �84�

where

��z� = �b2 + z2 + b · qz/k = �b2 + z2 + 2bz� . �85�

Here we have defined

� =
b̂ · q

2k
= sin�

2
�cos�, ��� � 1, �86�

where � is the angle between the impact parameter and the
momentum transfer. In forward direction �where all different
eikonal approximations should be equivalent� this is seen to
reduce to the usual eikonal phase plus a correction:

�ray
�0��b,�� →

→0

−
2m

k



0

�

dzV�r� −
2m

k

b · q

2k



0

�

dz
z

r
V��r� + ¯ .

�87�

With �V�r� /�z=zV��r� /r the correction term can be easily
integrated and gives
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�ray
�0��b,�� →

→0

−
2m

k



0

�

dzV�r� +
m

k2

b · q

2k
V�b� + ¯ .

�88�

Combining the result with the exp�−iq ·b� factor in the im-
pact parameter integral it is thus seen that the main effect of
the ray approximation is the replacement of the momentum
transfer by an effective momentum transfer

qeff�b� = q�1 −
m

k2V�b�� , �89�

which takes into account the energy gained �or lost� by mov-
ing in the attractive �or repulsive� potential at closest ap-
proach:

k2

2m
=

keff
2 �b�
2m

+ V�b,z = 0�, qeff = 2keff sin�

2
� . �90�

This approximation �with an average, constant value of the
potential� is standard practice in electron scattering from nu-
clei where higher order effects are roughly included by
evaluating the Born approximation form factor as function of
an effective momentum transfer �39�. However, when doing
that it is also well known �40� that a flux factor �keff /k�2 is
needed for the scattering amplitude.

This flux factor is provided by a purely imaginary phase
�ray

�1� which appears in next-to-leading order and corresponds
to the second term in the example �76�. In contrast to the
eikonal expansion in the previous subsection this correction
does not vanish anymore. Let us evaluate it by calculating
the first cumulant:

��ray� = −
 d3p

�2��3 Ṽ�p�

−�

+�

ds exp�− ip · ��s��

��exp�− ip · �xv�s� − xv��0�� + ip · K̂xw�0��� .

�91�

The average in the last line has already been evaluated in Eq.
�64� so that

��ray� = −
m

k



−�

+�

dz
 d3p

�2��3 Ṽ�p�

�exp�− ip · ��z��exp�− i
p�

2

2k
�z�� �92a�

¬�ray
�0� + i�ray

�1� + O�k−2� . �92b�

To order k−1 there is now a purely imaginary phase with
magnitude

�ray
�1��b,q� =

m

2k2

−�

+�

dz�z� 
 d3p

�2��3 Ṽ�p�p�
2 exp�− ip · ��z��

= −
m

2k2�b

−�

+�

dz�z�V„��z�… , �93�

where

�b =
�2

�b2 +
1

b

�

�b
+

1

b2

�2

��2 =
1

b

�

�b
b

�

�b
+

1

b2

�2

��2 . �94�

For a spherically symmetric potential this simplifies to

�ray
�1��b,�,� = −

1

k

m

k
�b


0

�

dzzV„��z�… , �95�

Note that �ray
�1� now depends on three variables �apart from

the overall powers of 1 /k�: b ,b ·q ,q or b ,� ,. This is be-
cause the Laplacian �b contains explicit derivatives with re-
spect to �.

What is the effect of the real factor

e−�ray
�1�

� 1 − �ray
�1� �96�

on the scattering amplitude? If the improvement from the
leading ray approximation is incorporated into an effective
momentum transfer �as discussed above� we may consider
exp�−�ray

�1�� simply as an amplitude correction as discussed
above. However, an alternative interpretation arises if the
correction �88� is included in a scaled impact parameter

b� = b�1 −
m

k2V�b�� ⇒ b = b��1 +
m

k2V�b��� + O� 1

k4� .

�97�

This implies the following change in the integration measure

bdb = b�db��1 +
m

k2�V�b�� +
d

db�
�b�V�b����� . �98�

However, in forward direction �2�z�→r2=b2+z2 and there-
fore

��ray
�1��=0 = −

m

k2

1

b

�

�b
b


0

�

dzz
�V

�b

= −
m

k2

1

b

�

�b
b


0

�

dzb
�V

�z
=

m

k2 �2V�b� + bV��b��

�99�

so that exp�−�ray
�1�� exactly cancels �at least in the forward

direction� the Jacobian arising from the scaling transforma-
tion. The leading order ray phase with the scaled impact
parameter as argument is

�ray
�0��b�,� → 0� � −

2m

k



0

�

dzV�r��

−
2m2

k3 b�2V�b��

0

�

dz
V��r��

r�

= −
2m

k



0

�

dzV�r��

−
2m2

k3 V�b��b�
�

�b�



0

�

dzV�r�� ,
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r� = �b�2 + z2 �100�

which has a correction term similar to Eq. �74� in the eikonal
expansion. Thus the leading order ray expansion already
contains approximately higher order eikonal terms.

Of course, there is also a real first-order phase �ray
�1� which

is obtained by expanding �ray up to first order in v ,w:

�ray�b,v,w� = �ray
�0� + 


−T

+T

dt�gv�t� · v�t� − gw�t�w�t�� + ¯ ,

�101�

where now

�gv�t��k = −
1

2



−T

+T

dt1�kV��1��sgn�t1 − t� − �1 − �k3�sgn�− t�� ,

�102�

gw�t� =
1

2



−T

+T

dt1�kV��1�sgn�− t� . �103�

Here k=1,2 ,3 are the Cartesian coordinates of the vector gv
and the argument of the potential is always �1=b+xref�t1�
=b+Kt1 /m+q�t1� / �2m�. Applying the Gaussian integration
formula �59� we obtain the real correction phase of order one

�ray
�1��b,q� = −

1

2m



−T

+T

dt�gv
2�t� − gw

2 �t�� �104�

and performing the t integration with the help of Eq. �39� we
find—as expected—that all T dependence cancels. Thus

�ray
�1��b,q� =

1

4m



−�

+�

dt1dt2��V�t1� · �V�t2��t1 − t2�

− �bV�t1� · �bV�t2���t1� + �t2��� . �105�

For a spherically symmetric potential some algebra which is
outlined in Appendix B leads to

�ray
�1��b,�� = −

1

k

m2

k2 ��1 + b
�

�b
�


0

�

dzV2���

−
b

1 − �2�2V�b�
�

�b



0

�

dzV��� + �V2�b�

+ �� �

�b



0

�

dzV����2�� , �106�

where � and � are defined in Eq. �85� and �86�, respectively.
The first term in Eq. �106� is identical with Wallace’s eikonal
phase 
1 for forward scattering when �→r. It may be sur-
prising that Eq. �106� contains an additional term which does
not vanish in forward direction, i.e., for �=0. But this is just
the term which exactly cancels the last term in the approxi-
mation of Eq. �100� so that the correct first-order eikonal
expression for forward scattering is obtained. Note that there
is no singularity in Eq. �106� at �= 	1 as can be also seen in
Appendix C. We therefore have in first-order ray expansion

Ti→f � Tray
�1� =

K

m

 d2be−iq·b�exp�i�ray

�0� + i�ray
�1� − �ray

�1�� − 1� .

�107�

VII. NUMERICAL RESULTS

Let us test the high-energy expansions for the case of
scattering from a Gaussian potential

V�r� = V0e−r2/R2
�108�

with the parameter values 2mV0R2=−4, kR=4, i.e.,
E=−4V0, corresponding to the case where � particles scatter
elastically from � particles at 166 MeV center-of-mass en-
ergy �R=1 fm�. The parameters are precisely those where
convergence of the standard eikonal expansion was found to
be unsatisfactory �14�. For completeness the analytical ex-
pressions for the various phases of a Gaussian potential are
listed in Appendix C. We have evaluated TAI and Tray by
numerical integration using Gauss-Legendre rules with 72
points and a sufficient number of subdivisions of the integra-
tion interval which was mapped to a finite range by yi
=R tan �i where y�b ,z for the AI expansion and y
�bx ,by ,z for the ray expansion. Figure 2 shows the differ-
ential cross section obtained from these high-energy approxi-
mations compared to an exact partial wave calculation. The
�AI� eikonal expansion shows the well-known failure at
larger scattering angles and the corrections only slightly in-
crease the point of deviation �41�. Since the cross section is
sharply peaked in forward direction the total cross section is
always well reproduced despite the deviations at higher scat-
tering angles and not suited as a measure of �dis�agreement.

The ray expansion does better at higher scattering angles
at the price of being more complicated and less precise at

FIG. 2. �Color online� Differential cross section from a Gaussian
potential with strength 2mV0R2=−4 at kR=4 as function of the
scattering angle . Shown are the exact result from a partial wave
calculation and from the zeroth and first order of the high-energy
expansions derived in Sec. VI. In these the particle travels along the
mean momentum �an eikonal approximation due to Arbabanel and
Itzykson �AI�� or along a ray made up of the initial and the final
momentum.
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small scattering angles. As scattering from a Gaussian poten-
tial at larger scattering angles is known to be dominated by
many small scatterings these deficiencies may be attributed
to the sudden change at t=0 which imparts a large momen-
tum transfer to the scattered particle. In addition, as was
mentioned before a derivative expansion about this discon-
tinuous path will probably run into problems. It may be ex-
pected that a description based on a smooth path will do
better but this will not be pursued in the present work.

Figure 3 shows how the different expansions describe the
cross section at higher energy �kR=6�. Again the ray expan-
sion is closer to the exact result at higher scattering angles.

VIII. SUMMARY AND OUTLOOK

Time-dependent methods for scattering have been inves-
tigated by several authors �42� in ordinary quantum mechan-
ics. Using path integrals over velocities I have derived two
new representations for the nonrelativistic T matrix which in
a very natural way describe the propagation of high-energy
particles in a local potential. Although the time evolution of
the scattering process is also central in the present approach
it leads to formulations which are quite different from the
previous ones. This is because two important requirements
must be fulfilled for obtaining a path integral formulation of
the T matrix from the matrix elements of the time-evolution

operator Û�T ,−T� for infinite scattering times T. First one
has to make sure that phases are eliminated which diverge
for T→� and, second, a suitable constraint has to be found
which leads to energy conservation in the S matrix. In the
present paper the first requirement is met by introducing
phantom degrees of freedom �“antivelocity”� which cancel
these divergences in a way reminiscent of the Lee-Wick pro-
posal for quantum field theory. Energy conservation is
achieved by using the classic Faddeev-Popov procedure such
that the component of the position vector parallel to the
mean momentum K= �ki+k f� /2 is fixed. This involved some
delicate �and at present not very well-controlled� limit pro-
cedures but we have checked that the resulting path-integral

formulations of the T matrix produce the correct Born series
in all orders.

One of the advantages of these new path-integral formu-
lations is that they can give rise to new approximation
schemes or expansions. As they are close to a geometrical
picture of scattering where the path integral describes the
quantum fluctuations around some reference path it is not
surprising that the eikonal approximation �in the variant of
Abarbanel and Itzykson �35� where the particle travels along
a straight-line path with velocity K /m� immediately follows
and that corrections to it can be calculated systematically. A
suitable scaling of variables in the path integral shows that
these corrections involve inverse powers of K=k cos� /2�
and therefore inevitably grow at larger scattering angles .
However, one is also naturally led to a new variant �ray
approximation� which displays the different asymptotic di-
rections along which the particle propagates at high energy
and which should work at high energy irrespective of the
scattering angle. Indeed, for high-energy scattering from a
Gaussian potential some improvement over the Abarbanel-
Itzykson eikonal expansion was achieved.

There seems to be considerable room �and need� for im-
provement: a better Faddeev-Popov constraint should elimi-
nate the rather asymmetric treatment of longitudinal and per-
pendicular variables. It is unclear how Wallace’s eikonal
expansion �14� �where the particle is traveling along the
mean momentum but with velocity k /m� could emerge natu-
rally from a path-integral representation. This formulation
gives an impact-parameter representation of the T matrix and
produces the exact Coulomb amplitude in lowest order
�43�—which is not the case for the present formulation. A
better control of the delicate limit T→� needed for obtain-
ing the S matrix is certainly desired and finally one may ask
whether a formulation without phantom degrees of freedom
is possible.

However, despite these shortcomings and the long list of
desiderata our formulation seems to have some merits: at
least it enlarges the “tool-box” of scattering theory and offers
new possibilities. Among these one may expect new approxi-
mation schemes and, hopefully the prospect of evaluating the
real-time path integral numerically, i.e., achieving a stochas-
tic evaluation of the scattering process. Obviously this would
be of great importance in the many-body case where one
may assume the interaction potential as

V�r� = 
k=1

N

V�r − rk� , �109�

with rk denoting the position of the kth scatterer. It is amus-
ing that the path integral representations discussed in this
paper lead to a multiple scattering expansion with exactly N
terms when

exp�i
k=1

N

�k� = 	
k=1

N

�1 + �ei�k − 1��

= 1 + 
j=1

N


k1�k2�. . .kj

	
l=1

j

�exp�i�kl
� − 1�

�110�

is used. This is in contrast to Watson’s multiple scattering

FIG. 3. �Color online� Same as in Fig. 2 but for kR=6.
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expansion �see, e.g., Ref. �44�� which contains infinite many
terms and much closer to Glauber’s theory where the inci-
dent particle cannot scatter back due to its straight-line
propagation. However, because of the subsequent path inte-
gration over all velocities the present expansion �if taken to
full order� is not an approximation but allows for repeated
scattering from the same scattering center.

Extensions to relativistic scattering �45� also seem pos-
sible. Further investigations of this formulation as well as
numerical studies of the real-time path integral will be re-
ported elsewhere �46�.
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APPENDIX A: COMPLETE BORN SERIES FROM THE
PATH-INTEGRAL REPRESENTATIONS

Here we show that the various path-integral representa-
tions for the T matrix exactly reproduce the conventional
Born series to all orders if the exponent is expanded in pow-
ers of the potential

exp�− i

−T

+T

dtV„��t�…� − 1

= 
n=1

�
�− i�n

n!



−T

+T

dt1 ¯ dtnV„��t1�… ¯ V„��tn�…

�A1�

and the functional integrations are done term by term. This
can be done by Fourier transforming the potential

V„��ti�… =
 d3pi

�2��3 Ṽ�pi�eipi·��ti�. �A2�

We do that first for the version with a three-dimensional
antivelocity as given in Eqs. �27� and �29�, where the refer-
ence path is along the average momentum

xref
eik�ti� =

K

m
ti, ��ti� � �K�ti� = b + xref

eik�ti� + xv�ti� − xw�0� .

�A3�

We then obtain

Ti→f ¬ 
n=1

�

Tn �A4�

with

Tn
�3−d� = i

K

m

�− i�n

n!

 d2be−iq·b	

i=1

n �

−T

+T

dti
 d3pi

�2��3 Ṽ�pi��
� exp�i

i=1

n

pi · „b + xref�ti�…�Gn
�3−d�. �A5�

For d=3 we have to evaluate

Gn
�3−3� = �N�6
 D3vD3w exp�i


−T

+T

dt
m

2
�v2 − w2��

�exp�i
i=1

n

pi · �xv�ti� − xw�0��� . �A6�

Since

xv�ti� − xw�0� =
1

2



−T

+T

dt�sgn�ti − t�v�t� − sgn�− t�w�t��

�A7�

the path integrals to be evaluated are just Gaussian integrals
of the same form as in Eq. �59� giving the result

Gn
�3−3� = exp�−

i

8m

i,j=1

n

pi · p j

−T

+T

dt�sgn�ti − t�sgn�tj − t�

− sgn2�− t��� . �A8�

Note that the first term in the square bracket comes from the
functional integration over v and the second one from the
functional integration over the antivelocity. As usual we have
regulated the time integration by a finite time T which we
finally will send to infinity. Using Eq. �39� any divergence in
this limit is cancelled by the contribution from the antiveloc-
ity

Gn
�3−3� = exp�−

i

4m

i,j=1

n

pi · p j�T − �ti − tj� − T�� , �A9�

as was expected.
Next we consider the ray representation �44� with an one-

dimensional antivelocity which is a little bit more involved:
first, the reference path is

xref
ray�t� =

pray

m
t =

K

m
t +

q

2m
�t� . �A10�

Second, the path integrals to be performed are again of the
form �59� but with

gv��t� =
1

2
i=1

n

p�i�sgn�ti − t� − sgn�− t�� , �A11�

gv��t� =
1

2
i=1

n

p�i sgn�ti − t�, gw�t� =
1

2
i=1

n

p�i sgn�− t� .

�A12�

Therefore the Gaussian integration gives
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Gn
�3−1� = exp�−

i

2m



−T

+T

dt�gv�
2 �t� + gv�

2 �t� − gw
2 �t���

�A13�

and after performing the t integral by means of Eq. �39� and
some algebra one obtains

Gn
�3−1� = exp� i

4m

i,j=1

n

�pi · p j�ti − tj� − p�i · p�j��ti� + �tj���� .

�A14�

Compared to Eq. �A9� there is an additional term which,
however, is exactly cancelled by the additional term from


i=1

n

pi ·
pray�ti�

m
ti = 

i=1

n

pi ·
K

m
ti + 

i=1

n

pi ·
q

2m
�ti� �A15�

if one takes into account that the b integration enforces


i

n

p�i = q . �A16�

Thus in both cases the nth order term in the Born series
reads

Tn = i
K

m

�− i�n

n!

 d2be−iq·b	

i=1

n �

−�

+�

dti
 d3pi

�2��3 Ṽ�pi��
� exp�i

i=1

n

pi · �b +
K

m
ti� +

i

4m

i,j=1

n

pi · p j�ti − tj�� ,

�A17�

where now the limit T→� has been taken. For further
progress it is essential to recognize that the integrand is fully
symmetric under exchange of ti↔ tj as can be verified by the
corresponding exchange pi↔p j. If this is the case then

	
i=1

n �

−�

+�

dti�Fsymm�t1 ¯ tn� = n!

�

−�

+�

dtn

−�

tn

dtn−1 ¯ 

−�

t2

dt1Fsymm�t1 ¯ tn� .

�A18�

The factor in front cancels the factorial in the denominator of
Eq. �A17�. Furthermore, since the integration times are now
ordered the last term in the exponential factor of Eq. �A17�
becomes

i

4m

i,j=1

n

pi · p j�ti − tj� =
i

2m

i�j

n

pi · p j�tj − ti�

=
i

2m

j=1

n

tjp j · 
k=1

n

sgn�j − k�pk,

�A19�

where sgn�0�=0 by convention. With the abbreviation

uj ª
1

2m
p j · 

k=1

n

sgn�j − k�pk + p j ·
K

m
�A20�

the time integrations can now be performed successively:



−�

t2

dt1eit1�u1−i0� =
− i

u1 − i0
eit2�u1−i0�,



−�

t3

dt2eit2�u1+u2−i0�

=
− i

u1 + u2 − i0
eit3�u1+u2−i0�, . . . ,

]



−�

tn

dtn−1eitn−1�u1+u2+¯+un−1−i0�

=
− i

u1 + u2 + ¯ + un−1 − i0

�eitn�u1+u2+¯+un−1−i0�



−�

+�

dtneitnj=1
n uj = 2���

j=1

n

uj� . �A21�

Note that the prescription how to handle the singularities
arises from the requirement that the time integrations should
converge at the lower limit. Alternatively one could give the
particle mass an infinitesimal imaginary part m→m+ i0 al-
ready in the path integral so that exp�i�−T

+Tdtmv2 /2� is
damped.

Performing the b integration in Eq. �A17� gives another �
function so that

Tn = i
K

m
�− i�n	

k=1

n �
 d3pk

�2��3 Ṽ�pk��	
k=1

n−1

� − i


j=1

k

uj − i0�
� �2��2��2��

j=1

n

pj� − q�2���
j=1

n

uj� . �A22�

Recalling the definition of uj in Eq. �A20� we see that


j=1

n

uj = 
j=1

n

p j ·
K

m
+

1

2m


j,k=1

n

sgn�j − k�p j · pk = 
j=1

n

p j ·
K

m

�A23�

because the last term changes sign under the exchange i↔ j.
Thus
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Tn = �2��3	
k=1

n �
 d3pk

�2��3 Ṽ�pk��	
k=1

n−1

� 1

− 
j=1

k

uj + i0�
���2��

j=1

n

p j� − q���
j=1

n

pj�� . �A24�

For n=1 the last product is empty and the standard first-order
Born approximation is obtained as already discussed in Sec.
V B.

For n�1 the denominators in Eq. �A24� can be rewritten
as

− 
j=1

k

uj =
1

2m

j=1

k

p j · � 
i=k+1

n

pi − 2K� �A25�

and the � functions allow us to replace


i=k+1

n

pi� = q − 
i=1

k

pi�, 
i=k+1

n

pi� = − 
i=1

k

pi� . �A26�

After some algebra one then obtains

− 
j=1

k

uj = E −
1

2m��
j=1

k

pi� + K�2

+ �
i=1

k

pi� −
q

2
�2�

�A27�

with E=k2 / �2m�=ki
2 / �2m�=k f

2 / �2m�. This suggests the
transformation of integration variables to

lk ª �
i=1

k

pi� −
q

2
,

j=1

k

pi� + K� , �A28�

so that

pk = lk − lk−1, k = 2 ¯ n . �A29�

This also holds for k=1 if we define

l0 ª �−
q

2
,K� = K −

q

2
� ki, �A30�

i.e., set empty sums to zero in the definition �A28�. It is
easily seen that the Jacobi determinant of this transformation
is one. Furthermore the two � functions fix

ln = �q

2
,K� = K +

q

2
� k f . �A31�

We then obtain the final result

Tn =
 d3ln−1

�2��3 Ṽ�ln − ln−1�

�	
k=1

n−2 �
 d3lk

�2��3

Ṽ�lk+1 − lk�
E − lk

2/�2m� + i0
�Ṽ�l1 − l0�

=
 d3ln−1

�2��3 ¯

d3l1

�2��3 Ṽ�k f − ln−1�
1

E −
ln−1
2

2m
+ i0

�Ṽ�ln−1 − ln−2� ¯ Ṽ�l2 − l1�
1

E −
l1
2

2m
+ i0

Ṽ�l1 − ki� .

�A32�

This is identical with the standard quantum-mechanical ex-
pression obtained in time-independent scattering theory �here
operators are denoted by a “hat”�

Tn = �� f�V�x̂�
1

E − p̂2/�2m� + i0
V�x̂� ¯ V�x̂�

1

E − p̂2/�2m� + i0

�V�x̂���i� �A33�

when evaluated in momentum space �note the convention
�A2� and the normalization of the scattering states ��.

APPENDIX B: EVALUATION OF FIRST-ORDER
CORRECTIONS FOR A SPHERICALLY SYMMETRIC

POTENTIAL

For the eikonal expansion we start from Eq. �73�, change
to z=Kt /m and use �V�r�=rV��r� /r where the prime indi-
cates differentiation with respect to the argument. This gives

�AI
�1��b� =

m2

4K3

−�

+�

dz1dz2
V��r1�

r1

V��r2�
r2

�b2 + z1z2��z1 − z2� .

�B1�

Since r=�b2+z2 is invariant under z→−z and the integrand
is symmetric with respect to z1↔z2 one obtains

��1��b� =
2m2

K3 

0

�

dz1z1
V��r1�

r1



0

z1

dz2
V��r2�

r2
�b2 − z2

2� .

�B2�

The simple relations

z
V��r�

r
=

�V�r�
�z

, b
V��r�

r
=

�V�r�
�b

�B3�

can be used to reduce the first-order eikonal phase to one-
dimensional quadratures. The first one together with an inte-
gration by parts leads to

�AI
�1��b� = −

2m2

K3 

0

�

dzV�r�
V��r�

r
�b2 − z2� . �B4�

Then the second relation in Eq. �B3� may be employed to
yield

�AI
�1��b� = −

m2

K3

0

�

dz�V�r�b
�V�r�

�b
− zV�r�

�V�r�
�z

� .

�B5�

Finally another integration by parts in the last term gives Eq.
�74�.

For the first-order ray correction the algebra is a little bit
more involved. We start from Eq. �105� and use
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�V��� =
V����

�
�b +

q

2m
�t� +

K

m
t� . �B6�

Restricting the integration region to positive values one ob-
tains

�ray
�1��b,q� = −

1

2m



0

�

dt1dt2
V���1�

�1

V���2�
�2

��b2 +
b · q

2m
�t1 + t2� +

k2

m2 t1t2��t1 + t2 − �t1 − t2��

= −
2m2

k3 

0

�

dz1
V���1�

�1



0

z1

dz2z2
V���2�

�2

��b2 + �b�z1 + z2� + z1z2� , �B7�

where in the last line the transformation z=kt /m and the
symmetry of the integrand have been used. � is defined in
Eq. �86�. As in the eikonal case we would like to reduce this
expression to one-dimensional integrals but the derivatives
of the potential with respect to z ,b are now more compli-
cated:

�V���
�z

=
V����

�
��b + z�,

�V���
�b

=
V����

�
�b + �z� .

�B8�

Solving for zV� /� and bV� /� one now has instead of the
relations �B3�

z
V����

�
=

1

1 − �2� �V

�z
− �

�V

�b
� , �B9�

b
V����

�
=

1

1 − �2� �V

�b
− �

�V

�z
� . �B10�

As a final combination one needs

z2V����
�

= z
�V

�z
−

�b

1 − �2� �V

�z
− �

�V

�b
� . �B11�

Equation �B7� multiplied by −k3 / �2m2� consists of four
terms which can be simplified with the help of the above
relations and appropriate integrations by part. The first term
is

b2

0

�

dz1
V���1�

�1



0

z1

dz2z2
V���2�

�2
=

b

�1 − �2�2

0

�

dz1� �V1

�b
− �

�V

�z1
�


0

z1

dz2� �V

�z2
− �

�V2

�b
�

=
b

�1 − �2�2

0

�

dz1� �V1

�b
�V1 − V�b�� −

�

2

d

dz1
�


0

z1

dz2
�V2

�b �2

− �
�V1

�z1
�V1 − V�b�� + �2 �V

�z1



0

z1

dz2
�V2

�b �
=

1

2

b

�1 − �2�2��1 − �2�
�

�b



0

�

dzV2 − �V2�b� − 2V�b�
�

�b



0

�

dzV − �� �

�b



0

�

dzV�2� . �B12�

The second one reads

�b

0

�

dz1z1
V���1�

�1



0

z1

dz2z2
V���2�

�2
= �b


0

�

dz1
1

2

d

dz1
�


0

z1

dz2z2
V���2�

�2
�2

=
1

2

�b

�1 − �2�2�− V�b� − �
�

�b



0

�

dzV�2

.

�B13�

Finally the third and fourth terms combined give

�b

0

�

dz1
V���1�

�1



0

z1

dz2z2
2V���2�

�2
+ 


0

�

dz1z1
V���1�

�1



0

z1

dz2z2
2V���2�

�2
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0

�

dz1
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0
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2V���2�

�2
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0

�

dzVz2V����
�
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1
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0

�

dzV2 −
1

2

�b

1 − �2V2�b� −
1

2

�2b

1 − �2

�

�b



0

�

dzV2. �B14�

Summing up all contributions we obtain the result given in
Eq. �106�.

APPENDIX C: EIKONAL AND RAY PHASES FOR A
GAUSSIAN POTENTIAL

Here we list the analytical expressions for the phases of a
Gaussian potential

V�r� = V0e−�2r2
, � =

1

R
. �C1�

For the AI eikonal expansion we have the well-known results
�14�

�AI
�0��b� = −

mV0

K

��

�
e−�2b2

�C2�
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�AI
�1��b� = −

1

2K
�mV0

K
�2��

2

1

�
�1 − 4�2b2�e−2�2b2

. �C3�

For the ray expansion we get in zeroth order

�ray
�0��b,�� = −

mV0

k

��

�
e−�2b2

F�B� , �C4�

where

F�B = �b�� ª eB2
erfc�B�, F�0� = 1 �C5�

and erfc�x�=1−erf�x� is the complimentary error function
�47�. The correction terms are:

�ray
�1��b,�� = −

1

2k
�mV0

k
�2��

2

1

�
e−2�2b2

���1 − 4�2b2�1 − �2��F��2B�

+ 2�2�2b2�1 − �2�F�B��2 − ��BF�B��� , �C6�

�ray
�1��b,�,� =

2

k

mV0

k
e−�b2�cos2 

2
− �2b2

+ B2�2 − sin2 

2
� − ��BF�B��2 −

3

2
sin2 

2
− �2b2

+ B2�2 − sin2 

2
��� . �C7�

We have checked these formulae by performing the integrals
with MAPLE and by direct numerical integration of Eqs. �B7�
and �95� for a Gaussian potential.
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