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The energy levels of hydrogen and helium atoms in strong magnetic fields are calculated in this study. The
current work contains estimates of the binding energies of the first few low-lying states of these systems that
are improvements upon previous estimates. The methodology involves computing the eigenvalues and eigen-
vectors of the generalized two-dimensional Hartree-Fock partial differential equations for these one- and
two-electron systems in a self-consistent manner. The method described herein is applicable to calculations of
atomic structure in magnetic fields of arbitrary strength as it exploits the natural symmetries of the problem
without assumptions of any basis functions for expressing the wave functions of the electrons or the commonly
employed adiabatic approximation. The method is found to be readily extendable to systems with more than
two electrons.
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I. INTRODUCTION

The motivation to study atoms in magnetic fields of
strength beyond the perturbative regime was in a large part
due to the discovery of such fields being present in white
dwarf stars �1–3� and neutron stars �4,5�. The most com-
monly observed neutron stars, pulsars, have been observed to
have magnetic fields on the order of 107–109 T �6�. Magne-
tars �7�, which are strongly magnetized neutron stars, can
have magnetic field strengths well in excess of 109 T. White
dwarf stars, on the other hand, have somewhat less extreme
fields, albeit still high, �102–105 T �6�. At such high field
strengths a Zeeman-type perturbative treatment of the field
�8� is not possible. The structure of atoms is considerably
altered from the low-field case.

Since the 1970s this problem has been tackled by various
researchers using different methods. Using a basis of func-
tions for expanding the wave function, the problem of the
hydrogen atom in a strong magnetic field was tackled with
either a variational approach �9�, or by attempting to solve
the Schrödinger equation directly �10–16�. Elsewhere, work
has also been done with regard to the treatment of the hy-
drogen atom as well as molecules and chains of hydrogen
atoms in intense magnetic fields �17–19�, with applications
to neutron star atmospheres, for magnetic fields in excess of
108 T. Additionally, accurate results were obtained for atoms
and molecules �20� and infinite chains of atoms �21� using
density-functional theory, once again in magnetic fields of
neutron stars in excess of 108 T. Elsewhere, accurate results
for the singlet and triplet states of the hydrogen molecule
have also been obtained �22–24� with direct relevance to the
atmospheres of white dwarfs and neutron stars in low to
intermediate field strengths �0–106 T�. More recently, accu-
rate results have also been obtained for the hydrogen atom in
strong magnetic fields �25� using a Lagrange-mesh method
�26�.

Initial attempts for estimating the energies and wave func-
tions of different states of the helium atom were based upon

a purely variational approach �27–35� or Z-dependent pertur-
bation theory �36�. However, the most accurate and reliable
solutions to the helium atom in a strong magnetic field, thus
far, involved using the Hartree-Fock �HF� technique �37�,
and initial work yielded accurate eigenvalues for the first few
low-lying states of the helium atom and heliumlike species
�38–40�. These treatises employed Landau orbitals �8� to de-
scribe the motion of the electron perpendicular to the field
and employed the adiabatic approximation by limiting the
electrons to reside only in the ground Landau state. Ivanov
�41� in 1994 obtained similar results for the helium atom in
strong magnetic fields using an unrestricted HF technique.
Elsewhere, Quantum Monte Carlo methods were employed
successfully for determining the ground and first few excited
states of the helium atom in low to strong magnetic fields
�42–44�. In the treatises described above �38–44�, usually an
approximation was employed for calculating both the direct
and the exchange interactions between the electrons. Such
approximations generally involved finding appropriate ex-
pansions that mimicked the behavior of the interelectron
terms in the Hamiltonian. Necessarily, such an approach is
limited by the accuracy of the expansions employed. In ad-
dition, this increases the complexity of the computational
problem.

Heyl and Hernquist �45� in 1998 described both an ana-
lytical as well as a numerical approximation for evaluating
the effective interelectronic potentials. These were computa-
tionally inexpensive. They adopted Hermite polynomials to
describe motion of the electron parallel to the magnetic field.
This method was seen to yield accurate results for intense
magnetic fields with strengths larger than 108 T, for hydro-
gen and helium. More recently, Mori and Hailey �46� and
Mori and Ho �47� adopted a perturbative approach to treat
the exchange terms and higher Landau states with success
for helium and other mid-Z atoms in high magnetic field
strengths. Schmelcher and co-workers have over recent
years, carried out detailed Hartree-Fock studies of the helium
atom in strong and intense magnetic fields. They employed
both a special basis of functions for expressing the wave
functions of the electrons �48–54�, adopting a full
configuration-interaction approach as well as a numerical
mesh method for solving the unrestricted HF equations
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�55–59�. The special meshes were so constructed as to facili-
tate finite-difference calculations in a two-dimensional do-
main using carefully selected mesh node points �60�. These
studies yielded accurate eigenvalues for the ground and first
few low-lying states of hydrogen and helium. These esti-
mates were seen to be more accurate than previous estimates
of the same �6,27–36,38–44�. More recently, Wang and Qiao
�61� employed a configuration-interaction method with
Hylleraas-Gaussian-type basis functions for obtaining the en-
ergies of low-lying singlet configurations of the helium atom.
Their work was based upon an extension of the method due
to the authors in Refs. �52,53� with findings consistent with
the same.

In the literature, the number of investigations of the he-
lium atom and heliumlike species in the strong or intermedi-
ate magnetic field regime is rather small. The estimates of
the energy levels of these species are only reasonably accu-
rate, and the computational expense is rather high. However,
for most observable neutron stars and many white dwarf
stars, the magnetic field strengths lie in the intermediate field
regime �6�. In order to facilitate a proper understanding of
the spectra of neutron stars and white dwarf stars, one must
necessarily have more stringent bounds on the energy levels
of atoms in the atmospheres of these compact objects in the
intermediate regime of magnetic field strengths. This is the
aim of the current work. The work described herein extends
previous work �45�, yielding accurate results for the eigen-
values and eigenvectors of the first few low-lying states of
hydrogen and helium, over a wide range of field strengths in
the intermediate-field regime. The calculated energy eigen-
values are seen to be improvements upon previous estimates.
The procedures described herein do not make any assump-
tions of basis functions and neither are they restricted to the
adiabatic approximation. The direct and exchange interac-
tions of the electrons are determined using a computational
method similar to that employed in Ref. �62�, not relying
upon any approximations. The method is readily extendable
to many-electron systems and arbitrary field strengths. The
overall method is also computationally straightforward to
implement.

II. THE HYDROGEN ATOM

We shall begin with the Hamiltonian for the hydrogen
atom in a magnetic field using cylindrical coordinates;

Ĥ = −
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where me is the mass of the electron and B the magnetic field

strength; the vector B� is oriented along the positive z axis.
The remaining symbols have their usual meanings. It is of
course implicitly assumed herein that the nucleus is infinitely
massive. Let us assume a certain form for the wave function
of the single electron:

� = ���,z�eim�	�s� . �2�

It can be seen immediately that such a choice precludes the
use of a basis of functions for describing the behavior of the
electron both parallel and perpendicular to the magnetic
field. Thus, the time-independent Schrödinger equation in
units of Bohr radii can be written as
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where m is the azimuthal quantum number. In defining Eq.
�3� it has been assumed that the electron spin is anti-aligned
with the magnetic field. For the hydrogen atom, a consider-
ation of energetics indicates that the spin-up state is less
bound than the corresponding spin-down state �6�. The
eigenenergy of the former can be obtained by adding 4
 �in
units of rydbergs� to the eigenenergy of the latter. Addition-
ally, the energy parameter � is defined as

� =
2E

�2mec
2 =

E

E�

, �4�

where E� is the Rydberg energy. The quantity �
=e2 / �4��0�c��1 /137 is the fine structure constant. The pa-
rameter 
 is defined in the usual way as 
=B /B0, where B0
is the critical field strength at which point the transition to
the intense magnetic field regime occurs �6�. This is defined
as B0= �2�2me

2c2� / �e��. It is to be mentioned that in the
current paper, we shall be using SI units for all the physical
constants and the magnetic field is taken to be in units of
tesla, or explicitly, kg / �C s�, where C represents the unit for
charge—the coulomb.

Thus, beyond a value of 
�1 the transition to the intense
magnetic field regime occurs and the interaction of the elec-
tron with the nucleus becomes progressively less dominant
as 
 increases. In deriving Eq. �3�, the definition of the Bohr
radius was taken to be given by the expression aB=� /�mec.
Based upon the above definition of 
, it is convenient to
classify the field strength �63� as low �

10−3�, intermedi-
ate, also called strong �10−3


1�, and intense or high
�1


��.

It can be seen that Eq. �3� is a linear second-order partial
differential equation. In the present study it was solved nu-
merically on a computer using finite-element techniques. For
details on the numerical treatment of Eq. �3�, see Sec. IV.

III. THE HELIUM ATOM

For calculating the atomic structure of two-electron sys-
tems we adopt an iterative method, the so-called self-
consistent field method �37� which essentially solves the
Hartree-Fock equations for the electrons. A short derivation
of the key equations is given below, assuming a single-
configuration form for the atom as described above. It is to
be noted that no restrictions are imposed on the electrons
such as the commonly employed adiabatic approximation
�6�.
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A. Derivation of the generalized Hartree-Fock equations in
partial differential form

Let us begin with the Hamiltonian of an N-electron atom
split into one- and two-body terms:

Ĥ = �
i

hi + �
j�i

w�ri,rj� . �5�

The first part of the Hamiltonian consisting of one-body in-
teractions is given by the standard prescription �using polar
cylindrical coordinates�
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where i=1,2 , . . . ,N. The two-body term in the Hamiltonian
is simply the Coulomb interaction between the ith and jth
electrons,

w�ri,rj� =
e2

4��0

1


ri
� − rj

� 

. �7�

Let us assume that the wave function of a given configura-
tion of electrons is given by

� = AN��1,�2,�3, . . . ,�N−1,�N� , �8�

where AN is the antisymmetrization operator. Thus, it can be
seen that a single Slater determinant is assumed to represent
the atomic configuration of all the electrons. The single-
particle wave functions are assumed to be of the same form
as assumed for the case of the hydrogen atom in Eq. �2�;
explicitly,

�i = �i��i,zi�eim�i	i�si� , �9�

where i labels each of the N electrons. The single-particle
wave functions �i��i ,zi� are taken to be real functions.

In the current study, we shall look at only the fully spin-
polarized states, with each electron’s spin being anti-aligned

with the magnetic field, as these states have an exchange
interaction between the electrons. This exchange between the
electrons leads to coupling of the HF equations at each itera-
tion �see Eq. �11��. The partially spin-polarized states, on the
other hand, only have the direct part of the interaction be-
tween the electrons, thus the HF equations become un-
coupled at each iteration. The method outlined below con-
cerns itself with the determination of this exchange between
the electrons using a computational scheme. Thus, the fully
spin-polarized states were considered for the purpose of test-
ing the atomic structure code developed herein. At this junc-
ture, it is to be noted that, with decreasing magnetic field
strength, it has been found that the fully spin-polarized state
is not the local ground state of the helium atom �57�. For
example, the authors in Ref. �57� found that the crossover
magnetic field strength for the local ground state of the he-
lium atom corresponded to 
Z�0.09. �The magnetic field
strength parameter is defined as 
Z=B /BZ=
 /Z2. The refer-
ence magnetic field strength for nuclear charge Z, at which
the transition to the intense magnetic field regime occurs, is
given by BZ=Z2B0, with B0 as defined earlier.� The crossover
was found to occur from the fully spin-polarized triplet state
1s02p−1 to the partially spin-polarized singlet state 1s2.
Above this value of 
Z the triplet state is the ground state.
For accurate data on the eigenvalues of this spin-polarized
state, as well as for a detailed treatment of ground state
crossovers, the reader is referred to Ref. �57� and references
therein. Such a detailed study of crossovers to partially spin-
polarized configurations was considered to be beyond the
scope of the current paper. Presently, writing the generalized
Hartree-Fock equations for determining the single-particle
wave functions �i, we have

h�ri��i�ri� + �
j�i

��� j�rj�
w�ri,rj�
� j�rj���i�ri� − �� j�rj�

�
w�ri,rj�
�i�rj��� j�ri�� = Ei�i�ri� , �10�

where i=1,2 ,3 , . . . ,N. Substituting the ansatz given in Eq.
�9�, the assumed individual electron wave functions, into Eq.
�10�, we obtain after rearranging some terms
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+
2

Z
�
j�i
��� j�� j,zj�eimj�j


1


ri
� − rj

� 


� j�� j,zj�eimj�j��i��i,zi�eimi�i − �� j�� j,zj�eimj�j


1


ri
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� 


�i�� j,zj�eimi�j�� j��i,zi�eimj�i�

= �i�i��i,zi�eimi�i, �11�

where i , j=1,2 ,3 , . . . ,N.
It is to be noted that the contribution due to electron spin

has been averaged out a priori. We have chosen to work in
units of Bohr radii along with the definitions given below.

Additionally, hereafter the exponential factors with im� are
to be interpreted with the appropriate sign depending upon
whether they are written in the bra or in the corresponding
ket; a minus sign for the former and a plus sign for the latter.
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This interpretation should presently be applied to Eq. �11�.
The Bohr radius for an atom of nuclear charge Z is given

by aB /Z, with aB as defined earlier. Finally, the energy pa-
rameter is defined as �i=Ei /EZ�, where EZ�=Z2E�, with E�

as defined in Eq. �4�. The above written Eq. �11� represents
the N-coupled Hartree-Fock equations in partial differential
form for an N-electron system with nuclear charge Z. The
system of equations is solved iteratively; see Sec. IV for
numerical details.

Of key concern in the computation of the eigenvalues and
eigenvectors is the determination of the direct and exchange
interactions between the electrons. In the current study, these
have been dealt with in a manner rather different from earlier
treatises. In short, these contributions are essentially extra
potentials that add to the existing single-particle Hamil-
tonian, except they are coupled through the wave functions
weighting them in a given equation in Eq. �11�. The proce-
dure employed for evaluating these potentials is described
below.

B. The direct interaction

The treatment of the direct and exchange potentials con-
sidered here and in the subsequent section is based upon
rigourously determining these potentials by solving their cor-
responding elliptic partial differential equations. This is car-
ried out in this study by employing the square of the indi-
vidual electrons’ momentum operators −i��i. The
methodology is similar to that developed by the authors in
Ref. �62� and details of the method employed in the current
study are given below.

Let us first examine the integral representing the direct
interaction between the electrons:

�D = �� j�� j,zj�eimj�j

1


ri
� − rj

� 


� j�� j,zj�eimj�j� . �12�

Let us act on both sides of Eq. �12� with the operator
pi

2�−�2�i
2; we then obtain the expression

− �2�i
2�D = − �2�� j�� j,zj�eimj�j


− 4��3�ri
� − rj

� �
� j�� j,zj�eimj�j� . �13�

This immediately yields

�i
2�D = − 4�
� j��i,zi�
2. �14�

The right-hand side of Eq. �14� is the square of the jth elec-
tron’s wave function, evaluated using the coordinates of the
ith electron. Noting that Eq. �14� is simply the Laplace equa-
tion, it is observed that it is numerically tractable and solved
using appropriate boundary conditions to yield the potential
�D, which is due to the direct interaction between the ith and
jth electrons; see Sec. IV for details on the numerical meth-
ods employed. It is to be noted that in contrast to previous
work, the problem in Eq. �14� is somewhat simpler, despite
having to solve a partial differential equation, as one does
not have to find approximate expressions for the mixing
terms arising from the interaction between different elec-
tronic states and the Coulomb potential. The reader is re-

ferred to Refs. �6,39� and references therein for the different
approximation methods employed for obtaining estimates for
Eq. �12�.

We now turn our attention to the other two-body term in
Eq. �11�, the exchange interaction.

C. The exchange interaction

We shall follow the same methodology as in our treatment
of the direct interaction term. Let us rewrite the term in Eq.
�11� that relates to the exchange interaction between the ith
and jth electrons:

�E = �� j�� j,zj�eimj�j

1


ri
� − rj

� 


�i�� j,zj�eimi�j� . �15�

Again, as in our previous treatment, let us act on both sides
of Eq. �15� with the operator �i

2, this time dropping the re-
dundant factor of −�2, to obtain

�i
2�E = �� j�� j,zj�eimj�j
 − 4��3�ri

� − rj
� �
�i�� j,zj�eimi�j� .

�16�

Upon carrying out the integral we get

�i
2�E = − 4��

j
*��i,zi��i��i,zi�ei�mi−mj��i. �17�

It is to be noted that, by the definition in Eq. �9�, �*=� for
the spatial part of the individual electron wave functions. At
this stage, let us make the ansatz that

�E = �E��i,zi�ei�mi−mj��i. �18�

Let us act on both sides of Eq. �18� with the Laplacian op-
erator �i

2 to obtain
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��E��i,zi�ei�mi−mj��i. �19�

It is then a straightforward matter upon comparing Eq. �17�
with Eq. �19� to immediately see that

� 1
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= − 4��
j
*��i,zi��i��i,zi� . �20�

The elliptical partial differential equation �20� is solved nu-
merically and we thus obtain an estimate for the function
�E��i ,zi�, for each of the pairwise interactions among the N
electrons. Knowing �E��i ,zi�, we can obtain �E according to
Eq. �18�. Once �E and �D have been obtained, we can sub-
stitute them into Eq. �11� for the potentials due to the direct
and exchange interactions, respectively, to obtain

�− � 1
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�21�
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Taking the inner product with �d�ie
−imi�i on both sides of

Eq. �21� we obtain, writing in a compact form,

�− �i
2��i,zi� +

mi
2

�i
2 + 2
Z�mi − 1� + 
Z

2�i
2 −

2

ri
��i��i,zi�

+
2

Z
�
j�i

��D�i��i,zi� − �E� j��i,zi�� = �i�i��i,zi� , �22�

where i , j=1,2 ,3 , . . . ,N and ri=��i
2+zi

2. The total Hartree-
Fock energy of the state is given by

�total = �
i

�i −
1

2

2

Z
�
j�i

���i��i,zi�
�D
�i��i,zi�� − ��i��i,zi�

�
�E
� j��i,zi��� . �23�

Equation �22� is the final form for the generalized Hartree-
Fock equations, and for two-electron systems we have two
equations, but for arbitrary nuclear charge Z.

This completes our derivation of the Hartree-Fock equa-
tions for atoms in magnetic fields of arbitrary strength. The
following section delineates the numerical procedures em-
ployed in the calculation of the energy eigenvalues and
eigenfunctions. Thereafter, results are presented and a dis-
cussion follows.

IV. NUMERICAL DETAILS

The eigenvalue problem for the hydrogen atom in Eq. �3�
is solved by discretizing the equation and solving the result-
ant algebraic eigenvalue problem. The discretization is done
using the finite-element method �FEM� �64�. The generalized
eigenvalue problem is then solved using a sparse matrix gen-
eralized eigensystem solver �65�. This method was found to
yield accurate results for the energy eigenvalues of the first
few eigenstates with different azimuthal quantum numbers
m. Runs were carried out for different values of the magnetic
field strength parameter 
, in the range 10−2


10. For
testing additional convergence for every run, we employed
six different levels of mesh refinement, ranging from coarse
to sufficiently fine mesh. The fine mesh calculations for hy-
drogen and helium for example, respectively, took from a
few hours to a few days of computing time on AMD Opteron
844 1.8 GHz processors.

For solutions to the helium atom in strong magnetic fields,
an atomic structure software was developed as a part of this
study for the purpose of calculating the energies of different
states of multielectron atoms. The program takes as its input
the number of electrons in the atom, ne, the nuclear charge Z,
and the magnetic field strength parameter 
, and then pro-
ceeds to compute systematically the eigenvalues and eigen-
functions of the coupled system of equations in Eq. �22�,
according to the iterative procedures described below in
brief.

Equations �14�, �20�, and �22� are solved in a three-step
process using the iterative self-consistent Hartree-Fock
method �37�. First, an initial estimate is obtained for the
eigenvectors by solving Eq. �22� without the contributions
due the interaction between the electrons. The second step

involves obtaining estimates for the potentials due to the
direct and exchange interactions among the electrons; for
this, the elliptic partial differential equations �14� and �20�
are solved using the estimates for the wave functions ob-
tained in the previous step. These estimates are then used to
solve for better estimates of the eigenfunctions along with
the relevant eigenvalues in Eq. �22�. The last two steps are
iterated in the order described above to obtain progressively
better estimates for the eigenvalues and eigenvectors with
each iteration. It was observed during our runs that fast con-
vergence was achieved; within the first few iterations. A con-
vergence criterion was employed wherein the difference be-
tween the solutions for two consecutive iterations was tested.
Typically, a tolerance on the order of 10−6 was employed.
Thereafter, the total energy of the Hartree-Fock state under
consideration is reported according to Eq. �23�. Again, as in
the case of the hydrogen atom, runs were carried out for
different values of 
, but with five different levels of mesh
refinement in each case for additional convergence testing.

Once again, the generalized system of eigenvalue equa-
tions was solved using appropriate FEM discretization,
yielding accurate results for the eigenvalues and eigenvectors
of the first few low-lying states of helium. For details on the
finite-element method, the reader is referred to Ref. �64�. It
was found that domain compactification was computation-
ally expensive in terms of memory and computation time for
obtaining sufficiently accurate results. On the other hand,
limiting the domain size in the two orthogonal directions
�parallel and perpendicular to the magnetic field� to several
Bohr radii ��20� was observed to give accurate results for
the range of magnetic field strengths considered in this study.
Concordantly, the computational expense was many times
less in comparison to the former case. Numerical errors aris-
ing from truncating the domain were not significant �i.e.,
they were smaller than the discretization errors�.

Additionally, the current work does not include relativistic
corrections to the energies. For the magnetic field strengths
considered herein, the relativistic corrections to the energies
were estimated using the scaling formula of the authors in
Ref �66�. Their results for the hydrogen atom were used for
this purpose and the corrections were estimated to be on the
order of 10−6 Ry. This was seen to be smaller than the dis-
cretization error. Thus, while relativistic corrections are im-
portant, it was not possible to account for them accurately in
the current study.

V. RESULTS AND DISCUSSION

The results from the calculations carried out for hydrogen
and helium atoms in strong magnetic fields �10−2

, 
Z

10� are presented below for three tightly bound states of
each atom in this regime.

A. The hydrogen atom

We solved the time-independent Schrödinger equation
given in Eq. �3� for different values of the magnetic field
strength parameter for the states with azimuthal quantum
numbers m=0, −1, and −2. The binding energies are reported
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in rydberg units. �The states with m�0 become unbound
with increasing magnetic field strength �6�.�

The variation in the binding energy for the state corre-
sponding to m=0, �= +1 is shown in Fig. 1. The quantity �
indicates parity with respect to the z axis. The data points are

eigenvalues obtained from the numerical solution of Eq. �3�.
The energy eigenvalues are reported as the values corre-
sponding to infinitely fine mesh sizes, or, in other words,
when the average area of the finite elements approaches zero.
A short discussion of this estimation procedure is given later.
As can be seen in the figure, the electron becomes progres-
sively more bound as the magnetic field strength increases.
The line through the data represents a fit to the data. A ratio-
nal function was used to model the data in this regime using
a robust Levenberg-Marquardt method �67�.

These rational functions accurately model the data in a
range of magnetic fields from 
=10−4 to 103 �twice the range
indicated in Fig. 1� and could potentially be used directly in
atmosphere models for neutron stars and white dwarf stars.
Having such accurate analytical forms for the energies of
atoms in strong magnetic fields obviates the need for per-
forming laborious HF calculations, making atmosphere mod-
els computationally less intensive. In addition, it becomes
possible to analyze spectra of neutron and white dwarf stars
with relative ease, at arbitrary field strengths within the
intermediate-field regime. The rational function fits have the
form

f�x� =

�
i=0

n

aix
i

xn−2 + �
i=0

n−3

bix
i

, �24�

where x=ln�1+
�. The coefficients and the maximal fitting
errors over the entire range 
=10−4 to 
=103 are given in
Table I. The data in the range 
=10−2–10 are results from
calculations of the present study while, to construct the fits
for larger and smaller values of 
 than the indicated range,
we used the results of Ref. �6�. The dashed line in the graph
represents a first-order perturbation theory calculation, the
purpose being to illustrate the fact that perturbation theory
breaks down with increasing the magnetic field strength. It is
evident upon inspection that the breakdown of perturbation
theory occurs within the so-called intermediate-field regime.
Thus arises the need for accurate data for the structure of
atoms in this regime of magnetic field strengths 10−2



10.

Figure 2 shows variation in the binding energy of the
states m=0, �= +1, m=−1, �= +1, and m=−2, �= +1, with
increasing magnetic field strength. Again the lines through
the data points represent fits to the data. Every data point in
these figures was obtained as an estimate corresponding to
limit of the finite element size going to zero; see later. It can
be seen in Fig. 2 that the binding energy of the different
states increase dramatically after 
�1. Thereafter, the bind-
ing energy increases at an increasing rate with increasing
magnetic field strength.

It is to be noted that, in all cases, the rational functions
were so chosen as to reflect the fact that eventually, at large
values of the magnetic field strength parameter 
, the energy
would be proportional to ln2 
 �68–70�. For details of the
energy eigenvalues obtained in this study the reader is re-
ferred to Table II.

TABLE I. Coefficients of the different rational functions em-
ployed for fitting the three states of hydrogen discussed. The maxi-
mum fractional error of the eigenvalue relative to the fit from 

=10−4 to 103 follows the list of coefficients.

State Coefficients State Coefficients

1s0 a0=3.0849526 1s0 a0=3416640.9

a1=6.6571666 a1=12197155

a2=−0.14904847 a2=4879198.1

a3=0.43176735 a3=425959.45

b0=3.0792681 a4=119957.96

9�10−3 b0=3418004

b1=5216732.1

4�10−4

2p−1 a0=0.58201924 3d−2 a0=0.038324719

a1=13.769289 a1=2.7226023

a2=17.780336 a2=6.9791245

a3=−0.52325377 a3=−0.55680026

a4=0.74135964 a4=0.4177192

b0=2.3266637 b0=0.34444067

b1=18.424245 b1=6.7184551

3�10−3 1�10−2

FIG. 1. Variation in the binding energy of the ground state of
hydrogen m=0, �= +1 with the magnetic field strength parameter
in the range 10−2


10. The solid line is the model while the
data points are calculated values and the dashed line represents the
results from first-order perturbation theory.
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Figure 3 shows the dependence of the eigenvalues ob-
tained from the solution of Eq. �3� on the mesh size em-
ployed. As mentioned earlier, the calculations were carried
out on a finite domain of several Bohr radii in each of the
two directions both parallel and perpendicular to the field.
While keeping the domain fixed, the number of finite ele-
ments constituting the mesh was varied. Runs were per-
formed on each mesh size, for every value of magnetic field
strength considered in the study, for each of the three states

of hydrogen, m=0, −1, and −2. For a given value of 
, the
eigenvalues were plotted against the average area per finite
element in the domain, corresponding to different levels of
mesh refinement as shown in the figure. Extrapolation of the
data to the limit of zero mesh size, in each case, yielded the
eigenvalues that would correspond to an infinitely fine mesh.
These values were reported as the calculated data points in
the preceding figures. The extrapolation was carried out by

TABLE II. Binding energies of the three most tightly bound states of hydrogen. Energies are in units of
rydbergs. The states are labeled according to their counterparts in the low-field limit. Results from Ref. �6�
are also provided for comparison. The number in the parentheses is the absolute error at the fifth decimal
place; this is determined as the difference between the computed eigenvalues for the most finely refined mesh
size employed and the extrapolated result for the mesh size tending to zero.



Present study

1s0

Ref. �6�
1s0

Present study
2p−1

Ref. �6�
2p−1

Present study
3d−2

Ref. �6�
3d−2

1�10−2 1.0198�1� 1.0198 0.2876�1� 0.2876 0.1614�0� 0.1614

2�10−2 1.0392�1� 1.0392 0.3209�1� 0.3209 0.1982�0� 0.1982

5�10−2 1.0951�1� 1.0951 0.4017�2� 0.4017 0.2757�0� 0.2757

7�10−2 1.1304�1� 1.1304 0.4452�2� 0.4452 0.3144�1� 0.3144

1�10−1 1.1808�1� 1.1808 0.5010�3� 0.5011 0.3626�1� 0.3626

2�10−1 1.3293�1� 1.3292 0.6427�5� 0.6427 0.4820�2� 0.4820

5�10−1 1.6624�1� 1.6623 0.9132�20� 0.9132 0.7061�9� 0.7061

7�10−1 1.8324�0� 1.8323 1.0420�34� 1.0420 0.8125�18� 0.8125

1 2.0445�2� 2.0444 1.1992�60� 1.1992 0.9423�36� 0.9423

2 2.5616�3� 2.5616 1.5756�37� 1.5757 1.2540�21� 1.2540

5 3.4956�5� 3.4956 2.2507�188� 2.2508 1.8164�122� 1.8164

7 3.9225�6� 3.9224 2.5604�353� 2.5605 2.0758�230� 2.0758

10 4.4308�14� 4.4308 2.9303�630� 2.9310 2.3872�451� 2.3873

FIG. 2. Variation in the binding energies of three lowest-m states
of hydrogen corresponding to m=0, −1, −2, with �= +1 with the
magnetic field strength parameter in the range 10−2


10.

FIG. 3. Eigenvalues calculated as a function of the area per
finite element in the mesh for the ground state of hydrogen at

=10−1. The eigenvalue approaches an asymptote corresponding to
the limit of infinitely fine mesh.
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employing rational functions; the reader is referred to Ref.
�67� for details regarding the method employed. The average
accuracy of the estimate of the asymptotic value was deter-
mined to be on the order of 3�10−6 Ry. These were too
small to be shown on the plots. The line through the data
points in Fig. 3 is merely a guide to the eye.

The wave functions for the most tightly bound state of
hydrogen m=0, �= +1 are plotted in Fig. 4 for four different
values of the magnetic field strength 
. The plots represent a
slice through the three-dimensional atom in the upper half of
the rz plane. The complete representation in three dimen-
sions is the figure of revolution about the z axis and simul-
taneously reflected about the xy plane. The length units are
Bohr radii of the hydrogen atom and the horizontal axis rep-
resents the direction perpendicular to the magnetic field
while the vertical axis represents the direction parallel to it,
i.e., the z direction in three-dimensional cylindrical polar co-
ordinates. The purpose here is to illustrate the dramatic
change that occurs near 
�1 when the electron becomes
tightly bound and the binding energy increases dramatically
with increasing 
. It is immediately evident upon inspection
that the spherical symmetry of the atom is clearly broken, as
we approach higher magnetic field strengths and the binding
energy increases.

B. The helium atom

For the helium atom, we solved the set of coupled
Hartree-Fock equations given in Eq. �22�, for different values
of the magnetic field strength parameter, for the three tightly
bound states M =0, −1, and −2. It is to be noted that the
binding energies are reported in units of the rydberg energy
in the Coulomb potential of nuclear charge Ze �i.e., in units
of EZ�, as defined earlier�.

At the very outset, as a preliminary test of the Hartree-
Fock atomic structure software developed as part of this
study, we carried out calculations for the binding energy of

the 1S0 singlet state of neutral helium without any magnetic
field �B=0 case�. However, in this case the wave function of
the configuration of electrons is completely symmetrized
with respect to the spatial part of the total wave function
while the spins of the two electrons are antiparallel to each
other. With these changes, Eq. �24� was solved using the
numerical procedures outlined in Sec. IV and the energy re-
ported according to Eq. �25�. The runs were carried out for
different mesh sizes over the domain and the final eigenvalue
is reported after extrapolating to the limit of infinitely fine
mesh, as described above. The eigenvalue obtained using this
procedure was 1.4499EZ�, while the most accurately deter-
mined result via numerical techniques thus far is 1.4519EZ�

�71�. The difference is about 2�10−3EZ�. This was consid-
ered to be sufficiently accurate given the fact that the calcu-
lations carried out as part of this study were single-
configuration calculations while the result from Ref. �71� is
essentially a multiconfiguration calculation, which is a com-
putationally more intensive method. Thus, the atomic struc-
ture software developed for this study was considered to be
sufficiently accurate for the purposes of the current study.
Additionally, we also calculated the HF energies in the limit
of zero magnetic field for the three states of helium consid-
ered in this study. The energy eigenvalue for the state corre-
sponding to the configuration 1s02p−1, with the spins parallel
to each other, was computed to be 1.0668EZ�, which differs
by about 2�10−4EZ� from accurate calculations including
corrections in Ref. �72�, wherein they obtained a value of
1.0666EZ�. The slight difference in the values is due to dis-
cretization errors arising from the finite-element method em-
ployed in the current study. We also obtained an estimate for
the HF energy of the configuration 1s02p0, with the spins
parallel to each other, to be 1.0641EZ�. The difference from
the value obtained by researchers in Ref. �72� is about
2.5�10−3EZ�. For the third configuration �1s03d−2, with par-
allel spins� considered in this study, we obtained the energy
eigenvalue of the configuration to be 1.0179EZ�. This is less
than the value obtained by the researchers in Ref. �72� by
about 9.8�10−3EZ�. Since the d orbital is more spread out
than the corresponding p-orbital counterparts, it was neces-
sary to sample a greater domain size ��70aB� in the limit of
zero magnetic field strength and as a result, due to limitations
of computer memory, it was not possible to carry out the
calculations at the finest level of mesh refinement. Conse-
quently, the difference between the calculated eigenvalue of
the present study and that of Ref. �72� is larger.

The variations in the binding energies for the states cor-
responding to M =−1, −2, and 0 with Sz=−1 are shown in
Fig. 5. The data points are eigenvalues obtained from the
numerical solution of Eq. �22�, according to the numerical
procedures described in Sec. IV. The energy eigenvalues are
once again reported as the values corresponding to an infi-
nitely fine mesh, estimated according to the discussion
above; see Fig. 3 and discussion thereof. The average accu-
racy of the estimate of the asymptotic value was determined
to be on the order of 2�10−5 Ry. Again, for details regard-
ing the extrapolation method, the reader is referred to Ref.
�67�. As can be seen in Fig. 5, the binding energies of the
states increase monotonically with increasing magnetic field
strength 
Z. The lines through the data represent fits to the

FIG. 4. �Color online� Plot of real part of the wave function, i.e.,
��� ,z�, of the ground state of the hydrogen atom with quantum
numbers m=0, sz=−1 /2, and �= +1 in magnetic fields of strength
corresponding to 
= �a� 10−2, �b� 10−1, �c� 1, and �d� 10. In �d� the
relevant portion has been enlarged for better visual inspection.
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data. In addition, a good measure of the discretization error
is the difference between the computed eigenvalues for the
most finely refined mesh size employed and the extrapolated
result for the mesh size tending to zero. This error is reported
in the number appearing in the parentheses in Tables II and
III the number therein corresponds to the absolute error in
the fifth decimal place. Concordantly, the error bars were too
small to be shown on the plots.

Again, a rational function was used to model the data in
this regime using a robust Levenberg-Marquardt method
�67�. The coefficients of the interpolating functions are given
in Table IV. Again, the rational functions were so chosen as
to reflect the fact that eventually, for large values of the mag-
netic field strength parameter 
Z, the binding energies are
proportional to ln2 
Z. With this in mind, the aim was to find
an accurate analytical function that described the variation in
binding energy over a wide range of 
Z, such that it em-
ployed the least number of parameters. Inspection of Table
IV reveals that this was accomplished with five free param-
eters, for modeling the data in the range of magnetic field
strengths 10−2

Z
10. Potentially, as was noted earlier,
these analytical functions can be employed with relative ease
in atmosphere models directly, thus circumventing the need
for both laborious calculations of the energies via HF meth-
ods and simultaneously avoiding the need for spline interpo-
lations of tabulated data of binding energies. The maximum
errors in the fits are also provided in Table IV.

The calculated data for the states M =−1, −2, and 0 with
Sz=−1 are compared with the calculated data of the research-
ers in Refs. �6,41,42,44,51–53� in Table III. It can be seen
upon inspecting Table III, that the current findings are con-
sistent with previous work. In particular they are seen here to
be improvements upon the estimates of Ruder et al. �6� over
the entire range of 
Z considered in this study. Jones et al. on

the other hand, employed a Monte Carlo approach �42� for
solving the HF equations. They assumed a large number of
basis functions with variable parameters that could be fine
tuned within the framework of Monte Carlo simulations to
arrive at upper bounds for the energies. Although this method
is effective, it is computationally demanding and it restricts
the wave functions of the electrons to be expressed using a
finite number of basis functions. The method described in the
current study does not impose such a condition and thus the
wave functions that are determined are, in effect, superposi-
tions of a very large number of such basis functions and arise
naturally from the solution itself. The eigenvalues were seen
to drop below those of Jones et al.’s estimates beyond

Z�20. It is to be noted that this effect was due to insuffi-
cient computer memory to carry out calculations with the
desired mesh refinement at high magnetic field strengths,
where the electrons are tightly bound to the nucleus and their
wave functions shrink closer to the nucleus; see Fig. 6. With
sufficient computer memory, it is expected that the results
presented here can be extended to higher magnetic field
strengths.

In Table III, it can be seen that the estimates of the bind-
ing energy of the state of helium corresponding to the con-
figuration M =−1 are improvements upon the estimates of
Ruder et al. �6�. The range of improvement is between
0.01% at 
Z=10−2 and about 9.5% at 
Z=1. These eigenval-
ues can be seen to be better estimates than those of Jones et
al. �42,44� over the entire range 10−2

Z
101, by about
0.5% maximum and about 0.1% minimum. With regard to
the data obtained by the authors in Ref. �52�, it can be seen
that the current study does better toward the middle of the
range in 
Z by a maximum of about 0.25%, while the ener-
gies of Ref. �52� are seen to be more bound at lower field
strengths by a maximum of about 0.12%. It is to be men-
tioned that the current work achieves the desired level of
accuracy with only a single configuration calculation, with-
out the aid of a basis of functions and without approxima-
tions for evaluating the electron potentials.

Additionally, it can be seen in Table III that estimates of
the binding energies of the first and second excited states of
the helium atom in strong magnetic fields, are again consis-
tent with the findings of other researchers �6,42,44,51,53�.
For the state M =−2, the range of improvement was between
10.7% maximum to about 0.2% minimum, over the entire
range 10−2

Z
10, relative to the eigenvalues obtained by
the researchers in Ref. �6�. Additionally, the range of im-
provement relative to the eigenvalues obtained by Jones et
al. �42,44�, can be seen to be 0.6% maximum to 0.1% mini-
mum. With regard to the eigenvalues obtained by the authors
in Ref. �51�, the extent of improvement was between 0.1%
minimum and 0.5% maximum. Toward higher magnetic field
strengths, it was observed that the improvements in the esti-
mates tended to drop; this is due to the fact that at such high
magnetic field strengths, for obtaining more accurate esti-
mates of the energies, greater computer memory was re-
quired to accommodate for finer meshes and this was not
possible within the framework of the current project. Simi-
larly, upon examining the data for the third state of helium,
M =0, it can be seen that the improvements with regard to
the data of Ref. �6� were in the range 0.1% minimum to

FIG. 5. Variation in the binding energy of the three tightly
bound states of helium M =−1, −2, and 0, with the magnetic field
strength parameter in the range 10−2

Z
10.
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17.5% maximum. With respect to the eigenvalues obtained
by Jones et al., the range of improvements of the current data
can be seen to be 0.1% minimum to 0.5% maximum. Addi-
tionally, with regard to the eigenvalues obtained by the au-

thors in Ref. �53�, the range of improvements of the current
data can be seen to be 0.03% minimum to 0.35% maximum.
It is to be mentioned that the estimates of the current work, a
straightforward single-configuration calculation, are consis-

TABLE III. Binding energies of the three states of helium M =−1, Sz=−1, �z= +1, M =−2, Sz=−1, �z= +1, and M =0, Sz=−1, �z=
−1. Energies are in units of rydberg energies in the Coulomb potential of nuclear charge Ze, where Z=2 for helium. Accurate data from other
work are also provided for comparison.

State 
Z Present study Ref. �6� Ref. �42� Ref. �44� Ref. �41� Ref. �52�

M =−1 1�10−2 1.1183�1� 1.1182 1.1183 1.1183 1.1183 1.1193

1s02p−1 2�10−2 1.1612�1� 1.1609 1.1626

5�10−2 1.2691�3� 1.2658 1.2683 1.2683 1.2704

7�10−2 1.3319�5� 1.3258 1.3303

1�10−1 1.4189�0� 1.4069 1.4150 1.4151 1.4151 1.4178

2�10−1 1.6585�3� 1.6270 1.6509 1.6508 1.6511 1.6544

5�10−1 2.1550�22� 2.0508 2.1475 2.1490 2.1492

7�10−1 2.4029�13� 2.2329 2.3927 2.3955 2.3960

1 2.7026�32� 2.4675 2.6897 2.7000 2.7003

2 3.4384�75� 3.2394 3.4333

5 4.7502�314� 4.5899 4.7441

7 5.3474�556� 5.3408

10 6.0543�791� 5.9206 6.0506 6.0507

State 
Z Present study Ref. �6� Ref. �42� Ref. �44� Ref. �51�

M =−2 1�10−2 1.0852�518� 1.0828 1.0832 1.0830 1.0833

1s03d−2 2�10−2 1.1234�228� 1.1207 1.1224

5�10−2 1.2175�154� 1.2097 1.2155 1.2160 1.2167

7�10−2 1.2732�165� 1.2596 1.2690

1�10−1 1.3510�134� 1.3266 1.3412 1.3436 1.3450

2�10−1 1.5598�75� 1.5073 1.5401 1.5503 1.5525

5�10−1 2.0009�740� 1.8508 1.9806 1.9945

7�10−1 2.2246�937� 1.9935 2.1800 2.2171

1 2.4981�845� 2.2572 2.4362 2.4933

2 3.1685�889� 2.9683 3.1634

5 4.3740�1035� 4.2161 4.3693

7 4.9268�1647� 4.9203

10 5.5851�3733� 5.4492 5.5770

State 
Z Present study Ref. �6� Ref. �42� Ref. �44� Ref. �53�

M =0 1�10−2 1.1029�9� 1.1016 1.1018 1.1016 1.1026

1s02p0 2�10−2 1.1336�41� 1.1314 1.1333

5�10−2 1.2135�80� 1.2028 1.2098 1.2099 1.2112

7�10−2 1.2573�17� 1.2421 1.2551

1�10−1 1.3231�15� 1.2933 1.3174 1.3174 1.3191

2�10−1 1.4988�25� 1.4197 1.4914 1.4914 1.4936

5�10−1 1.8647�11� 1.5864 1.8571 1.8593

7�10−1 2.0461�13� 1.7833 2.0349 2.0404

1 2.2685�16� 2.0304 2.2431 2.2641

2 2.8060�12� 2.6037 2.7989

5 3.7522�1098� 3.5916 3.7466

7 4.1817�323� 4.1762

10 4.6920�495� 4.5560 4.6862
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tent with results from full configuration-interaction studies
�51–53�, as well as with Monte Carlo simulations �42,44�.
Additionally, for the purposes of atmosphere models of neu-
tron stars and white dwarf stars, the models provided in
Table IV could be employed directly yielding accurate eigen-
values in the intermediate range of magnetic field strengths.

Finally, the wave functions for one of the electrons in the
state M =−1, �Z= +1 are plotted in Fig. 6, for four different
values of the magnetic field strength 
Z. For illustrating the
dramatic change in the structure of the atom with increasing
magnetic field strength, we chose to show the electron in the
state with quantum numbers m=−1, sz=−1 /2, �z= +1,
which is equivalent to the 2p−1 orbital, in the low-field limit.
The length units are Bohr radii of the helium atom, i.e.,
aB /Z, and the horizontal axis represents the direction perpen-
dicular to the magnetic field, while the vertical axis repre-
sents the direction parallel to the magnetic field, i.e., the z

direction in three-dimensional cylindrical coordinates. It can
be seen upon comparing Fig. 6�d� with Figs. 6�a�–6�c� that
the electron wave function shrinks considerably with increas-
ing magnetic field strength, and consequently the binding
energy increases.

VI. CONCLUSIONS

The work described here was motivated by the need to
have accurately determined values for the upper bounds of
the energy levels of atoms in strong magnetic fields. As was
discussed earlier, this need has arisen due to the presence of
strong magnetic fields in neutron stars and white dwarf stars.
The most commonly present atoms in the atmospheres of
these compact objects, hydrogen and helium, were studied
here with the intention of obtaining accurate estimates of the
energy levels of the first few low-lying states, in strong mag-
netic fields. We described a method adopting a physically
motivated approach, governed by the inherent symmetries of
the problem. We simultaneously circumvented the need for
adopting a definite basis of functions to describe the wave
functions of the electrons, in either of the directions, parallel
and perpendicular to the magnetic field. The approach is un-
restricted with regard to the wave function; it has the distinct
advantage over methods that require a basis of functions to
describe the wave functions, because in numerical solutions
one can have only a finite number of such functions. The
wave functions determined in the present study came about
naturally from the symmetries of the problem and are thus, in
effect, superpositions of a large number of basis functions.

Such an approach resulted in elliptic partial differential
equations for the electrons that were subsequently solved us-
ing finite-element techniques. It is to be noted that the com-
putational method adopted for determining the direct and
exchange interactions between the electrons in the helium
atom is also exact, in the sense that it does not rely upon any
ab initio assumptions to approximate the integrals. These
interaction potentials are solved in a natural manner by solv-
ing the elliptic partial differential equations �14� and �20�.
The eigenvalues found in the range of the magnetic field
strength parameter 10−2

 ,
Z
10 considered in this study
were seen to be consistent with previous findings
�6,41,42,44,51–53�. Rational functions were also used to find
sufficiently accurate interpolating functions for the binding
energies of various states of both the hydrogen and helium
atoms, in the range of magnetic fields considered herein.
These were seen to be accurate to �an average for all six fits�
within 0.5%. Potentially, such interpolating functions could
be used in atmosphere models of neutron stars and white
dwarf stars, thus obviating the need for involved and labori-
ous calculations of the same.

Thus, the current work describes an unrestricted and com-
putationally less intensive method for calculating the energy
levels of atoms in strong magnetic fields. There are in es-
sence three directions in which the current work could be
extended. First, the current work can be readily extended to
higher magnetic field strengths by using adaptive mesh re-
finement to incorporate the fact that the electrons become
increasingly bound. Simultaneously, the calculations and the

TABLE IV. Coefficients of the different rational functions for
fitting the three states of helium discussed. The maximum fractional
error of the eigenvalue relative to the fit from 
Z=10−2 to 101 was
2�10−3 in all cases.

State Coefficients State Coefficients

M =−1 a0=0.37102955 M =−2 a0=0.34851215

1s0 ;2p−1 a1=2.5169555 1s0 ;3d−2 a1=2.270714

a2=1.2836647 a2=1.1867799

a3=0.20177864 a3=0.18806319

b0=0.34352813 b0=0.33133095

M =0 a0=0.39592729

1s0 ;2p0 a1=2.1858926

a2=0.92947212

a3=0.14319581

b0=0.36821346

FIG. 6. �Color online� Plot of the real part of the wave function,
i.e., ��� ,z�, of one of the electrons comprising the M =−1 state of
the helium atom with quantum numbers m2=−1, sz=−1 /2, �= +1
in magnetic fields of strength corresponding to 
Z= �a� 10−2, �b�
10−1, �c� 1, and �d� 10. In �d� the relevant portion has been enlarged
for better visual inspection.

HYDROGEN AND HELIUM ATOMS IN STRONG MAGNETIC… PHYSICAL REVIEW A 79, 012514 �2009�

012514-11



software developed as a part of this study are readily extend-
able to systems with more than two electrons. In this regard,
it is to be noted that there is only limited work available in
the literature for atoms with more than two electrons. At this
juncture, the reader is referred to work carried out by
Schmelcher and co-workers over recent years on multielec-
tron atoms in magnetic fields, for accurate data for low-lying
states of these systems �73–79�. Finally, the procedures
implemented herein can also be extended toward a multicon-
figuration framework �80�. In essence, the calculations em-
ployed herein are for a single configuration of electrons and

a multiconfiguration approach is likely to improve the results
already obtained here.
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