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Optimized quantum random-walk search algorithms on the hypercube
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Shenvi, Kempe, and Whaley’s quantum random-walk search (SKW) algorithm [Phys. Rev. A 67, 052307
(2003)] is known to require O(VN) number of oracle queries to find the marked element, where N is the size
of the search space. The overall time complexity of the SKW algorithm differs from the best achievable on a
quantum computer only by a constant factor. We present improvements to the SKW algorithm which yield a
significant increase in success probability, and an improvement on query complexity such that the theoretical
limit of a search algorithm succeeding with probability close to one is reached. We point out which improve-
ment can be applied if there is more than one marked element to find.
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I. INTRODUCTION

In the pioneering paper [1] Shenvi, Kempe, and Whaley
(SKW) demonstrated that a useful quantum algorithm can be
designed based on quantum random walks. This quantum
random-walk search algorithm (the SKW algorithm) can be
used to find a vertex of a hypercube that is marked by an
oracle. Although the number of oracle calls needed by the
SKW algorithm scales with the size of the search space simi-
larly to the Grover search [2], its principle of operation is
significantly different. Since the pioneering work a variety of
quantum algorithms have been proposed utilizing quantum
random walks (see, for example, [3,4]). The SKW algorithm
may be divided into a quantum part, and a simple classical
protocol in which the former is embedded. The quantum part
is a perturbed Grover walk on a hypercube started from an
equally weighted superposition of initial states and iterated
for a given number of steps, to be followed by a measure-
ment on the output state to find the marked vertex. The per-
turbation of the Grover coin is derived from the oracle,
which is used to introduce position dependence into the coin
operator. In this paper, we shall use the term SKW quantum
random walk to refer to this special quantum random walk.
As shown in [1] the SKW quantum random walk yields the
marked vertex with probability strictly less than 1/2; there-
fore, it is necessary to embed it into a classical protocol to
find the marked vertex with certainty, or use an amplitude
amplification scheme [5,6]. The classical protocol of the
SKW algorithm is relatively simple: a measurement is made
on the final state of the SKW quantum random walk, then its
result is verified by querying the oracle directly. By repeating
the algorithm and these two steps a sufficient number of
times, we can make sure that the marked element is found
with an arbitrary small failure probability. Applying an am-
plitude amplification scheme would provide a more efficient
way for increasing the success probability; however, its use
would mean departure from the quantum random-walk para-
digm.

The overhead caused by repeating the quantum random
walk several times, although contributing only a constant
factor to the time complexity, can be a considerable source of
difficulties in certain experimental scenarios. In the present
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paper we present modifications to the SKW algorithm which
allow significant reduction of the number of necessary rep-
etitions. We note that in two dimensions the spatial search
algorithm by Ambainis, Kempe, and Rivosh [7] also yields
the target vertex after one run with probability less than one,
i.e., with only @(1/+1In N). Recently, Tulsi [8] has proposed
improvements to this algorithm, which allow the finding of
the target vertex with probability 1 after one run. The
speedup in [8] has been achieved by introducing an ancilla
qubit into the computational space, which is similar in spirit
to our improvement modification described in Sec. III, which
uses an additional coin dimension. Improvements of quan-
tum walk-based searches have been studied also by other
authors. In [9] an optimization dedicated to the scattering
random-walk implementation [ 10-12] has been proposed, re-
lated to the findings we describe in Sec. II. In [13] the au-
thors discussed the optimization of the quantum walk on a
line by varying the coin operator parameters.

In Sec. II we prove that the final state of the SKW quan-
tum walk consists mainly of the target vertex and its next
neighbors, and present modifications to the algorithm which
exploit this property. These modifications can be used to re-
duce the number of repetitions of the SKW quantum walk,
and to reduce the number of independent verification queries
to the oracle. We note that the task of verification may be
problematic for certain implementations, e.g., in a spatial
search implementation where a vertex being marked is a lo-
cal property and not a property given by an oracle. Such
additional costs have been considered in Ref. [14] in connec-
tion with quantum walks.

Based on the SKW algorithm we develop an algorithm in
Sec. III that displays query complexity 1/v2 of the original,
thus the theoretically lowest for a search algorithm with a
success probability close to 1 [15]. Our improvement is
founded on the bipartite nature of the SKW quantum random
walk, and we arrive at its final form after several steps. We
note that some of these intermediate steps may be useful
improvements in their own right, depending on the actual
physical implementation.

In Sec. IV we outline the conditions under which the op-
timizations introduced in Sec. III can be used to find multiple
marked vertices. Finally, in Sec. V we conclude our results.
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II. IMPROVING SUCCESS PROBABILITY
BY CONSIDERING NEXT NEIGHBORS

In this section we describe a property of the SKW quan-
tum walk that can be used to boost the probability of finding
the marked vertex by doing a proper measurement on its
final state. Let C,=(V,,E,) denote the graph of the
n-dimensional hypercube. The argumentation of the present
paper relies heavily on the concept of the Hamming weight
and the parity of an integer, which can be easily related to
each other. The Hamming weight of an integer is the number
of I’s in its binary string representation x, and shall be de-
noted by |x| in this paper. The parity of x is then simply
|x] mod 2. A related concept is the Hamming distance of two
integers, say x and y, that is defined as |[x®y|, where @
denotes the bitwise addition modulo 2 operator. Following
the notation of earlier work [1,16], the vertices V, of the
hypercube are labeled by integers x=0,...,2"—1 in such a
way that the Hamming distance between any two vertices
connected by an edge is exactly 1. The SKW quantum walk
takes place on the product Hilbert space H " ® H"» where
H"» is the N=2"-dimensional Hilbert space representing the
vertices, and HS» is the n-dimensional space associated with
the quantum coin. The propagator of the SKW quantum walk
can therefore be written as

S=>

dx

4,5 ® ENd, A

, (1)

where ¢,=2¢ corresponds to the edges originating from the
given vertex. If the target vertex marked by the oracle O is
denoted by f[g, the perturbed coin operator can be written as

C'=Cy@1+(Cy - Cp) @ |[Xip)Xyl- (2)

For the SKW quantum walk, C, is usually chosen to be the
n-dimensional Grover operator (also known as the Grover
diffusion operator) and C, is chosen to be —1. The results in
this section, however, hold for any pair of inequivalent per-
mutation invariant unitary coins. As argued in [1], due to the
symmetry of the hypercube graph the vertices can always be
relabeled in such a way that the marked vertex becomes )E}g
=0. Since with this choice the permutation invariance of the
Grover walk on the hypercube is conserved, the initial state

= =33

n
vn2" 41z

d.x) 3)

allows the reduction to a walk on a line. The basis states for
this collapsed quantum walk are defined as

R.x)= ;n 2 > |d), (4)
(n _ x)( ) \x\:x Xd=0
X
L,x)= d,x), (5)

and the propagator becomes
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n—1

S=2>

x=0

R.x)L,x+ 1|+

Lx+ 1{R.x

. (6)

The coin operator of the walk on the line acquires a strong
position dependence. For example, when C, is the Grover
coin, in the collapsed basis it becomes

n
COS W,
Co=2 (
x=0

sin w,

sin w,

) ® [x) ], )

—COos W,

where cos w,=1-2x/n and sin w,=(2/n)yx(n—x), and the
matrix is understood in the {|R),|L)} basis. The perturbed
coin with C;=-1 can be written as

C' =Cy-2|R,0XR,0

. (8)

It has been shown in [1] that after an optimal number of
iterations the probability p, of obtaining the target state |0) in
a measurement is close to 1/2, and that the optimal number
of iterations is well estimated by the nearest integer to

ty= (m2)\2" . ©)

This means that the final state is composed mainly of the
target state, and contains smaller contributions from its next
and more distant neighbors [1]. However, this statement can
be refined by partitioning the SKW quantum walk into two
independent quantum walks. Let 7/, denote the subspace
spanned by states |d,x) such that |x| is even, and H, denote
the subspace spanned by the states with |x| being odd. The
terms even and odd refer to a labeling where the target vertex
is denoted by ftg=0; therefore, in general, these subspaces
must be defined according to the parity of X®x,,. The two
quantum walks are started in the Hilbert spaces H, and H,,
and evolve independently. In the following we shall term H,
the even subspace and H, the odd subspace of H. It follows
from the property of the parity function that this partitioning
of H is the same for all values of ftg; however, the role of the
two subspaces depends on the parity of flg. We can define the
orthogonal projectors P, and P, that project to H, and H,,
respectively. Clearly, in the collapsed basis, the even sub-
space is spanned by the states (4) and (5) with x being even,
and the odd subspace is spanned by those with x being odd.
Since [P,,,,Cy]=0 and [P,,,,C']=0 it follows from the defi-
nition of § that

PU =U'P,, (10a)
PU =U'P,. (10b)
Let us introduce the (normalized) states
[05) = V2Pl o), (1)
|0") = V2P, o), (12)

and express the initial state as |¢0)=é(| N1, Tt can
easily be seen that the action of U’ on |1//5")) simplifies to

U' [y = Ul = iy (13)

By successive applications of Egs. (10) and (13) it can be
shown that U’ has the property
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FIG. 1. The plot shows the numerically calculated probability
distribution for the position of the walker after the optimal number
of iterations of the SKW quantum walk in n=5 dimensions. In
accordance with the analytic results, the probability distribution has
its maximum for the marked vertex ;ag=0 reaching a value close to
1/2. Moreover, we observe that the nearest neighbors are also pre-
sented with high probability, and the sum of these probabilities is
comparable to that of the marked vertex.

P(U) gy =P (U )¢y (r=0,1,2,...),

(14a)
Po(U) i) = Po(U) ) (r=1.2.3,...).
(14b)
Let us express the state of the walker after ¢ steps as
n-1 n
(WYl = 20 i JRox) + 2 L), (15)

|2

and define P\=|a} |*+|af |* with setting of ,=a] (=0 for
convenience. The interpretation of P! is clear from the defi-
nitions: P, is the probability of having the walker at the
target vertex after 7 iterations, and P} is the total probability
of finding the walker at any of the nearest neighbors of the
target node. Using the above bipartition of the quantum walk
it can be shown that the inequalities

P <P, (16a)
Pyt< P! (16b)

hold for all >0, from which it follows that the probabilities

Po= 2 (0P, (17)
d=0
pi= 2 (d.xlupP (18)
d,|x|=1
satisfy the inequality
P1= Po- (19)

For the details of the calculations see Appendix A. The prop-
erty (19) can also be verified on the numerical results pre-
sented in Fig. 1. Therefore, since we have p,=1/2-0(1/n),
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the total probability of measuring the target node or any of
its direct neighbors is

pPe=po+p1=1-0(/n). (20)

Since p,. is upper bounded by 1, for large n the total prob-
ability must be approaching p.=1. Naturally, the question
arises: can Eq. (20) be turned to our advantage? In the fol-
lowing we shall address this question, and answer positively.

First, let us analyze the most straightforward way of tak-
ing advantage of Eq. (20). According to the SKW protocol,
the validity of the measurement outcome x,, after Iy iterations
is verified using the oracle. If the verification is positive the
target node is found, otherwise the result is discarded and the
SKW quantum walk is repeated. However, this is unneces-
sary since from Eq. (20) we know that in the case of a nega-
tive answer from the oracle, the probability that x,, is a direct
neighbor of X, is greater than 1-O(1/n). Therefore, it is
sufficient to query the oracle with values from the set {x,,
&) 5d| d=0,...,n—1}, from which the marked element can be
extracted using the simplest classical protocol by an average
of (log, N)/2 additional oracle queries.

In a scenario where the verification costs are dominating
over all other costs it is crucial to perform the minimum
number of necessary verification queries. One possibility
could be to use amplitude amplification or another quantum
based search; however, both these approaches mean a depar-
ture from the original hypercube quantum random walk.

In the following, we propose an alternative approach to
reduce the number of verification queries if the coin states
can also be determined. Let us set #;,=2[7,/2]|+1, and denote
the outcome of the measurement on the coin state by d,,.
Using the notations of Eq. (15), we can rewrite Eq. (14a) for
the case j=0, and obtain |ajgy'|*=|ajs,[>=1/2-0(1/n).
From the unitarity of the coins and the definition (6) of S it
follows that we also have

|atL"’1|2=|a;§’,0|2=%—O(l/n). (21)
Note that this ensures also that we have aj¢,=0(1/n), which
is negligible for large n. Therefore, we conclude that the final
state is composed mainly of the states |R,0) and |L,1)
=1/\nZj|d,é,). Thus, if the measurement gives X, # X
then the target vertex can be found with 1 —O(1/n) probabil-
ity by taking Xz=x,, S e, .

In other words, if a complete measurement can be made
on the coin state, the marked element can be determined with
1-0(1/n) probability after a single execution of the SKW
algorithm and one verification query to the oracle.

III. MODIFICATION TO ATTAIN OPTIMAL QUERY
COMPLEXITY

In the present section, based on the SKW algorithm we
develop a search algorithm which finds the marked vertex of
a hypercube using the optimal number of oracle queries. In
contrast to the modifications of Sec. II, which essentially
affect only the classical processing part, the improvement
proposed in the present section requires a modification of the
quantum walk itself.
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The improvement is based on the bipartite nature of the
SKW quantum walk, which implies the invariance of the
even and odd subspaces under two iterations of U’,

[P, U*]=[P,U'*]=0 (r=0,1,...), (22)

which follows from Egs. (10). First, consider the projection
of the state of the walker after 2r iterations onto the even
subspace. In the spirit of Eq. (22) we can see that the pro-
jection of the final state corresponds to a similar projection
of the initial state, which we can write as

_
U gy = 2P, U |4y (23)

Introducing #;,=27,/2] we conclude that for the probability
ng)’fv” to find the marked node after 7, iterations starting
from the even initial state |z/r§f)) the relation

P{Vre = 2PYe=1-0(1/n) (24)

holds. This is an encouraging result, since it suggests that the
marked element can be directly found with high probability
after a single execution of the SKW algorithm without any
verification queries. However, the choice flg=0 is actually
the result of the mapping X — X @ x,, thus we do not know in
general which is the even subspace and which is the odd
subspace.

The information about the parity of the marked vertex is
clearly contained in the oracle. An efficient way of extracting
this information is to repeat the quantum walk twice, once
starting from the initial state | Ef) and once starting from
M)")). Note that it is not necessary to know which one is
which, since |¢ff) will yield |x,e) with nearly unit probabil-
ity. Therefore, the target vertex can be identified by testing
the two measurement outcomes xf,f) and xf,‘,’) on the oracle.

Instead of repeating the algorithm twice, it is possible to
construct another SKW quantum walk in which it is guaran-
teed that the marked element corresponds to a vertex with
even parity. The principle of this modification is the mapping
of all the vertices of the n-dimensional hypercube to the even
parity vertices of an n’ =n+ 1-dimensional hypercube. Since
the number of even and odd vertices is equal for a hypercube
in every dimension, the mapping between the original verti-
ces and the even parity vertices of the larger hypercube can
be made one to one.

In the following, we assume that the oracle is given as an
operator acting on the Hilbert space H"» associated to the
n-dimensional hypercube, and we shall construct a SKW
quantum walk in n'=n+1 dimensions using the extended
oracle acting on the Hilbert space H"'". The vertices x of the
original hypercube are mapped to the even parity sites of the
extended hypercube by the map

xX=m(x) =2x+ p(x), (25)

where p(x) denotes the parity of x. This mapping can be
viewed as appending one bit to the bit string representation
of the original vertex, the value of the bit being 1 for odd
parity vertices, and O for even parity vertices. The reverse
mapping simply drops the appended bit for even parity input,
while the odd parity vertices of the extended hypercube do
not correspond to any vertices of the original graph.
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In this way the marked vertex is known to be mapped to
an even parity vertex on the extended hypercube. The modi-
fication of the oracle O to return a positive result only for the
new marked vertex is straightforward. Let the operators of
the n’-dimensional extended SKW quantum walk be distin-
guished from the original n-dimensional one by adding a (+)
superscript. Therefore, the coin operators acting on H "' are
denoted by Cf;') and C(f’), and the propagator operator on
HE @HYn' by SM. Similarly, the perturbed coin operator is
denoted by C'™*). With this mapping, the procedure described
above can be applied very efficiently since the “good” initial
state Mf)) is prescribed by the construction. Consequently, a
single execution of the n’-dimensional SKW quantum walk
is sufficient to find the marked vertex with a probability
close to unity. Note that the extension to n’=n+1 dimen-
sions changes the optimal number of iterations, which
amounts to an increase of the query complexity by a factor of
V2.

The query complexity can be reduced by noting that at
every second iteration, the coin operator C*) could effec-
tively be replaced by the unperturbed coin operator C, thus
the number of oracle queries can be reduced by 1/2. More-
over, as shown in Appendix B, by forcing the coin operator
to be CE)” for every second iteration, the equality

1
(U(+)U//(+))r| ¢0> — TE(X + ])(U(+)U'/(+))r| lﬁ(()e)> (26)
v

holds, where X denotes the quantum NOT gate, oy, acting on
the last qubit. Thus, an initial state of uniform superposition
(3) can be used, yielding the image ()?t'g) and the anti-image
(xi;® 1) of the target vertex with a total probability close to
one. Therefore, by performing a measurement that ignores
the last qubit we obtain the marked vertex )E’tg with probabil-
ity 1-0(1/n").

Using the formula (9) to calculate the query complexity,
we find that the modified algorithm is completed using t}
=(m/4)VN oracle queries, which is identical to what is
needed by the Grover search algorithm, and known to be the
best achievable on a quantum computer for a success prob-
ability of one [15].

The storage complexity of the improved algorithm can be
reduced by noting that the auxiliary qubit can be eliminated
using the identities

[X,U"]=[x,U""]=0, (27)

X[ o) = o) - (28)

Clearly, the reduction affects only the dimensionality of the
position space, and leaves the coin space n'=n+1 dimen-
sional. With some algebra, we obtain the reduced propagator
from ™) as

n—1
S= 2 (2 d,x & e )Nd 3] + |n,x)n,1] ) (29)

x d=0

Thus, the coin states |d> with d <n become the coin states of
a quantum random walk on the original n-dimensional hy-
percube, while the state |n) corresponds to a coin state in-
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structing the walker to remain at the same vertex at the next
iteration.

The propagator can equivalently be understood as de-
scribing a quantum random walk on a regular graph consist-
ing of an n-dimensional hypercube having a self-loop edge
attached to each of its vertices. The final version of the quan-
tum walk for optimal search can therefore be expressed by
the alternating sequence of the unitary operators

17// — §CH(+) , (30)

U=5ct”, (31)
acting on an N=2"-dimensional vertex space, and an
n+ 1-dimensional coin space.

IV. APPLICATIONS TO FINDING MULTIPLE MARKED
VERTICES

In the present section we consider the optimization prob-
lem when the number of marked vertices is more than one.
Although the SKW algorithm is guaranteed to work only
when the oracle marks a single vertex, numerical calcula-
tions suggest that it can also be used to find multiple marked
vertices as long as the number of marked vertices is small
compared to the size of the search space.

To answer the question whether the SKW algorithm can
be used to find multiple marked vertices is beyond the scope
of the present paper. Instead, here we focus on the question
of applicability of the improvement described in Sec. III. In
the following, we shall show that the modified algorithm can
be applied directly to the search for multiple marked vertices
when the SKW algorithm on the extended hypercube yields
sufficient results. To formalize the task of finding multiple
marked vertices, let us denote the number of elements
marked by the oracle by m, and their labels by fg, such that
j=1,...,m. The coin operator of the SKW quantum walk
can therefore be written as

Cp=Co® 1+(C = Cp) @ X [FVNF),
j=1

(32)

and the unitary evolution operator as U,,=SC,,. This unitary
operator is then iterated a given number of times to obtain a
final state that is composed mainly of the states correspond-
ing to the marked vertices.

For simplicity, here we consider the improved form of the
SKW algorithm using the extended n’'=n+1-dimensional
hypercube with the even parity initial state. This is sufficient,
since it is equivalent to all the subsequently 1mproved forms.
Clearly, by defining the n’-dimensional extens10n C, ) of C,
we arrive at the unitary evolution operator U whrch also
obeys

492n) = U9y = U U T), (33)
since all the marked vertices are mapped to the even sub-
space. For the same reason, we have for every d the relation
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KU, )P = 2.2y U,

e (34)

according to the definition (11). Therefore, if the total prob-
ability of finding any of the marked vertices in the final state
of the extended SKW algorithm is close to 1/2, the modified
algorithm yields them with probability close to unity.

V. CONCLUSIONS

We have proposed two alternative approaches for improv-
ing the SKW quantum random-walk search algorithm. Both
improvements take advantage of the fact that the probability
of success of a single run can be increased to almost 1. In the
first part of the paper we have shown that the next neighbors
of the target can be obtained with high probability, and that
this can be exploited to reduce the number of repetitions or
independent oracle queries to one or two. We note that for
certain implementations, a lower number of repetitions may
have a serious impact on efficiency. In the second part of the
paper we have developed a two-coin quantum random-walk
search algorithm on a hypercube with self-loop edges. We
have pointed out that the speedup over the original SKW
algorithm in terms of oracle queries is \2. This makes the
algorithm equivalent to the Grover search in terms of query
complexity; therefore, we present an optimal solution to the
search problem if the success probability of 1 is required
[15].

We have also considered the optimization problem of
finding multiple marked vertices. We have shown that if the
SKW quantum walk mapped to an n+ 1-dimensional hyper-
cube yields the marked vertices with probability close to
1/2, the algorithm in Sec. III can be applied unmodified,
resulting in the same improvement as for the case of a single
marked vertex.
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APPENDIX A: PROOF OF EQ. (19)

Using the notation of Eq. (15), let us consider an arbitrary
o (a7 is set to 0 by deﬁmtlon) In one iteration, af is
ﬁrst transformed to some ,BR o and by the coin operator
C'. Upon inspecting the definition of |R 0) we find that due
to the unltarlty of the coin C" we have | B |*=|afo*= P(’)'
and ,BLO—O Considering the action of §, we obtaln o
= RO Therefore, we can write P’l—|ozR1|2+|ch1|2>|0le[2
| o|*=P§", which proves Eq. (16a). The second inequal-
ity can be proven along similar lines. Due to the unitarity of
the coins we always have |8y [*+|B] ||*=|ak [* 2, and

according to the definition of S, a?(l) B also holds.
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Therefore, we can write P§'=|ag[*=|B]1*<|Bk,|*
+|B; ,|*= P}, which provides Eq. (16b).

From Egs. (14) it follows that P =pP¥*if x is even, and
that P2’=P>~" if x is odd. Combining these equalities with
Egs. (16) we obtain

P} = P} (A1)
for every positive integer . Equation (19) is a special case of
Eq. (Al).

APPENDIX B: PROOF OF EQ. (26)

First note that C ’(+)P0=(Cf)+)®l)P0 holds; therefore we
have

U/(+)2r| l//f)e)> — (U(+)U/(+))r| lﬂ(()e)>,

since Egs. (10) hold for hypercubes in all dimensions. More-
over, we can write

(B1)

c'*p,=c"p,, (B2)

by introducing
C'W=[Cy @ 1+(C1Y - ) @ [0 F 1@ 1,, (B3)

where 1, is the identity acting on the qubit added by the
extension. We can use the coin (B3) to define the unitary
evolution operator U"=S®C"*) By considering the ex-
pression that gives the final state of the walker after 2r steps
we find that it can be simplified to

U/(+)2r| wge)> — (U(+)U/r(+))r| lﬂ(()e)>,

by using Egs. (B1) and (B2). The advantage of this formu-
lation is that the oracle O is used on the subspace H'» un-
changed, as can be seen in Eq. (B3). As a consequence, the
coin operator C"™*) acts on the total Hilbert space HCn'

(B4)
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FIG. 2. Extension of the search in n=3 dimensions to a hyper-
cube in n’ =4 dimensions without distinguishing even and odd par-
ity vertices. The operator X denotes the application of the Pauli oy
operation to the last qubit. The effect of operator X is switching
between the image and the anti-image of a vertex.

®H""" as if two nodes were marked which differ only in
their last bits. Figure 2 illustrates the pair of marked vertices.
Intuitively, this is compensated in Eq. (B4) by alternating
C"™) with a coin that marks no vertices at all.

Next, we show that we can use the uniform superposition
initial state |¢) as an initial state to the quantum walk if the
iterations are carried out according to the right-hand side of
Eq. (B4). Let X denote the quantum NOT gate, oy, acting on
the last qubit. Clearly, we have X] 1,//(()6)>=|1/1§]0)), and
[X,U%]=[X,U"")]=0. Thus we can rewrite the desired ini-
tial state (3) as |¢p)=(X+1)/V2|y") and see that

1
WOV o) = X+ DO (B3)
\‘J

holds. In the right-hand side we can discover Eq. (B4), which
yields the state |x{,) with 1-O(1/n") probability, where x;, is
the image of x,, by the map (25). This probability is distrib-
uted uniformly between the image f{g and_the anti-image
X, @ 1 due to the multiplication by (X+1)/12.
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