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We propose replacing concurrence by convex-roof extended negativity �CREN� for studying monogamy of
entanglement �MOE�. We show that all proven MOE relations using concurrence can be rephrased in terms of
CREN. Furthermore, we show that higher-dimensional �qudit� extensions of MOE in terms of CREN are not
disproven by any of the counterexamples used to disprove qudit extensions of MOE in terms of concurrence.
We further test the CREN version of MOE for qudits by considering fully or partially coherent mixtures of a
qudit W-class state with the vacuum and show that the CREN version of MOE for qudits is satisfied in this case
as well. The CREN version of MOE for qudits is thus a strong conjecture with no obvious counterexamples.
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I. INTRODUCTION

Quantum entanglement is a resource with various appli-
cations such as quantum teleportation and quantum key dis-
tribution in the field of quantum information and quantum
computation �1–3�. Whereas entanglement in bipartite quan-
tum systems has been intensively studied with rich under-
standing, the situation becomes far more difficult for the case
of multipartite quantum systems, and very few are known for
its characterization and quantification. One important prop-
erty to characterize multipartite entanglement is known as
monogamy of entanglement �MOE� �4�, which says that mul-
tipartite entanglements cannot be freely shared among the
parties.

MOE is a key ingredient to make quantum cryptography
secure �5�, and it also plays an important role in condensed-
matter physics such as the N-representability problem for
fermions �6�.

Thus, it is an important and necessary task to characterize
MOE to understand the whole picture of quantum entangle-
ment in multipartite systems, as well as its possible applica-
tions in quantum-information theory.

Although MOE is a typical property of multipartite quan-
tum entanglement, it is however about the relation of bipar-
tite entanglements among the parties in multipartite systems.
Thus, the following criteria for an entanglement measure
must be satisfied to have a good description of the mo-
nogamy nature of entanglement in multipartite quantum sys-
tems.

�i� Monotonicity: The property that ensures entanglement
cannot be increased under local operations and classical
communications �LOCC�.

�ii� Separability: Capability of distinguishing entangle-
ment from separability.

�iii� Monogamy: Upper bound on a sum of bipartite en-
tanglement measures thereby showing that bipartite sharing
of entanglement is bounded.

There are several possibilities for such a measure, includ-
ing definitively answering whether the state is entangled or
separable, indicating definitively that the state is entangled
but inconclusive when the result is separable as well as the

reverse case, and stating whether the state is entangled and/or
separable with bounded error.

However, there are only a few measures known so far
which can show the monogamy property of entanglement in
multipartite systems, and their results are restricted to multi-
qubit systems �4,7�. In other words, there exist quantum
states in higher-dimensional systems �8,9� which violate the
monogamy properties in terms of the proposed entanglement
measures, and this exposes the importance of choosing a
proper entanglement measure.

Here we propose the convex-roof extended negativity
�CREN� �10� as a powerful candidate for the criteria above.
Besides its monotonicity and separability criteria, we claim
that CREN is a good alternative for MOE without any
known example violating its monogamy property even in
higher-dimensional systems. We show that any monogamy
inequality of entanglement for multiqubit systems using con-
currence �11� can be rephrased by CREN, and this CREN
MOE is also true for the counterexamples of concurrence in
higher-dimensional systems �8,9�.

As the first step toward general CREN MOE studies in
higher-dimensional quantum systems, we propose a class of
quantum states in n-qudit systems consisting of partially co-
herent superpositions of a generalized W-class state �9� and
the vacuum, �0��n, and show that this class saturates CREN
MOE for any arbitrary partition of the set of subsystems. We
also show that the CREN value of the proposed class and its
dual, CREN of assistance �CRENOA� coincide, and they are
not affected by the degree of coherency in the superposition.
This is particularly important because the saturation of mo-
nogamy relation implies that this class of multipartite higher-
dimensional entanglement can have a complete characteriza-
tion by means of its partial entanglements, and the
characterization is not even affected by its decoherency.

The paper is organized as follows. In Sec. II, we review
the definition of concurrence, CREN, and their overlap for
the case of pure states with Schmidt rank 2, as well as
2-qubit mixed states. In Sec. III A, we rephrase all the mo-
nogamy inequalities of entanglement for n-qubit systems in
terms of CREN. In Sec. III B, we show that the counterex-
amples in higher-dimensional quantum systems to the mo-
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nogamy inequality using concurrence still have a monogamy
relation in terms of CREN. In Sec. IV, a class of quantum
states in n-qudit systems consisting of partially coherent su-
perpositions of a generalized W-class state and �0��n is pro-
posed with its CREN monogamy relation of entanglement. In
Sec. V, we summarize our results.

II. CONCURRENCE AND CONVEX-ROOF EXTENDED
NEGATIVITY

For any bipartite pure state ���AB in a d � d� �d�d��
quantum system, its concurrence, C����AB� is defined as �11�

C����AB� = �2�1 − tr �A
2� , �1�

where �A=trB����AB����. For any mixed state �AB, it is de-
fined as

C��AB� = min 	
k

pkC���k�AB� , �2�

where the minimum is taken over all possible pure state de-
compositions, �AB=	kpk��k�AB���k.

Concurrence of assistance �COA� �12�, which can be con-
sidered to be dual to concurrence, is defined as

Ca��AB� = max 	
k

pkC���k�AB� , �3�

where the maximum is taken over all possible pure state
decompositions of �AB.

Another well-known quantification of bipartite entangle-
ment is the negativity �10,13�, which is based on the positive
partial transposition �PPT� criterion �14,15�. For a bipartite
pure state ���AB in a d � d� �d�d�� quantum system with the
Schmidt decomposition,

���AB = 	
i=0

d−1

��i�ii�, �i � 0, 	
i=0

d−1

�i = 1, �4�

�without loss of generality, the Schmidt basis is taken to be
the standard basis�, the partial transposition of ���AB is

������TB = 	
i,j=0

d−1

��i� j�ij��ji�

= 	
i=0

d−1

�i�ii��ii� + 	
i�j

��i� j��ij��ji� + �ji��ij�� . �5�

Thus, the negative eigenvalues can be −��i� j for i� j with
corresponding eigenvectors ��ij�= 1

�2
��ij�− �ji��, and the nega-

tivity N of ���AB is defined as �16�

N����� = 
������TB
1 − 1 = 2	
i�j

��i� j , �6�

where 
¯ 
1 is the trace norm.
Based on the reduced density matrix of ���AB, we can

have an alternative definition of negativity,

N����� = 2	
i�j

��i� j = �tr��A�2 − 1, �7�

where �A=trB���AB���.

We note that N�����=0 if and only if ��� is separable, and
it can attain its maximal value, d−1, for a d � d maximally
entangled state,

��� =
1
�d

	
i=0

d−1

�ii� . �8�

�One can easily check this by the Lagrange multiplier.�
For a mixed state �AB, its negativity is defined as

N��AB� = 
�AB
TB 
1 − 1, �9�

where �TB is the partial transpose of �AB.
It is known that PPT gives a separability criterion for

two-qubit systems, and it is also a necessary and sufficient
condition for nondistillability in 2 � n quantum system
�17,18�. However, in higher-dimensional quantum systems
rather than 2 � 2 and 2 � 3 quantum systems, there exist
mixed entangled states with PPT, so-called “bound entangled
states” �17,19�. For this case, negativity cannot distinguish
PPT bound entangled states from separable states, and thus,
negativity itself is not sufficient to be a good measure of
entanglement even in a 2 � n quantum system.

One modification of negativity to overcome its lack of
separability criterion is CREN �20�, which gives a perfect
discrimination of PPT bound entangled states and separable
states in any bipartite quantum system.

For a bipartite mixed state mixed state �AB, CREN is de-
fined as

Nc��� � min 	
k

pkN����k� , �10�

where the minimum is taken over all possible pure state de-
compositions of �=	kpk��k���k�.

Whereas a normalized version of the negativity depending
on the dimension of the quantum systems was used to show
its monotonicity �10�, it can be analogously shown with the
definitions in Eqs. �9� and �10�.

Now, let us consider the relation between CREN and con-
currence. For any bipartite pure state ���AB in a d � d� quan-
tum system with Schmidt rank 2,

��� = ��0�00� + ��1�11� , �11�

we have

N����� = 
������TB
1 − 1 = 2��0�1 = �2�1 − tr �A
2� = C����� ,

�12�

where �A=trB��������. In other words, negativity is equiva-
lent to concurrence for any pure state with Schmidt rank 2,
and consequently it follows that for any 2-qubit mixed state
�AB=	ipi��i���i�,

Nc��AB� = min 	
i

piN���i�� = min 	
i

piC���i�� = C��AB� ,

�13�

where the minima are taken over all pure state decomposi-
tions of �AB.

Similar to the duality between concurrence and COA, we
can also define a dual to CREN, namely CRENOA, by tak-
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ing the maximum value of average negativity over all pos-
sible pure state decomposition. Furthermore, for a 2-qubit
system, we have

Nc
a��AB� = max 	

i

piN���i�� = max 	
i

piC���i�� = Ca��AB� ,

�14�

where maxima are taken over all pure state decompositions
of �AB and Nc

a��AB� is the CRENOA of �AB.
From the analysis of CREN and CRENOA, we can see

that CREN can be considered as a generalized version of
concurrence from 2-qubit systems. Thus, having the mono-
tonicity and separability criteria of CREN, it is natural to
investigate MOE in terms of CREN for multiqubit systems
and possible higher-dimensional quantum systems.

III. CREN MONOGAMY OF ENTANGLEMENT

In 3-qubit systems, Coffman, Kundu, and Wootters
�CKW� �4� first introduced a monogamy inequality in terms
of concurrence, as

CA�BC�
2 � CAB

2 + CAC
2 , �15�

where CA�BC�=C����A�BC�� is the concurrence of a 3-qubit
state ���A�BC� for a bipartite cut of subsystems between A and
BC and CAB=C��AB�. Similarly, its dual inequality in terms of
COA,

CA�BC�
2 � �CAB

a �2 + �CAC
a �2, �16�

has been shown in �21�. Later, the CKW inequality has been
generalized into n-qubit systems �7�, and its dual inequality
for n-qubit systems has also been introduced �22�.

However, a quantum state in a 3 � 3 � 3 quantum system
was found that violates the CKW inequality �8�, and recently
another counterexample was found in a 3 � 2 � 2 quantum
system �9�; therefore, the CKW inequality only holds for
multiqubit systems, and even a tiny extension in any of the
subsystems leads to a violation.

In this section, we show that all the monogamy inequali-
ties for qubits using concurrence can be rephrased by CREN,
and this CREN monogamy inequality is still true for the
counterexamples in �8,9�.

A. Monogamy inequalities for n-qubit systems
in terms of CREN

For any pure state ���A1¯An
in an n-qubit system A1

� ¯ � An where Ai�C2 for i=1, . . . ,n, a generalization of
the CKW inequality,

CA1�A2¯An�
2 � CA1A2

2 + ¯ + CA1An

2 , �17�

was conjectured �4� and proved �7�. Another inequality,
which can be considered to be dual to Eq. �17� was also
introduced in �22�,

CA1�A2¯An�
2 � �CA1A2

a �2 + ¯ + �CA1An

a �2. �18�

Now, let us consider these inequalities in terms of CREN.
First, note that any n-qubit pure state ���A1¯An

can have a

Schmidt decomposition with at most two nonzero Schmidt
coefficients with respect to the bipartite cut between A1 and
the others. Thus, by Eq. �12�, we have

CA1�A2¯An� = NcA1�A2¯An�. �19�

Furthermore, for any reduced density matrix �AiAj
of

���A1¯An
onto two-qubit subsystems Ai � Aj, it is a two-qubit

mixed state; therefore, by Eqs. �13� and �14�, we have

CAiAj
= NcAiAj

, CAiAj

a = NcAiAj

a , �20�

for i, j� 
1, . . . ,n�, i� j.
Thus, we have the following theorem.
Theorem 1. For any n-qubit pure state ���A1¯An

,

NcA1�A2¯An�
2 � NcA1A2

2 + ¯ + NcA1An

2 , �21�

and

NcA1�A2¯An�
2 � �NcA1A2

a �2 + ¯ + �NcA1An

a �2, �22�

where NcA1�A2¯An�=N����A1�A2¯An��, NcA1Ai
=Nc��A1Ai

�, and
NcA1Ai

a =Nc
a��A1Ai

� for i=2, . . . ,n.
Proof. It is a direct consequence from the overlap of

CREN and concurrence in Eqs. �19� and �20�, as well as the
monogamy inequalities in Eqs. �17� and �18� by concur-
rence. �

In �23�, another monogamy inequality of entanglement for
3-qubit systems in terms of the original negativity �13� was
proposed. For a 3-qubit state ���ABC, it was shown that

NA�BC�
2 � NAB

2 + NAC
2 , �23�

where NAB
2 = 
�AB

TB 
1−1 and NAC
2 = 
�AC

TC 
1−1 are the original
negativities of �AB and �AC, respectively.

Due to the convexity of the original negativity, we can
easily see that CREN is always an upper bound of the origi-
nal negativity. In other words, for any bipartite mixed state
�AB,

Nc��AB� � N��AB� . �24�

From Theorem 1 together with Eq. �24�, we have the follow-
ing corollary which encapsulates the result of Eq. �23�.

Corollary 1. For any n-qubit pure state ���A1¯An
,

NA1�A2¯An�
2 � NA1A2

2 + ¯ + NA1An

2 . �25�

Thus, besides concurrence, CREN is another good en-
tanglement measure in multiqubit systems for MOE.

B. CREN vs concurrence-based monogamy relations

Two counterexamples in �8,9� are, in fact, all known
counterexamples showing the violation of the CKW inequal-
ity in higher-dimensional quantum systems. Here we show
that they still have a monogamy relation in terms of CREN.

Counterexample 1 (Ou [8]). Let us consider a pure state
��� in 3 � 3 � 3 quantum systems such that

���ABC =
1
�6

��123� − �132� + �231� − �213� + �312� − �321�� .

�26�
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Since ���ABC is pure, it is easy to check CA�BC�
2 = 4

3 . For
mixed states �AB and �AC, it was shown that any pure state in
any pure state ensemble has the same constant value, 1, as its
concurrence, which implies CAB

2 =CAC
2 =1. Therefore, we

have

CAB
2 + CAC

2 = 2 �
4

3
= CA�BC�

2 , �27�

which is a violation of the CKW inequality in higher-
dimensional quantum systems.

Now, let us consider the case of using CREN as the en-
tanglement measure for the state in Eq. �26�.

Since ���ABC is pure, it can be easily checked that

NA�BC� = NcA�BC� = �tr��A�2 − 1 = 2. �28�

For NcAB, let us consider �AB whose spectral decomposition
is

�AB = 1
3 ��x�AB�x� + �y�AB�y� + �z�AB�z�� , �29�

where

�x�AB =
1
�2

��23� − �32�� ,

�y�AB =
1
�2

��31� − �13�� ,

�z�AB =
1
�2

��12� − �21�� . �30�

By a straightforward calculation, it can be shown that for
arbitrary pure states ���AB=c1�x�AB+c2�y�AB+c3�z�AB with
�c1�2+ �c2�2+ �c3�2=1, their reduced density matrix �A

=trB���AB��� has the same spectrum 
 1
2 , 1

2 ,0� �24�. Thus, we
have

N����AB� = �tr��A�2 − 1 = 1, �31�

for any ���AB that is a superposition of �x�AB, �y�AB, and �z�AB.
By the Hughston-Jozsa-Wootters �HJW� theorem �25�, any
pure state in any pure state ensemble of �AB can be realized
as a superposition of �x�AB, �y�AB, and �z�AB thus we have

Nc��AB� = min
	kpk���k��k�=�AB

	
k

pkN����k�

=
1

3
�N��x�AB� + N��y�AB� + N��z�AB�� = 1. �32�

Since Eq. �26� is asymmetric, we also have a similar result
for �AC, which is

Nc��AC� = min
	kpk���k��k�=�AC

	
k

pkN����k�

=
1

3
�N��x�AC� + N��y�AC� + N��z�AC�� = 1. �33�

Now, from Eq. �28� together with Eqs. �32� and �33�, we
have

NcA�BC�
2 = 4 � 1 + 1 = NcAB

2 + NcAC
2 . �34�

In other words, even though the state ��� in Eq. �26� is a
counterexample of the CKW inequality in 3-qutrit systems in
terms of concurrence, it still shows a monogamy property in
terms of CREN.

Counterexample 2 (Kim and Sanders [9]). Let us consider
a pure state ��� in 3 � 2 � 2 quantum systems such that

���ABC =
1
�6

��2�010� + �2�101� + �200� + �211�� . �35�

It can be easily seen that CA�BC�
2 = 12

9 whereas CAB
2 =CAC

2 = 8
9 ,

which implies the violation of the CKW inequality. However,
by using a similar method to the previous example, we can
have NcA�BC�

2 =4 whereas NcAB
2 =NcAB

2 = 8
9 , which implies the

example in Eq. �35� also shows a monogamy property in
terms of CREN.

Thus, CREN is a powerful alternative for MOE in multi-
partite higher-dimensional quantum systems without any
trivial counterexample so far.

IV. PARTIALLY COHERENT SUPERPOSITION
OF AN n-QUDIT GENERALIZED W-CLASS STATE

AND �0‹‹n

Three-qubit systems can have two inequivalent classes of
genuine tripartite entangled states by the CKW inequality
�26�. One of them is the Greenberger-Horne-Zeilinger �GHZ�
class �27� and the other one is the W class �26�. These two
classes show extreme differences in terms of the CKW and
its dual inequalities: The CKW and its dual inequalities are
saturated by W-class states, whereas the terms for reduced
density matrices in the inequalities always vanish for GHZ-
class states. Since the saturation of the CKW inequality by
W-class states can be interpreted as a genuine tripartite en-
tanglement with a complete characterization by means of its
partial entanglements, W-class states here are especially in-
teresting.

It was shown that there also exists a class of states in
n-qudit systems which saturate a monogamy relation �9�. By
using concurrence as the entanglement measure, the mo-
nogamy inequalities are shown to be saturated by incoherent
superpositions of a generalized n-qudit W-class state �9� and
the vacuum, �0��n.

In this section, we propose a class of quantum states in
n-qudit systems consisting of partially coherent superposi-
tions of a generalized W-class state and the vacuum, and
show that they have the saturation of the monogamy rela-
tions in terms of CREN and CRENOA. This saturation is
also true for an arbitrary partition of the set of subsystems,
and it is not even affected by the degree of coherency.

Let us review the definition of an n-qudit generalized
W-class state �9�,

�Wn
d�A1¯An

= 	
i=1

d−1

�a1i�i0 ¯ 0� + a2i�0i ¯ 0� + ¯

+ ani�00 ¯ 0i�� ,
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i=1

d−1

��a1i�2 + �a2i�2 + ¯ + �ani�2� = 1, �36�

which is a coherent superposition of all n-qudit product
states with Hamming weight 1.

A partially coherent superposition of a generalized
W-class state and �0��n is given as

�A1¯An
= p�Wn

d��Wn
d� + �1 − p��0��n�0��n + ��p�1 − p����Wn

d�

��0��n + �0��n�Wn
d��� , �37�

where � is the degree of coherence with 0���1. For the
case that �=1, Eq. �37� becomes a coherent superposition of
a generalized W-class state and �0��n, and it is an incoherent
superposition, or a mixture when �=0. In other words, Eq.
�37� is an n-qudit state where the product state of Hamming
weight zero is in a partially coherent superposition with all
the states of Hamming weight 1.

The state in Eq. �37� can also be interpreted by means of
decoherence. In other words, Eq. �37� can be considered as
the resulting state from a coherent superposition of a gener-
alized W-class state and �0��n,

���A1,¯An
= �p�Wn

d� + �1 − p�0��n, �38�

after some decoherence process so-called phase damping
�28�, which can be represented as

�A1¯An
= 	�������� = E0������E0

† + E1������E1
† + E2������E2

†,

�39�

with Kraus operators E0=��I, E1=�1−��I− �0��0 � �, and E2
=�1−��0��0�.

Now, we will see that the monogamy relations of the state
in Eq. �37� in terms of CREN and CRENOA are saturated
with respect to any arbitrary partition of the set of sub-
systems. Furthermore, the entanglement of the state in Eq.
�37� measured by CREN is not affected by the degree of
coherency �.

First, let us consider the CREN and CRENOA of �A1¯An
in Eq. �37� with respect to the bipartite cut between A1 and
all others. The state in Eq. �37� has a pure state decomposi-
tion as

�A1¯An
= ��p�Wn

d� + ��1 − p�0��n���p�Wn
d� + ��1 − p�0��n�

+ ���1 − p��1 − �2��0��n����1 − p��1 − �2��0��n� .

�40�

Now, let

��̃1� = �p�Wn
d� + ��1 − p�0��n,

��̃2� = ��1 − p��1 − �2��0��n �41�

be two unnnormalized states in an n-qudit system. Then, by
the HJW theorem �25�, any other pure state decomposition of
�A1�A2¯An�=	i=1

r � �̃i���̃i� of size r can be realized by the

choice of an r�r unitary matrix �uij� such that ��̃i�
=ui1��̃1�+ui2 � �̃2�. In other words, with the normalization of

��̃i�=�pi ��i�, we can consider an arbitrary pure state decom-
position of �A1�A2¯An�=	i=1

r pi ��i���i� with arbitrary size r.
By using the method introduced in �9�, we can directly

evaluate the average negativity of the pure states ��i� for an
arbitrary pure state decomposition of �A1�A2¯An�. After te-
dious but straightforward calculations, it can be shown that
the average negativity is independent from the choice of a
unitary matrix �uij�, which is

	
i

piN���i�� = 2p�A�1 − A� , �42�

where A=1−	 j=1
d−1�a1j�2.

Thus, by the definition of CREN and CRENOA, we have

Nc��A1�A2¯An�� = min 	
i

piN���i�� = 2p�A�1 − A�

= max 	
i

piN���i�� = Nc
a��A1�A2¯An�� ,

�43�

where the minimum and maximum are taken over all pos-
sible pure state decompositions of �A1�A2¯An�=	ipi��i���i�.

Furthermore, it can be seen from Eq. �42� that this aver-
age value is also invariant under the degree of coherency �.
In other words, no matter how much amount of decoherence
in Eq. �39� happens to the state in Eq. �38�, its entanglement
is preserved.

Now, for NcA1Ai
and NcA1Ai

a with i=2, . . . ,n, let us first
consider the case when i=2, whereas all the other cases are
analogously following. By tracing over all subsystems ex-
cept A1 and A2 from �A1¯An

, we get

�A1A2
= p 	

i,j=1

d−1

�a1ia1j
* �i0��j0� + a1ia2j

* �i0��0j� + a2ia1j
* �0i�

��j0� + a2ia2j
* �0i��0j�� + �A2 + 1 − p��00�

��00� + ��p�1 − p�	
k=1

d−1

��a1k�k0� + a2k�0k��

��00� + a1k
* �00���k0� + a2k

* �0k��� , �44�

with A2=1−	 j=1
d−1��a1j�2+ �a2j�2�.

Let us consider two unnormalized states

��̃1� = �p	
i=1

d−1

�a1i�i0� + a2i�0i�� + ��1 − p�00� ,

��̃2� = �A2 + �1 − p��1 − �2��00� , �45�

then we have

�A1A2
= ��̃1���̃1� + ��̃2���̃2� . �46�

Thus all possible pure states in an arbitrary pure state decom-
position of �A1A2

of size r can be realized as a linear combi-

nation of ��̃1� and ��̃2� by choosing an r�r unitary matrix.
Again, by using a similar method to the case of �A1¯An

, it can
been shown that the average negativity of �A1A2

is invariant
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under the choice of pure state decomposition, which is,

NcA1A2
= 2p��1 − A��A − A2� = NcA1A2

a . �47�

Furthermore, rather surprisingly, this average value is also
invariant under the degree of coherency. In other words, no
matter how much amount of decoherence in Eq. �39� hap-
pens, it does not even affect the entanglement between the
subsystems A1 and A2.

Similarly, we can have

NcA1Ai
= 2p��1 − A��A − Ai� = NcA1Ai

a , �48�

for i=3, . . . ,n with Ai=1−	 j=1
d−1��a1j�2+ �aij�2�, and thus,

	
i=2

n

NcA1Ai

2 = NcA1�A2¯An�
2 = �NcA1�A2¯An�

a �2 = 	
i=2

n

�NcA1Ai

a �2.

�49�

In other words, we have obtained a saturation of the
CREN monogamy relation for an n-qudit state in Eq. �37�,
and this saturation does not depend on the choice of coher-
ency �.

For any arbitrary partition P= 
P1 , . . . , Pm� of the set of
subsystems, it was shown that an n-qudit generalized
W-class state can be also considered as an m-partite general-
ized W-class state �9�, that is

�Wn
d�A1¯An

= 	
i=1

d−1

�a1i�i ¯ 0� + ¯ + ani�0 ¯ i��

= 	
i=1

d−1

�x̃1i�P1
� ¯ � �0��Pm

+ ¯ + �0��P1

� ¯ � �x̃mi�Pm
= 	

i=1

d−1

�q1i�i�P1
� ¯ � �0�Pm

+ ¯ + �qmi�0�P1
� ¯ � �i�Pm

= �Wm
d �P1¯Pm

,

�50�

where

�x̃si�Ps
= a�n1+¯+ns−1+1�i�i ¯ 0�Ps

+ ¯ + a�n1+¯+ns�i
�0 ¯ i�Ps

�51�

and

�qsi�xsi�Ps
= �x̃si�Ps

, �0��Ps
= �0 ¯ 0�Ps

�52�

with renaming �xsi�Ps
= �i�Ps

and �0��Ps
= �0�Ps

for s
� 
1, . . . ,m�.

Therefore Eq. �37� can also be considered to be a partially
coherent superposition of an m-partite generalized W-class
state and the vacuum, �0�P1¯Pm

, and thus the result in �49� is
also true for any arbitrary partition of the set of subsystems.

Not only for the case of multiqubit systems and the coun-
terexamples in Sec. III, CREN also shows a strong mo-
nogamy relation of entanglement for a class of n-qudit states
in a partially coherent mixture of a generalized W-class state
and the vacuum. Thus, the CREN version of MOE is a strong

conjecture for qudit systems with no obvious counterex-
amples.

V. CONCLUSIONS

The study of higher-dimensional quantum systems is, un-
doubtedly, important and even necessary to quantum-
information science for various kind of reasons. First, qudits
for d
2 are preferred in some physical systems such as in
quantum key distribution where the use of qutrits increases
coding density and provide stronger security compared to
qubits �29�. In fault-tolerant quantum computation as well as
on quantum error-correcting codes �QECCs�, many studies
are concentrated on the case of binary QECCs in a two-
dimensional Hilbert space, whereas generalizations of proofs
are often nontrivial when d
2.

However, as both qubit and qudit systems occur in the
natural world, there is no reason to assume that a theoretical
result should hold solely for two-dimensional systems. If an
important result �e.g., monogamy of entanglement� is shown
to be true for the case d=2, then this would suggest that a lot
of effort should be directed towards qudit systems, as the
case for d
2 could be fundamentally different from the case
d=2. For example, a recent result �30� shows that for sub-
system stabilizer codes in d-dimensional Hilbert space, a uni-
versal set of transversal gates cannot exist for even one en-
coded qudit, for any dimension d, which is known as no-go
theorem for the universal set of transversal gates in QECC.

The extension of the multipartite entanglement analysis,
especially the monogamy relation from qubit-to-qudit case is
far more than trivial. The entanglement properties in higher-
dimensional systems are hardly known so far, and thus any
fundamental step of the challenges to the richness of en-
tanglement studies for system of higher-dimensions and mul-
tipartite systems would be fruitful and even necessary to un-
derstand the whole picture of quantum entanglement.

In this paper, we have proposed CREN as a powerful
alternative for MOE in higher-dimensional quantum systems.
We have shown that any monogamy inequality of entangle-
ment for multiqubit systems can be rephrased in terms of
CREN. Furthermore, we have pointed out the possibility of
CREN MOE in higher-dimensional quantum systems by
showing that all the counterexamples for the CKW inequality
so far in higher-dimensional quantum systems still have a
monogamy inequality in terms of CREN, as well as no trivial
counterexamples for CREN MOE so far. This task is one of
the key challenges in finding a bipartite entanglement mea-
sure that meets our three criteria for qubits and for higher-
dimensional systems.

For the studies of CREN MOE in higher-dimensional
quantum systems, we have proposed a class of quantum
states in n-qudit systems that are in a partially coherent su-
perpositions of a generalized W-class state and the vacuum.
The CREN monogamy relation for the proposed class has
been shown to be true and it also holds with respect to any
arbitrary partition of the subsystems.
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Thus CREN is a good candidate for the general mo-
nogamy relation of multipartite entanglement, and it shows a
strong evidence of its possibility even for the case of mixed
states in higher-dimensional systems. We believe that the
analysis of CREN MOE derived here will give a full and rich
reference for the study of MOE in higher-dimensional quan-
tum systems, which is one of the most important and neces-
sary tasks in the study of quantum entanglement.
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