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A polarization analysis of the fine-structure intervals for the n=17 Rydberg states of Mg and the n=29 states
of Si2+ is performed. The coefficients of all terms in the polarization expansion up to r−8 were computed using
a semiempirical single electron analysis combined with the relativistic all-order single-double method �MBPT-
SD� which includes all single-double excitations from the Dirac-Fock wave functions to all orders of pertur-
bation theory. The revised analysis yields dipole polarizabilities of �1=35.04�3� a.u. for Mg+ and �1

=7.433�25� a.u. for Si3+, values only marginally larger than those obtained in a previous analysis �E. L. Snow
and S. R. Lundeen, Phys. Rev. A 75, 062512 �2007�; 77, 052501 �2008��. The polarizabilities are used to make
estimates of the multiplet strength for the resonant transition for both ions. The revised analysis did see
significant changes in the slopes of the polarization plots. The dipole polarizabilities from the MBPT-SD
calculation, namely 35.05�12� a.u. and 7.419�16� a.u., are within 0.3% of the revised experimental values.
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I. INTRODUCTION

Resonant excitation Stark ionization spectroscopy
�RESIS� �1� is a versatile and powerful method for studying
Rydberg states of atoms and ions. One of the primary appli-
cations is the determination of deviations from the pure hy-
drogenic values of the binding energies. Polarization interac-
tions between the core and the Rydberg electrons lead to the
effective potential �1–3�

Vpol = −
C4

r4 −
C6

r6 −
C7

r7 −
C8

r8 −
C8LL�L + 1�

r8 + ¯ . �1�

The leading-order term is directly related to the static dipole
polarizability by the identity C4=�1 /2. The next term C6 is
related to the quadrupole polarizability, �2, and nonadiabatic
dipole polarizability, �1, through the relation C6= ��2
−6�1� /2. Equation �1� had been used as a cornerstone in the
analysis of the RESIS fine-structure spectrum of the Rydberg
states of neutral Mg and Si2+. This resulted in precise esti-
mates of the dipole polarizabilities of the Mg+ and Si3+

ground states �4–6�. Both of these ions are sodiumlike with
one valence electron orbiting the nucleus and the ten tightly
bound core electrons. The Mg+ dipole polarizability was
35.00�5� a.u. �6� and the Si3+ dipole polarizability was
7.426�12� a.u. �5�. Analysis of these spectra has also given
information about the quadrupole polarizabilities.

Investigations into atomic polarizabilities have implica-
tions that go beyond describing the response of the electron
charge distribution to the presence of an external electric
field. One of the most active areas in physics at present is the
development of new atomic clocks based on groups of neu-
tral atoms in optical lattices �7–9� or single atomic ions
�7,10�. These clocks have the potential to exceed the preci-
sion of the existing cesium microwave standard �11�. For
many of these clocks the single largest source of systematic
error is the blackbody radiation shift �BBR� �12–16�. The
BBR shift to first order is proportional to the difference in

polarizabilities of the two states involved in the clock tran-
sition. Many estimates of the relevant polarizabilities are de-
termined by theoretical calculations �17–19�. Comparisons of
existing techniques to calculate polarizabilities with high
quality experiments will ultimately help constrain the uncer-
tainties associated with the BBR shift.

One area of uncertainty in the RESIS analysis is the con-
tribution of the higher-order terms in the polarization expan-
sion. The desirable outcomes of a RESIS experiment are the
determination of C4 and C6. However, extracting precise val-
ues of C4 and C6 from the fine-structure spectrum is reliant
upon having reasonable estimates of the higher-order polar-
ization constants, namely C7, C8, and C8L. This is particu-
larly important in the case of C6. Analyses of the fine-
structure intervals that omit the higher-order polarization
potentials yield values of C6 and �2 that are quite different
from estimates from atomic structure theories �4–6�. Unfor-
tunately, the best analyses of RESIS data so far have not had
a complete description of all the individual terms that con-
tribute to C7, C8, and C8L. While the omission of some of the
higher-order polarizabilities would only be expected to have
a minor influence on C4, the possible impact on the derived
quadrupole polarizability is unknown and could easily be of
order 50%.

The present paper presents a theoretical analysis of the
polarizabilities of the Mg+ and Si3+ ions. The purpose of this
analysis is twofold. First, comparison with RESIS derived
dipole and quadrupole polarizabilities gives a stringent test
of the ability of atomic structure theories to correct predict
these polarizabilities for sodiumlike atoms. Second, all the
higher-order polarizabilities contributing to C7, C8, and C8L
were explicitly calculated. This permitted a more refined
analysis of the RESIS data. The reevaluation of the RESIS
experimental data gave dipole polarizabilities that were mar-
ginally largely than previously published values �5,6� and
quadrupole polarizabilities that were markedly different from
previously published values �5,6�.
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II. THE POLARIZATION EXPANSION

In this section the definitions of the various terms in the
polarization potential are given following the analysis of
Drachman �2,3�. The notation of Lundeen �1,5� is adopted.

The leading term, C4, is half the size of the static dipole
polarizability,

C4 =
�1

2
. �2�

The dipole polarizability is defined as

�1 = �
n

fgn
�1�

��Egn�2 , �3�

where fgn
�k� is the absorption oscillator strength for a dipole

transition from state g to state n. The absorption oscillator
strength for a multipole transition from g→n, with an energy
difference of �Eng=Eg−En is defined as

fgn
�k� =

2���g;Lg�rkCk�r̂���n;Ln	�2�Eng

�2k + 1��2Lg + 1�
. �4�

In this expression, Lg is the orbital angular momentum of the
initial state while k is the polarity of the transition. In a J
representation, the oscillator strength becomes

fgn
�k� =

2���g;Jg�rkCk�r̂���n;Jn	�2�Eng

�2k + 1��2Jg + 1�
. �5�

The next term, C6, is composed of two separate terms,

C6 =
�2 − 6�1

2
. �6�

The quadrupole polarizability �2 is computed as

�2 = � fgn
�2�

��Egn�2 . �7�

The second term in Eq. �6� is the nonadiabatic dipole polar-
izability. It is defined as

�1 = � fgn
�1�

2��Egn�3 . �8�

The r−7 term, C7, also comes in two parts, namely,

C7 = −
��112 + 3.2q�1�

2
. �9�

The �1 is a higher-order nonadiabatic term

�1 = � fgn
�1�

4��Egn�4 , �10�

while q is the charge on the core. The dipole-dipole-
quadrupole polarizability, �112 arises from third order in per-
turbation theory. It is derived from the matrix element
�2,5,20�

�112

2R7 = �
k1k2k3

�
nanb

��g;0�Vk1��na
;La	

�Engna
�Enbna

� ��na
;La�Vk2��nb

;Lb	

���nb
;Lb�Vk3��g;0	 , �11�

where Vk=Ck�r̂� ·Ck�R̂�rk /RK+1. The sum of the multipole
orders must obey k1+k2+k3=4. Quite a few terms contribute
to C8,

C8 =
�3 − �2 − �1�1 + �1111 + 72�1

2
. �12�

The octupole polarizability, �3, is computed as

�3 = � fgn
�3�

��Egn�2 . �13�

The �2 comes from the nonadiabatic part of the quadrupole
polarizability; it is

�2 = � fgn
�2�

2��Egn�3 . �14�

The fourth-order term, �1111, is related to the hyperpolariz-
ability �21,22�. It is defined as

�1111

2R8 = �
nanbnc

��ng
;0�V1��na

;La	

�Ega�Egb�Egc
��na

;La�V1��nb
;Lb	

���nb
;Lb�V1��nc

;Lc	��nc
;Lc�V1��g;0	 . �15�

The final term, C8L, is nonadiabatic in origin and defined

C8L =
18�1

5
. �16�

III. STRUCTURE MODELS FOR Mg+ AND Si3+

The Mg+ and Si3+ ions are sodiumlike systems that have
one valence electron orbiting the ten electrons in the
1s22s22p6 core. Two different methods are used to determine
the polarization response of these ions. One technique
supplements the Hartree-Fock �HF� core potential with a
semiempirical core polarization potential and effectively
solves a one-electron Schrödinger equation to determine the
excitation spectrum for the valence electron �23–25�. The
other method used is the relativistic all-order single-double
method where all single and double excitations of the Dirac-
Fock �DF� wave function are included to all orders of many-
body perturbation theory �MBPT� �26–28�. The agreement
between the HF plus core polarization �HFCP� calculation
and the MBPT calculation with single-double excitations
�MBPT-SD� will be seen to be excellent.

We note in passing that there has also been a recent con-
figuration interaction �CI� calculation of the polarizabilities
of the Mg+ and Si3+ ground states �29�. This CI calculation
gave dipole polarizabilities which were slightly larger than
the HFCP and MBPT-SD calculations. There has also been a
relativistic coupled-cluster �RCC� calculation �30� of the
Mg+ polarizabilities.
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A. Semiempirical method

The semiempirical wave functions and transition operator
expectation values were computed by diagonalizing the
semiempirical Hamiltonian �24,31–34� in a large mixed
Laguerre-type orbital �LTO� and Slater-type orbital �STO�
basis set �31�. We first discuss Si3+ and then mention Mg+.

The initial step was to perform a HF calculation to define
the core. The calculation of the Si3+ ground state was done in
a STO basis �35�. The core wave functions were then frozen,
giving the working Hamiltonian for the valence electron

H = −
1

2
�2 + Vdir�r� + Vexc�r� + Vp�r� . �17�

The direct and exchange interactions, Vdir and Vexc, of the
valence electron with the HF core were calculated exactly.
The �-dependent polarization potential, Vp, was semiempir-
ical in nature with the functional form

Vp�r� = − �
�m

�dg�
2�r�

2r4 ��m	��m� . �18�

The coefficient, �d, is the static dipole polarizability of the
core and g�

2�r�=1−exp�−r6 /��
6� is a cutoff function designed

to make the polarization potential finite at the origin. The
cutoff parameters, ��, were tuned to reproduce the binding
energies of the ns ground state and the np, nd, and nf excited
states. The energies of the states with �	1 were tuned to the
statistical average of their respective spin-orbit doublets. The
dipole polarizability for Si4+ was chosen as �d=0.1624 a.u.
�31,36�. The cutoff parameters for �=0→3 were 0.7473,
0.8200, 1.022, and 0.900a0, respectively. The parameters for
�
3 were set to �3. The Hamiltonian was diagonalized in a
very large orbital basis with about 50 LTOs for each � value.
The oscillator strengths �and other multipole expectation val-
ues� were computed with operators that included polarization
corrections �31,32,37–39�. The quadrupole core polarizabil-
ity was chosen as 0.1021 a.u. �36�, while the octupole polar-
izability was set to zero. The cutoff parameter for the polar-
ization correction to the transition operator was fixed at
0.864a0 �the average of �0, �1, �2, and �3�.

It is worth emphasizing that the model potential is based
on a realistic wave function and the direct and exchange
interactions with the core were computed without approxi-
mation from the HF wave function. Only the core polariza-
tion potential is described with an empirical potential.

The overall methodology of the Mg+ calculation is the
same as that for Si3+ and many of the details have been given
previously �18�. The core polarizabilities were �1,core
=0.4814 a.u. �23,31� and �2,core=0.5183 a.u. for Mg2+

�31,36�. The octupole polarizability was set to zero. The
Mg2+ cutoff parameters for �=0→3 were 1.1795, 1.302,
1.442, and 1.520a0, respectively. The cutoff parameter for
evaluation of transition multipole matrix elements was
1.361a0.

The HFCP calculations of the polarizabilities utilized the
list of multipole matrix elements and energies resulting from
the diagonalization of the effective Hamiltonian. These were
directly used in the evaluation of the polarizability sum rules.

B. The all-order method

In the relativistic all-order method including single,
double, and valence triple excitations, the wave function is
represented as an expansion,

��v	 = 
1 + �
ma

�maam
† aa +

1

2 �
mnab

�mnabam
† an

†abaa

+ �
m�v

�mvam
† av + �

mna

�mnvaam
† an

†aaav

+
1

6 �
mnrab

�mnrvabam
† an

†ar
†abaaav���v	 , �19�

where �v is the lowest-order atomic state wave function,
which is taken to be the frozen-core DF wave function of a
state v in our calculations. In second quantization, the
lowest-order atomic state function is written as

��v	 = av
†�0C	 ,

where �0C	 represents the DF wave function of the closed
core. In Eq. �19�, ai

† and ai are creation and annihilation
operators, respectively. Indices at the beginning of the alpha-
bet, a ,b , . . ., refer to occupied core states, those in the middle
of the alphabet m ,n , . . ., refer to excited states, and index v
designates the valence orbital. We refer to �ma, �mv as single
core and valence excitation coefficients and to �mnab and
�mnva as double core and valence excitation coefficients, re-
spectively. The quantities �mnrvab are valence triple excitation
coefficients and are included perturbatively where necessary
as described in Ref. �27�.

To derive the equations for the excitation coefficients, the
wave function �v, given by Eq. �19�, is substituted into the
many-body Schrödinger equation

H��v	 = E��v	 , �20�

where the Hamiltonian H is the relativistic no-pair Hamil-
tonian �40�. This can be expressed in second quantization as

H = �
i


i:ai
†ai: +

1

2�
ijkl

gijkl:ai
†aj

†alak: , �21�

where 
i is the DF energy for the state i, gijkl are the two-
body Coulomb integrals, and � indicates normal order of the
operators with respect to the closed core. In the no-pair
Hamiltonian, the contributions from negative-energy �posi-
tron� states are omitted.

The resulting all-order equations for the excitation coeffi-
cients �ma, �mv, �mnab, and �mnva are solved iteratively with a
finite basis set, and the correlation energy is used as a con-
vergence parameter. As a result, the series of correlation cor-
rection terms included in the SD �or SDpT� approach are
included to all orders of MBPT as an additional MBPT order
is picked up at each iteration. The basis set is defined in a
spherical cavity on a nonlinear grid and consists of single-
particle basis states which are linear combinations of B
splines �41�. The contribution from the Breit interaction is
negligible for all matrix elements considered in this work.

The matrix element of any one-body operator Z in the
all-order method is obtained as
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Zvw =
��v�Z��w	

���v��v	��w��w	
. �22�

The numerator of the resulting expression consists of the
sum of the DF matrix element zwv and twenty other terms
Z�k�, k=a¯ t. These terms are linear or quadratic functions of
the excitation coefficients �ma, �mv, �mnab, and �mnva. More
details on the SD and SDpT methods and their applications
can be found in Refs. �27,28,42�. We find that the contribu-
tion of triple excitations is small for the atomic properties
considered in this work. So the SD approximation is used for
most transitions.

The B-spline basis used in the calculations included N
=50 basis orbitals for each angular momentum within a cav-
ity radius of R0=100a0 for Mg+ and R0=80a0 for Si3+. Such
large cavities are needed to fit highly excited states such as
8h needed for the 3d octupole polarizability calculations.
The single-double �SD� all-order method yielded results for
the primary ns-npj electric-dipole matrix elements of alkali-
metal atoms that are in agreement with experiment to 0.1%–
0.5% �27�. We identify results obtained with this method as
MBPT-SD in the subsequent text and tables.

Since the all-order calculations are carried out with a fi-
nite basis set, the sums given by Eqs. �3�–�13� run up to the
number of the basis set orbitals �N=50� for each partial
wave. For consistency, the same B-spline basis is used in all
calculations of the same system �e.g., Mg+ or Si3+�.

The calculation of the polarizabilities for the MBPT-SD
uses slightly different procedures to include different parts of
the polarizability sum rules. The all-order matrix elements
were combined with the experimental energies for excited
states with n�6 for �=ns ,np1/2 ,np3/2 ,nd3/2 ,nd5/2, n�7 for
�=nf5/2 ,nf7/2, and n�8 for �=ng7/2 ,ng9/2 ,nh9/2 ,nh11/2. The
remaining matrix elements and energies were calculated in
the DF approximation, with the exception of the 3s dipole
polarizability, where the remaining matrix elements were cal-
culated using the random-phase approximation �RPA� �43�
for the purpose of error evaluation. These remainder contri-
butions are small for dipole polarizabilities �0.2–5 %� but
increase in relative size for the quadrupole �0.3–10 %� and
octupole �4–20 %� polarizabilities. An extra correction was
introduced to the remainder contribution for octupole polar-
izabilities. First, the accuracy of the DF calculations was
estimated from a comparison of the DF and all-order results
for the few first terms. Then, these estimates were used to
adjust the remainder. The improvement of the DF results for
states with higher n was also taken into account. The size of
this extra correction ranged from 0.9% to 6% of the tail
contributions as the accuracy of the DF approximation for
these highly excited states is rather high. The net effect of
this scaling was usually to reduce the octupole polarizabil-
ities by an amount of about 0.5–1.5 %.

The core contribution was calculated in the RPA �36� with
the exception of the dipole polarizability for the Mg2+ core.
In this case the polarizability of �d=0.4814 a.u. was taken
from a pseudonatural orbital CI type calculation �23,31�. A
small �cv correction for the dipole polarizability that com-
pensates for excitations from the core to occupied valence
states was also determined using RPA matrix elements and

DF energies. The relative impact of the core polarizability
was at least a factor of 2 smaller for the quadrupole polariz-
ability.

IV. GROUND AND EXCITED PROPERTIES

A. The energy levels

The binding energies of the low-lying states of the Mg+

and Si3+ are tabulated and compared with experiment in
Table I. The agreement between the HFCP energies and the
experimental energies is generally of order 10−4 hartree.
When the �� cutoff parameters are tuned to the lowest state
of each symmetry the tendency is for higher states of the
same symmetry to be slightly underbound. The MBPT-SD
binding energies generally agree with experiment to better
than 10−4 hartree. The MBPT-SD binding energies do not
exhibit any systematic tendency to either underbind or
overbind as n increases.

B. Line strengths

Table II lists the line strengths for the resonant transitions
of Na, Mg+, Al2+, and Si3+. All line strengths here and in the

TABLE I. Theoretical and experimental energy levels �in har-
tree� of some of the low-lying states of the Mg+ and Si3+ ions. The
energies are given relative to the energy of the Mg2+ and Sr4+ cores.
The experimental energies are taken from the National Institute of
Standards and Technology database �44�. The HFCP energies
should be interpreted as the J weighted average of the spin-orbit
doublet.

State Experiment MBPT-SD HFCP

Mg+

3s1/2 −0.552536 −0.552522 −0.552536

3p1/2 −0.390015 −0.390030 −0.389737

3p3/2 −0.389597 −0.389611

4s1/2 −0.234481 −0.234470 −0.234323

3d5/2 −0.226803 −0.226772 −0.226804

3d3/2 −0.226799 −0.226768

4p1/2 −0.185206 −0.185210 −0.185014

4p3/2 −0.185067 −0.185071

4d5/2 −0.127382 −0.127374 −0.127373

4d3/2 −0.127379 −0.127372

Si3+

3s1/2 −1.658930 −1.658973 −1.658928

3p1/2 −1.334120 −1.334094 −1.332738

3p3/2 −1.332019 −1.331999

3d5/2 −0.928210 −0.928138 −0.928302

3d3/2 −0.928205 −0.928134

4s1/2 −0.775097 −0.775104 −0.774681

4p1/2 −0.664433 −0.664421 −0.663640

4p3/2 −0.663696 −0.663684

4d5/2 −0.519810 −0.519800 −0.519743

4d3/2 −0.519809 −0.519799

4f5/2 −0.501044 −0.501044 −0.501033

4f7/2 −0.501032 −0.501035
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text below are given in a.u. The HFCP values for sodium are
from calculations previously reported in Ref. �58� while the
values for Al2+ were taken from a calculation very similar in
style and execution to the present calculations �59�. The
MBPT-SD line strengths for Na and Al2+ were taken from
Ref. �26�. Values from the extensive tabulation of dipole line
strengths using a B-spline nonorthogonal configuration inter-
action with the Breit interaction �BSR-CI� �60� are also
listed. The HFCP line strengths were computed from a com-
mon multiplet strength by multiplying by the appropriate re-
coupling coefficients �61�.

The comparisons for the resonant 3s→3p transition re-
veal that the HFCP line strengths are the smallest, the
BSR-CI line strengths are the largest, and the MBPT-SD line
strengths are intermediate between these two calculations.
The MBPT-SD dipole strengths are closer to HFCP for Na,
Mg+, and Al2+ and about half-way between HFCP and
BSR-CI for Si3+. The total variation between the three dif-
ferent calculations is about 1%. The most precise experi-
ments performed on the Na-like isoelectronic series of atoms
�ions� are those performed on sodium itself �45–49�. The
experimental line strengths for sodium are in better agree-
ment with the MBPT-SD and HFCP line strengths than they
are with the BSR-CI line strengths.

There have been two precision measurements of the
3s→3p transition rate for Mg+. The experiment of Ans-
bacher et al. �50� gave slightly larger line strengths which
agree best with the BSR-CI values. However, the most recent
trapped ion experiment �51� gave a 3s1/2→3p3/2 line strength
of 11.24�6� that is in better agreement with the HFCP and
MBPT-SD line strengths.

Table III lists the line strengths for a number of other
dipole transitions for Mg+ and Si3+. The line strengths for the
quadrupole 3s→nd transitions are also listed due to their
importance in the determination of the quadrupole polariz-
abilities.

The 3p→3d transition is the strongest transition emanat-
ing from the 3p level. The comparison between the three
calculations exhibits a pattern similar to that of the resonant
transition. The HFCP line strengths are smallest, the BSR-CI
line strengths are the largest, and the MBPT-SD line
strengths lie somewhere between these two calculations.

The astrophysically important Mg+ 3s→4p transition has
a very small dipole strength. It is close to the Cooper mini-
mum �62� in the 3s→np matrix elements and therefore is
more sensitive to the slightly different energies between the
spin-orbit doublet. This caused the ratio of line strengths for
the 4p1/2 and 4p3/2 transitions to deviate from the expected
value of 2. The MBPT-SD branching ratio of 1.76 agrees
with the recent experimental values of 1.74�6� �63� and
1.82�8� �63,64�. The HFCP multiplet strength of 0.00752 and
the MBPT-SD multiplet strength of 0.00721 are about
5–10 % smaller than the recent experimental estimates of
0.007 93�26� �63� and 0.007 75�50� �63,64�.

There is also a deviation from the ratio of 2 for the
3s→4p1/2,3/2 transitions of Si3+. However, in this case the
deviation is smaller. Ratios of line strengths for the stronger
transitions are much closer to values expected from purely
angular recoupling considerations. The 3p3/2 :3p1/2 ratio for
Si3+ was 2.002. The 3p→4s transition ratio has a slight de-
viation from 2, with the MBPT-SD calculations giving 2.015
for Mg+ and 2.006 for Si3+ �the BSR-CI ratios are similar�.

The better than 0.5% agreement between the model po-
tential and MBPT-SD line strengths for strong transitions is
consistent with previous comparisons. The general level of
agreement between calculations with a semiempirical core
potential and more sophisticated ab initio approaches for
properties such as oscillator strengths, polarizabilities, and
dispersion coefficients has generally been very good
�31,65–67�. There was a tendency for the agreement between
the HFCP and MBPT-SD line strengths to degrade slightly
from Mg+ and Si3+. This is probably due to the increased
importance of relativistic effects as the nuclear charge in-
creases.

C. Polarizabilities

The polarizabilities of the 3s, 3p, and 3d levels of Mg+

and Si3+ as computed by the HFCP and MBPT-SD calcula-
tions are listed in Table IV. Tensor polarizabilities are also
determined for the 3p and 3d levels. Definitions of the tensor
polarizability, �1,2JJ, in terms of oscillator strength sum rules
can be found in Refs. �68,69�.

Table V gives a short breakdown of the contributions of
different terms to the dipole polarizability while Table VI
gives the breakdown for the quadrupole polarizability. The
3s→�p�d� contribution represents anything over n=6 and
can be regarded as a mix of some higher discrete states as
well as the pseudocontinuum. Polarizabilities for the Mg+

and Si3+ ground states from other sources are also listed in

TABLE II. Line strengths �in a.u.� for the resonance transitions
of Na, Mg+, Al2+, and Si3+. Experimental values with citations are
also given. The MBPT-SD results for Na and Al2+ are taken from
�26�.

Transition HFCP MBPT-SD BSR-CI Experiment

Na

S3s-3p1/2
�1� 12.44 12.47 12.60 12.412�16� �45,46�

12.435�41� �47�
S3s-3p3/2

�1� 24.88 24.94 25.20 24.876�24� �48�
24.818�34� �45,46�

24.844�54� �49�
Mg+

S3s-3p1/2
�1� 5.602 5.612 5.644 5.645�44� �50�

S3s-3p3/2
�1� 11.20 11.23 11.29 11.33�12� �50�

11.24�6� �51�
Al2+

S3s-3p1/2
�1� 3.398 3.404 3.422 3.01�29� �52�

3.11�15� �53�
3.31�35� �54�

S3s-3p3/2
�1� 6.796 6.817 6.851 6.02�57� �52�

6.35�45� �53�
Si3+

S3s-3p1/2
�1� 2.333 2.341 2.350 2.35�10� �55�

S3s-3p3/2
�1� 4.666 4.686 4.707 4.70�20� �55�
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Tables V and VI. The HFCP Mg+ polarizability is marginally
smaller than that reported previously �18� since the present
evaluation includes a small core-valence correction.

The very good agreement between the HFCP and
MBPT-SD polarizabilities is a notable feature of Table IV.
None of the static polarizabilities differ by more than 0.5%

with the exception being the �2 of the Mg+ 3d state. Here the
difference is caused by the very small �E3d-4s energy differ-
ence which is sensitive to small errors in the HFCP energies.
The relative difference between some of the tensor polariz-
abilities is larger, but this is due to cancellations between the

TABLE III. Line strengths �in a.u.� for various transitions of Mg+ and Si3+. The line strengths are mainly
for dipole transitions with the exception of the 3s→3d and 3s→4d transitions.

Transition

Mg+ Si3+

HFCP MBPT-SD BSR-CI HFCP MBPT-SD BSR-CI

S3s-4p1/2
�1� 0.00251 0.00261 0.00211 0.0382 0.0385 0.0385

S3s-4p3/2
�1� 0.00501 0.00460 0.00362 0.0764 0.0744 0.0738

S3s-5p1/2
�1� 0.00395 0.00402 0.00366 0.0138 0.0139 0.0138

S3s-5p3/2
�1� 0.00790 0.00763 0.00692 0.0276 0.0270 0.0268

S3p1/2-4s
�1� 2.887 2.868 2.886 0.6410 0.6334 0.6328

S3p3/2-4s
�1� 5.773 5.779 5.815 1.282 1.284 1.283

S3p1/2-5s
�1� 0.2117 0.2115 0.0633 0.0629

S3p3/2-5s
�1� 0.4247 0.4243 0.1284 0.1267

S3p1/2-3d3/2
�1� 17.32 17.29 17.35 5.923 5.933 5.955

S3p3/2-3d3/2
�1� 3.463 3.468 3.482 1.185 1.190 1.195

S3p3/2-3d5/2
�1� 31.17 31.21 31.33 10.66 10.71 10.75

S3p1/2-4d3/2
�1� 0.4100 0.4168 0.4631 0.0234 0.0212 0.0204

S3p3/2-4d3/2
�1� 0.0820 0.0825 0.0918 0.00468 0.00455 0.00438

S3p3/2-4d5/2
�1� 0.7380 0.7423 0.8291 0.0421 0.0410 0.0395

S3s-3d3/2
�2� 97.52 97.51 16.81 16.85

S3s-3d5/2
�2� 146.3 146.3 25.21 25.27

S3s-4d3/2
�2� 3.615 3.638 0.2732 0.2659

S3s-4d5/2
�2� 5.422 5.455 0.4098 0.3986

TABLE IV. The polarizabilities for the 3s, 3p, and 3d states of Mg+ and Si3+. The tensor polarizabilities
are for the MJ=J states. For states with �
0, the MBPT-SD average values represent the weighted values for
the spin-orbit doublet.

State

�1 �a.u.� �1,2JJ �a.u.� �2 �a.u.� �3 �a.u.�

HFCP MBPT-SD HFCP MBPT HFCP MBPT-SD HFCP MBPT-SD

Mg+�3s� 34.99 35.05 0 0 156.1 156.1 1715 1719

Mg+�3p1/2� 31.60 0 0 340.2 11778

Mg+�3p3/2� 31.88 1.162 1.156 343.0 11879

Mg+�3p-average� 31.79 31.79 341.7 342.1 11839 11845

Mg+�3d3/2� 189.3 −78.47 −79.15 −9336 2.857�105

Mg+�3d3/2� 188.6 −112.1 −112.2 −9341 2.860�105

Mg+�3d-average� 189.5 188.9 −9611 −9339 2.855�105 2.859�105

Si3+�3s� 7.399 7.419 0 0 12.13 12.15 47.03 47.15

Si3+�3p1/2� 3.120 0 0 13.05 155.1

Si3+�3p3/2� 3.183 1.459 1.462 13.21 157.1

Si3+�3p-average� 3.158 3.162 13.17 13.16 156.3 156.5

Si3+�3d3/2� 5.168 −0.6083 −0.631 58.61 695.2

Si3+�3d5/2� 5.131 −0.8690 −0.848 58.61 696.2

Si3+�3d-average� 5.135 5.146 58.43 58.61 693.2 695.8
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component sum rules that are combined to give the tensor
polarizability.

A recent CI calculation of the Mg+ and Si3+ ground state
dipole polarizabilities �29� gave polarizabilities that were
1–2 % larger than the HFCP and MBPT-SD polarizabilities.
The more recent RCC �30� gave polarizabilities that were
compatible with the present values.

The dipole polarizabilities for both Mg+ and Si3+ are
dominated by the resonant oscillator strength. For Mg+ one
finds that 98.3% of �1 arises from the 3s→3p transition. For
Si3+ the contribution is smaller but still substantial at 96.7%.
The nonadiabatic dipole polarizabilities are even more domi-
nated by the contribution from the resonant transition. One
finds that 99.9% of �1 and 99.99% of �1 for Mg+ come from

this transition. The proportions for the Si3+ �1 and �1 are
99.6% and 99.92%, respectively.

The quadrupole polarizabilities are also dominated by a
single transition. Table VI shows that the 3s→3d excitation
constitutes at least 95% of �2 for both Mg+ and Si3+.

Table VII lists gives the polarizabilities from a composite
list of matrix elements. These polarizabilities combine the
best features of the HFCP and MBPT-SD calculations and
can be regarded as the recommended set of polarizabilities.

The HFCP calculation automatically generated a file con-
taining matrix elements between every state included in the
basis. The more computationally intensive MBPT-SD calcu-
lation were used to replace the largest and most important
matrix elements in the HFCP lists. The HFCP matrix ele-
ments for the 3s→3p, 3p→3d, 3s→3d, and 3p→4s tran-
sitions were replaced by J weighted averages of the equiva-
lent MBPT-SD matrix elements. The HFCP matrix elements
were retained for the 3s→�p�d� remainders since they are
more accurate than the RPA-DF matrix elements that were
part of the MBPT-SD evaluation. It did not matter whether
HFCP or MBPT-SD matrix elements were retained for the
3s→ �4–6�p�d� excitations since these matrix elements were
very small and there was not much difference between the
HFCP and MBPT-SD matrix elements. This use of a com-
posite list of matrix elements combined the higher accuracy
of the MBPT-SD calculation for the most important low-
lying transitions with the computational convenience of the
marginally less accurate HFCP calculation.

The only difference between Table VII and MBPT-SD
polarizabilities occurs for �3. A relatively large part of �3

TABLE V. Breakdown of the different contributions to the di-
pole polarizabilities of Mg+ and Si3+. The 
p contribution includes
both pseudostate and continuum states. Dipole polarizabilities from
other sources are also listed with citation. The estimated uncertain-
ties for the different components of the uncertainty are given in
brackets. The RESIS reanalysis are taken from the reanalysis of the
RESIS fine-structure intervals described later.

Quantity

Mg+ Si3+

HFCP MBPT-SD HFCP MBPT-SD

3s→3p 34.413 34.478�100� 7.153 7.180�6�
3s→ �4–6�p 0.021 0.020�0� 0.054 0.053�0�
3s→
p 0.091 0.087�4� 0.030 0.029�1�
Core 0.481 0.481�10� 0.162 0.162�8�
Core-valence −0.018 −0.018�2� −0.005 −0.005�1�
Total 34.99 35.05�12� 7.394 7.419�16�
CI �29� 35.66 7.50

RESIS �5,6� 35.00�5� 7.426�12�
Laser Expt. �56� 33.80�50�
f sums �57� 35.1

RCC �30� 35.04

RESIS reanalysis 35.04�3� 7.433�25�

TABLE VI. Breakdown of the different contributions to the
quadrupole polarizabilities of Mg+ and Si3+. The 
p contribution
includes both pseudostate and continuum states. The quadrupole
polarizabilities from a RESIS analysis is listed.

Quantity

Mg+ Si3+

HFCP MBPT-SD HFCP MBPT-SD

3s→3d 149.69 149.68�32� 11.502 11.529�9�
3s→ �4–6�d 4.99 5.01�4� 0.240 0.235�0�
3s→
d 0.86 0.85�6� 0.289 0.280�8�
Core 0.52 0.52�6� 0.102 0.102�12�
Total 156.1 156.1�5� 12.13 12.15�3�
RESIS �5,6� 222�54�
RCC �30� 156.0

TABLE VII. The polarizabilities and Cn parameters computed
from the composite list of HFCP and MBPT-SD matrix elements.
The parameters tabulated here can be regarded as the recommended
theoretical values. The C7, C8, and C8L parameters were used in the
analysis the RESIS spectra for Mg+ and Si3+. The B4 and B6 values
are derived from the polarization plot analysis of the RESIS energy
intervals. The B6 uncertainties are purely statistical in nature while
the B4 uncertainties take into account systematic errors resulting
from the use of Eq. �1�.

Quantity Mg+ Si3+

�1 35.05�12� 7.419�16�
�2 156.1�5� 12.15�3�
�3 1715�6� 47.03�12�
�1 106.0�3� 11.04�1�
�2 236.1�5� 8.065�6�
�1 324.7�9� 16.82�1�
�112 2416�52� 89.74�41�
�1111 3511�90� 51.19�28�
C4 17.53�6� 3.710�8�
C6 −240.1�12� −27.06�4�
C7 −1727�27� −125.6�2�
C8 10672�92� 553.1�6�
C8L 1169�3� 60.54�5�
B4 17.522�15� 3.716�12�
B6 −251.2�79� −30.96�134�
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comes from the higher excited states and the continuum. Ac-
cumulating a lot of small contributions is tedious for the
computationally expensive MBPT-SD, so this is done with
the less accurate DF approach. In this case the HFCP polar-
izability was probably more accurate than the MBPT-SD po-
larizability. It should be noted that the octupole polarizability
is of minor importance in the subsequent analysis.

The composite list of matrix elements was also used for
the calculation of the third-order �112 polarizability and the
fourth-order �1111 polarizability. The biggest change in �112
and �1111 resulting from using the composite matrix element
list was less than 0.3%. The �112 and �1111 polarizabilities
did not allow for contributions from the core. The impact of
the core will be small due to large energy difference involv-
ing core excitations. The relative effect of the core for �112
and �1111 can be expected to be about as large as the core
effect in the ground state �1 and �2 since there are core
excitations that contribute with only one core energy in the
energy denominator. For example, consider the �112 excita-
tion sequence of 2p63s 2Se→2p53s3d 2Po→2p63d 2De

→2p63s 2Se.
The numerical procedures used to generate the �112 and

�1111 polarizabilities were validated for He+. A calculation of
the He+ excitation spectrum was performed and the resulting
lists of reduced matrix elements were entered into the polar-
izability programs. All the coefficients given by Drachman
�70� were reproduced.

D. Error assessment

Making an a priori assessment of the accuracy of the
HFCP polarizabilities is problematic since they are semi-
empirical in nature. The error assessment for the MBPT-SD
proceeds by assuming that the total contribution of fourth-
and higher-order terms omitted by the SD all-order method
does not exceed the contribution of already included fourth-
and higher-order terms. Thus, the uncertainty of the SD ma-
trix elements is estimated to be the difference between the
SD all-order calculations and third-order results.

This procedure was applied to the S3s-3p1/2
line strength of

sodium yielding an uncertainty �S3s-3p1/2
=0.092. This uncer-

tainty exceeds the difference between the SD line strength of
12.47 �26� and recent high precision experiments which give
12.412�16� �45,46�, and 12.435�41� �47�. A similar situation
applies for the S3s-3p3/2

line strength.
A detailed first principles evaluation of the uncertainty of

the Si3+ static dipole polarizability has been done and the
uncertainty budget is itemized in Table V. In this case, the
difference between the SD line strength and third-order line
strength for the resonance transition was 0.082%. The uncer-
tainties in the remaining �n=4–6� discrete transitions were
of similar size. Uncertainties in the energies used in the os-
cillator strength sum rule can be regarded as insignificant
since experimental energies were used. To estimate the accu-
racy of the remainder of the valence sum, the �n=4–6� cal-
culation was repeated using RPA matrix elements and DF
energies. The difference of 3% between the MBPT-SD and
DF-RPA values was assessed to be the uncertainty in the �p
remainder. The good agreement between the HFCP and DF-

RPA values for the nonresonant valence contribution gives
additional evidence that the uncertainty estimate is realistic.

The core dipole polarizability calculated in the RPA is
known to underestimate the actual core polarizability. For
neon, the RPA gives �1=2.38 a.u. �36� which is 11% smaller
than the experimental value of 2.669 a.u. �71�. For Na+, the
RPA gives 0.9457 a.u. �36� while experiment gives
1.0015�15� a.u. �72�. The pseudonatural orbital approach
used for Mg2+ gave �1=2.67 a.u. for Ne �73� and �1
=0.9947 a.u. for Na+ �23�. The uncertainty in the quadrupole
core polarizability is based on comparisons with coupled
cluster calculations for neon �74,75�. The RPA value of
6.423 a.u. is about 12% smaller than the coupled cluster val-
ues of 7.525 a.u. �75� and 7.525 a.u. �74�. The relative un-
certainties are ��1�Mg2+�=2%, ��1�Si4+�=5%, ��2�Mg2+�
=12%, and ��2�Si4+�=12%. The core-valence correction
was assigned an uncertainty of 20% based on differences
between DF and RPA matrix elements. The RPA error esti-
mates are likely to be very conservative since the uncertainty
in the RPA polarizabilities is expected to decrease as the
nuclear charge increases.

Combining the uncertainties in the valence and core po-
larizabilities for Si3+ gives a final uncertainty of 0.16 a.u. �or
0.22%� in the MBPT-SD �1.

The uncertainty in the Si3+ �2 listed in Table VI was
evaluated with a process that was similar to the dipole polar-
izability. The difference between the SD line strength and
third order line strength for the 3s→3d5/2 transition was
0.064% �the relative uncertainty was almost the same for the
transition to the 3d3/2 state�. This uncertainty is slightly
smaller than that for the resonant dipole transition. This was
expected since the 3d electron is further away from the
nucleus than the 3p electron and therefore correlation-
polarization corrections have less importance. Rather than do
a computationally expensive analysis, the relative uncertain-
ties in the �nd+
d� remainders were conservatively assigned
to be same as those for the dipole transitions. The final un-
certainty was ��2=0.03 a.u..

The relative uncertainties in the Mg+ polarizabilities are
set in the same way as Si3+. The difference between the
third-order and all-order dipole line strengths for the reso-
nance transition was 0.3%. The relative differences were
larger for the n=4–6 transitions due to their small size. For
example, the third-order to all-order comparison for the
S3s-4p multiplet strength gave 5%. This is consistent with the
difference with the experimental multiplet strength. The un-
certainties were slightly smaller for the slightly larger 5p and
6p transitions. However, the net contribution to the uncer-
tainty was miniscule since the line strengths were so small.
The 3s→�p uncertainty of 5% was based on differences
between the HFCP and DF-RPA matrix elements.

The n=3–6 transition uncertainties in the Mg+ �2 polar-
izability listed in Table VI were derived from the third-order
to all-order comparison. The relative uncertainty in the 3s
→3d transition was 0.22%. The very good agreement be-
tween the HFCP and MBPT-SD values for these terms is
further supportive of a small uncertainty for the n=3–6 tran-
sitions. The 7% uncertainty in the 3d→�d remainder was
based on the differences between the MBPT-SD and DF ma-
trix elements.
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The relative uncertainties in the octupole polarizabilities
listed in Table VII were set to the uncertainties in the quad-
rupole polarizabilities. The nf orbitals are further away from
the core than the 3d orbitals and so the �2 uncertainty serves
as a convenient overestimate.

The uncertainties in the higher-order polarizabilities �1,
�2, and �1 listed in Table VII were taken to be the uncertain-
ties in the resonant line strengths. The higher powers in the
energy denominator means other transition make a negligible
contribution.

The uncertainties in �112 and �1111 were derived from the
uncertainties in the reduced matrix elements. The relative
uncertainties for the most important 3s→3p, 3p→3d, and
3s→3d matrix elements were simply added to give relative
uncertainties for valence part of �112 and �1111. The relative
uncertainty resulting from the omission of core excitations
was taken as the ratio of the core to total dipole polarizabil-
ity. This was added to the �112 and �1111 uncertainties.

The uncertainties in C6, C7, C8, and C8L were determined
by combining the uncertainties of the constituent polarizabil-
ities. The most important of these parameters is the expected
slope of the polarization plot, i.e., �C6=��2 /2+3��1. For
Si3+ we obtain �C6=0.015+0.027=0.042. For Mg+ the un-
certainty was �C6=1.2.

V. POLARIZATION ANALYSIS OF RYDBERG STATES

A. The polarization interaction

The various polarizabilities needed for the polarization
analysis were taken from composite calculation listed in
Table VII. In this section we use the C7, C8, and C8L values
from Table VII to revisit the analysis of the RESIS data �5,6�
and deduce improved values of the dipole and quadrupole
polarizabilities.

Estimates of C7 and C8L were previously made by Snow
and Lundeen �5� using MBPT-SD transition amplitudes for
the lowest lying transitions. These earlier estimates are
within a few percent of the present more sophisticated analy-

sis. The Snow and Lundeen values for C7 were −1684�9� a.u.
for Mg+ and −122�9� a.u. for Si3+. They are a few percent
smaller than those listed in Table VII due to the omission of
higher excitations from the sum rule. The Snow and Lundeen
values for C8L were 1170�12� a.u. for Mg+ and 60.5 a.u. for
Si3+.

One aspect of Table VII that is relevant to the interpreta-
tion of experiments is the importance of the nonadiabatic
dipole polarizabilities. Consider Mg+, for example. The re-
spective contributions to C6 are 78.05 a.u. from �2 and
−318.0 a.u. from −6�2. Similarly, one finds that the �1 term
of −1.6�324.7 makes up 30% of the final C7 value of
−1727 a.u. And finally, one finds that the C8 value of 10 672
is largely due to the 36�1 contribution of 11 689 a.u. The
degree of importance of the nonadiabatic terms scarcely di-
minishes for the Si3+ ion.

Table VIII gives the energy shifts to the n=17 levels of
Mg+ and the n=29 levels of Si3+ using the values in Table
VII. The energy shifts need �r−n	 expectation values which
were evaluated using the formulas of Bockasten �76�.

B. The polarization plot

Polarizabilities can be extracted from experimental data
by using a polarization plot. This is based on a similar pro-
cedure that is used to determine the ionization limits of at-
oms �77�. The notations B4 and B6 �instead of C4 and C6� are
used to denote the polarization parameters extracted from the
polarization plot analysis. This is to clearly distinguish them
from polarization parameters coming from atomic structure
calculation. Assuming the dominant terms leading to depar-
tures from hydrogenic energies are the B4 and B6 terms, one
can write

�E

��r−4	
= B4 + B6

��r−6	
��r−4	

. �23�

In this expression, �E is the energy difference between two
states of the same n but different L, while ��r−6	 and ��r−4	

TABLE VIII. Various energy corrections �in units of MHz� for the n=17 intervals of Mg+ and the n=29 intervals of Si3+. These were
computed using Cn values of Table VII.

n L1 L2 �Erel �E4 �E6 �E7 �E8 �E8L �Esec �Ess

Mg+

17 6 7 0.7314 1555.7935 −53.7751 −20.4880 7.1989 31.5551 8.1506 −0.1122

17 7 8 0.5593 678.8962 −12.6733 −3.4612 0.8512 4.9308 1.5012 −0.1702

17 8 9 0.4416 326.8907 −3.5557 −0.7292 0.1327 0.9816 0.3393 −0.2320

17 9 10 0.3575 169.8765 −1.1373 −0.1808 0.0253 0.2325 0.0896 −0.2723

17 10 11 0.2953 93.8138 −0.4026 −0.0508 0.0056 0.0627 0.0267 −0.3039

Si3+

29 8 9 7.2052 1172.2322 −67.1286 −27.9320 11.3800 83.6138 2.4220 −0.1658

29 9 10 5.8328 614.9317 −22.2670 −7.2876 2.3124 21.0913 0.6574 −0.3049

29 10 11 4.8184 343.2123 −8.2257 −2.1728 0.5526 6.1258 0.2026 −0.4199

29 11 12 4.0474 201.5328 −3.3152 −0.7211 0.1502 1.9896 0.0693 −0.6026

29 11 13 7.4953 324.9889 −4.7508 −0.9824 0.1956 2.6972 0.0951 −1.3540

29 11 14 10.4675 403.3750 −5.4110 −1.0843 0.2106 2.9685 0.1054 −2.3123
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are simply the differences in the radial expectations of the
two states.

There are other corrections that can result in Eq. �23�
departing from a purely linear form �5,6�. These are relativ-
istic energy shifts, Stark shifts due to a residual electric field,
and polarization shifts due to the C7, C8 �and possibly
higher-order� terms of Eq. �1�. The energy difference be-
tween the �n ,L� and �n ,L�� states can be written

�E = �E4 + �E6 + �E7 + �E8 + �E8L + �Erel + �Esec + �Ess,

�24�

where �En arises from the polarization terms of order �r−n	.
Dividing through by ��r−4	 and replacing �E6 by

B6��r−6	 gives

�E

��r−4	
= B4 + B6

��r−6	
��r−4	

+
�E7 + �E8 + �E8L

��r−4	

+
�Erel + �Esec + �Ess

��r−4	
. �25�

The influence of the Stark shifts, relativistic shifts, and
second-order polarization correction can be incorporated into
the polarization plot by simply subtracting the energy shifts.
The corrected energy shift, �Ec1, is defined as

�Ec1

��r−4	
=

�Eobs

��r−4	
−

�Erel + �Esec + �Ess

��r−4	
. �26�

An approximate expression is used for the relativistic energy
correction. This is taken from the result

Erel = −
�2Z4

2n3 
 1

j + 1/2
−

3

4n
� . �27�

The correction due to second-order effects, �Esec, uses the
expressions of Drake and Swainson �78–80�. The calculation
of the second-order energy shift requires an estimate of the
dipole polarizability. This was taken from Table VII.

The Stark shift corrections use the Stark shift rates from
Snow and Lundeen �5,6� and the deduced electric field. The
energy corrections due to relativistic and polarization effects
for the states of Mg+ and the Si3+ for which RESIS data
existed are listed in Table VIII.

The second corrected energy is defined by further sub-
tracting the polarization shifts, �E7, �E8, and �E8L,

�Ec2

��r−4	
=

�Ec1

��r−4	
−

�E7 + �E8 + �E8L

��r−4	
. �28�

Finite mass effects were taken into consideration when
the various energy shifts were computed. However, these ef-
fects have a relatively small influence on the analysis. The
first-order finite mass effect is largely eradicated due to can-
cellations between adjacent �n ,L� levels. The finite mass ef-
fect in the various correction terms is quite small.

C. Mg+

Tables VIII shows that the energy splitting between adja-
cent L Rydberg levels is dominated by the C4 term. The next

biggest term is the �E6 term which is 3% of �E4 for the
�17,6�-�17,7� interval. The �E8L correction is larger than
�E7. The relative impact of the higher-order corrections di-
minishes as L increases. However, the relative importance of
the Stark shift, �Ess, starts to increase as L increases.

The revised analysis of the RESIS energy intervals for
Mg+ was performed by subtracting the �Ec1 and �Ec2 energy
corrections itemized in Table VIII from the observed energy
splittings. This represents a refinement over the previous
analysis by Snow and Lundeen �6� in a couple of respects.
First, Snow and Lundeen did not include the C8 term since
the necessary polarizability information simply was not
available. Their evaluation of �112 only included the 3p and
3d states in the intermediate sums. The truncation of the
sums in the �112 calculation was justified as the correction to
�112 from a more complete evaluation was only a few per-
cent. The impact of the �E8 shift is more substantial. Table
VIII shows the relative size of �E8 with respect to �E7 rang-
ing from 35% to 11%.

Figure 1 shows the polarization plot for Mg+. One set of
data points plots �Ec1 /��r−4	 against ��r−6	 /��r−4	. The
other set of data points shows �Ec2 /��r−4	 against
��r−6	 /��r−4	. Linear regression was applied to the four data
points with ��r−6	 /��r−4	�0.002. The �17,6�-�17,7� interval
was omitted from the fit because the influence of �E7,8,8L
and �Esec amount to just over 50% of �E6. Visual examina-
tion of Fig. 1 shows this data point lies a significant distance
away from the line of best fit obtained from the four remain-
ing points. The linear regression gave an intercept of B4
=17.522�7� a.u. and a slope of B6=−251.2�79� a.u. The
quoted uncertainties are the statistical uncertainties from the
linear regression fit. The present B6 is about 25% larger than
the B6 of −198�23� from the original Snow and Lundeen
analysis.

The new value of the dipole polarizability derived from
the polarization plot intercept was 35.044 a.u. This is mar-
ginally larger than the polarizability of 35.00�5� a.u. given in
the original Snow and Lundeen analysis �6�. The present �1
is larger because the additional corrections in the �Ec2 ener-
gies lead to a steeper polarization plot.

The slope of B6=−251.2�79� is slightly steeper than the
Table VII recommended C6 of −240.1�12�. Using the slope
of −251.2 in conjunction with a �1=106.0 a.u. gives a quad-
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FIG. 1. The polarization plot of the fine-structure intervals of
Mg for the n=17 Rydberg levels. The �Ec1 intervals are corrected
for relativistic, second-order, and Stark shifts. The �Ec2 intervals
account for �r−7	 and �r−8	 shifts. The linear regression for the �Ec2

plot did not include the last point.
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rupole polarizability of �2=−502.4+636.3=133.9 a.u. This
is about 90 a.u. smaller than the polarizability of
222�54� a.u. given by Snow and Lundeen �6�. However it is
only 22 a.u. smaller than the theoretical polarizabilities of
156.1 a.u. The uncertainty in the derived quadrupole polar-
izability would be �2�7.9+6�0.3�=17.6. The RESIS and
theoretical values are slightly outside their respective com-
bined error estimates. However, the uncertainty estimate
used for C6 is purely statistical in nature and does not allow
for higher-order corrections to Eq. �23�. This point is dis-
cussed in more detail later.

The relatively large change in �2 from
222�54� to 134�18� a.u. was caused by the inclusion of �E8.
There is a near cancellation between some of the �E7 and
�E8L energy corrections. Hence the inclusion of the �E8
energy correction had a relatively large impact. For example,
the sum of �E7 and �E8L for the �17,7�-�17,8� interval was
1.473 MHz. The �E8 correction was 0.851 MHz.

The derived dipole polarizability and value of B6 are not
sensitive to small changes in the Cn values used for the cor-
rections. An analysis using alternate Cn values derived from
the uncertainties detailed in Table VII was performed. This
resulted in an additional uncertainty of 0.0004 a.u. in B4 and
an additional uncertainty of 1.6 in B6. These additional un-
certainties were sufficiently small to ignore in subsequent
analysis.

D. Si3+

The polarization plot for Si3+ is shown in Fig. 2. The most
notable feature is the large difference between the �Ec1 and
�Ec2 data sets. The other noteworthy feature is the pro-
nounced deviation from linear of the

�Ec2

��r−4	 plot.
Examination of Table VIII for the �29,8�-�29,9� interval

shows that the net �E7,8,8L correction is very close in mag-
nitude to the �E6 energy correction. The �E7,8,8L correction
is still more than 50% of the �E6 correction for the �29,10�-
�29,11� interval. The polarization series is an asymptotic se-
ries �70,81� and is not absolutely convergent as n increases.
As mentioned by Drachman �70�, a condition for the useful-
ness of the polarization series is that the �E7,8,8L corrections
should be significantly smaller than the �E6 corrections. This

condition is not satisfied for the first two intervals and leads
to the noticeable curvature in the plot of the �Ec2 data
points.

The resolution to this problem would be to increase the L
values at which the intervals are measured. But Stark shift
corrections become increasingly important at high L. The
Stark shift corrections are significant for the �29,11�-�29,14�
interval.

A line of best fit was drawn using the four data points
with ��r−6	 /��r−4	�0.004. The linear regression gave an
intercept of B4=3.7163�32� and a slope of B6=−30.96�134�.
The intercept translates to a polarizability of 7.433 a.u. To
put this in perspective, the polarizability originally deduced
from the RESIS experiment was 7.408�11� �4�. A later analy-
sis which included the C7 and C8L potentials gave
7.426�12� a.u. �5�. There has been a steady increase in the
derived dipole polarizability as more higher-order terms in
the polarization series are incorporated into the analysis.

The polarization plot B6 of −30.96�134� was about 10%
larger in magnitude than the MBPT-SD value of −27.06�5�.
This value of B6 results in a quadrupole polarizability of
�2= �−2�30.96+6�11.04�=4.34 a.u. which is 60% smaller
than the HFCP and MBPT-SD polarizabilities. The uncer-
tainty of �2�1.34+6�0.006�=3.0 a.u. is too small to allow
consistency with the theoretical values.

E. An alternate perspective on the polarization plot analysis

The analysis so far can be regarded as a standard polar-
ization analysis but with additional refinements due to im-
proved knowledge about the higher-order terms in the polar-
ization series. However, it is worth recalling that Eq. �1� is an
asymptotic expansion �70,81� so there is always some uncer-
tainty about when the expansion should be terminated. This
raises the specter that the derived B4 and B6 coefficients are
influenced by systematic errors arising from the termination
point of the series, Eq. �1�. This is quite likely since the
higher-order polarization corrections �not to mention Stark
shifts� range from to 30–100 % of the raw C6 energy shifts.

In this section we take the attitude that the experimental
B6 coefficient will be polluted by systematic errors relating
to the use of Eq. �1�. So the main differences between the
atomic structure C6 values and the polarization plot B6 val-
ues are asserted to be inherent to the use of Eq. �1� rather
than imperfections in the atomic structure calculations. The
comparison between the present atomic structure theories
and the RESIS experiment has resulted in agreement to bet-
ter than 0.5% for dipole polarizabilities in conformity with
the first principles error analysis of the atomic structure di-
pole polarizabilities. Under such circumstances it is not cred-
ible to postulate large errors in the atomic structure C6 on the
basis of the polarization analysis of the RESIS energy inter-
vals.

Systematic errors arising from Eq. �1� can potentially af-
fect the derived value of B4 since an incorrect value for the
polarization plot slope will change its intercept. The inclu-
sion of this additional source of systematic error was taken
into consideration for Mg+ as follows. The linear regression
analyses of the polarization plot were redone with a series of
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FIG. 2. The polarization plot of the fine-structure intervals of
Si2+ for the n=29 Rydberg levels. The �Ec1 intervals are corrected
for relativistic, second-order, and Stark shifts. The �Ec2 intervals
account for �r−7	 and �r−8	 shifts. The linear regression for the �Ec2

plot did not include the last two points.
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fixed B6 values that were constrained to lie within
−251.2�19.0. The uncertainty of 19.0 in the allowable range
for B6 was derived by adding the statistical uncertainty of 7.9
from the initial linear regression fit to �240.1–251.2�, i.e., the
difference between B6 and the atomic structure C6 of Table
VII. This gave a revised uncertainty of �B4=0.015, leading
to a final �1 of 35.04�3� a.u. The same analysis was repeated
for Si3+. In this instance the derived value of �1 was
7.433�25� a.u.

The large uncertainties in B6 do not detract greatly from
the precision of the dipole polarizability. One of the reasons
higher-order effects can have a large impact on B6 is that
�E6 is small because of the cancellations between �2 and �1.
However, the small size of B6 means a large uncertainty in
B6 has a relatively small impact on the derived �1.

F. Estimate of the resonant oscillator strengths

As the polarizabilities are dominated by the resonant tran-
sition it is possible to derive an estimate for the resonant
multiplet strength �82�. We use the relation

S3s−3p =
�1 − �1� − �core

2

9�E3s−3p1/2

+
4

9�E3s−3p3/2

. �29�

In this expression �1 is the polarizability extracted from the
polarization plot while �core is the net core polarizability, and
�1� is the valence polarizability excluding the resonant tran-
sition. For the Mg+ multiplet, we use

S3s−3p =
35.044 − 0.112 − 0.463

4.08436
= 8.439. �30�

Using the uncertainties detailed earlier, 0.03 for �1, 0.004 for
�1�, and 0.010 for �core, the final value is 8.439�11�. This is
equivalent to a line strength of S3s-3p3/2

=11.25�2�, in agree-
ment with the recent experimental value of 11.24�6� �51�.

Repeating the analysis for Si3+ gave a multiplet strength
of 3.519�16� for the 3s→3p transition. This is equivalent to
S3s−3p3/2

=4.693�24� which is 0.14% larger than the
MBPT-SD line strength of 4.686.

VI. CONCLUSIONS

A survey of polarization parameters of the Mg+ and Si3+

ion states relevant to the analysis of the RESIS experiments

by the Lundeen group �4–6� have been presented by two
complementary approaches. The reanalysis of the fine-
structure intervals gave dipole polarizabilities of
35.04�3� a.u. for Mg+ and 7.433�25� a.u. for Si3+. The HFCP
and MBPT-SD calculations give polarizabilities that lie
within 0.2% of each other for Mg+ and 0.3% for Si3+. The ab
initio MBPT-SD dipole polarizabilities of 35.05�12� and
7.419�16� a.u., respectively, agree with the experimental di-
pole polarizabilities to accuracy of better than 0.3%.

One notable feature of the present analysis is the very
good agreement between the HFCP and MBPT-SD calcula-
tions. Indeed, the MBPT-SD calculation agrees better with
the computationally simple HFCP calculation than it does
with two very large CI-type calculations. For example, the
polarizabilities of the completely ab initio CI calculation
�29� are about 1.5% larger than the MBPT-SD and HFCP
polarizabilities. We conclude that a semiempirical calculation
based on a HF core can easily be superior to a pure CI
calculation unless the CI calculation is of very large dimen-
sion. The HFCP approach has the advantage of tuning the
model energy levels to experiment and this goes a long way
to ensuring that many of the interesting observables will be
predicted accurately. There is one feature common to the
HFCP and MBPT-SD approaches. Both approaches approxi-
mate the physics of the dynamical corrections beyond HF
and DF methods, but within those approximations an effec-
tively exact calculation is made.

There are two major sources of systematic error that can
impact the interpretation of the RESIS experiment and have
a major effect on the derived quadrupole polarizability. To a
certain extent one has to choose the �n ,L� states to navigate
between excessively large nonadiabatic corrections and ex-
cessively large Stark shifts. If L is too small, then the
�E7,8,8L shift becomes larger than �E6, thus invalidating the
use of Eq. �1�. On the other hand, Stark shift corrections
become increasingly bigger as L becomes larger. These prob-
lems are most severe in Si3+ and are responsible for the slope
of the polarization curve being different from the atomic
structure predictions. An explicit two-state model of long-
range polarization interactions is probably needed to realize
the full potential of the RESIS experiment
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