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We propose an implementation of the Grover’s search algorithm in a nonclassical database using a linear
chain of trapped ions. The database comprises all collective states with two ionic excitations; hence the number
of database entries scales quadratically with the number of ions N. The system is initialized in an even
superposition of all register states, i.e., in the symmetric Dicke state with N ions sharing two excitations. The
reflection-about-the-mean operator is produced merely by global addressing of the ion string by an off-resonant
pulse with a suitable area, whereas the oracle operator is a control-phase gate. This simplification should allow
a demonstration of quantum search in a database of hundreds of elements without needing to synthesize
multiqubit quantum gates. The technique does not rely on coherent addition or subtraction of phonons, and
hence the ion chain can be sympathetically cooled throughout the process.
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I. INTRODUCTION

Although there are now a growing number of quantum
algorithms, much of the interest in quantum-information sci-
ence is still driven by two early results �1�. One of these, due
to Shor, is that a quantum-information processor could fac-
torize large numbers into primes exponentially faster than
any classical device �2�. The other is Grover’s observation
that the superposition principle can furnish us with a qua-
dratic speedup in the solution of the unstructured search
problem �3�. Experimental demonstrations of Grover’s algo-
rithm have been performed in a range of physical systems,
including nuclear magnetic resonance �4–6�, linear-optical
�7,8�, and trapped-ion systems �9� as well as using individual
Rydberg atoms �10� and in classical optics �11�. So far, all
experiments have been at the proof-of-principle level, and
involved databases of very modest dimension. For example,
the largest-dimensional quantum search which has been per-
formed using trapped ions involved just two ions and fea-
tured a database dimension of just four elements, i.e., N=4
�9�. Of course, in order for quantum search to be of any
practical use, it must be demonstrated in much larger sys-
tems, but unfortunately, this comes at the cost of complicated
highly conditional gates. Using the approach taken in �9�, a
register comprised of N ions contains N=2N elements, but
executing the algorithm then requires a conditional gate with
respect to all N ions. Recently, a simple physical implemen-
tation of Grover’s algorithm with trapped ions has been pro-
posed, where the quantum register is prepared in an en-
tangled W state �12�. This register, however, scales linearly
with the number of ions and is therefore of classical nature.

In this paper, we propose an approach to increasing the
register dimension without the overhead of requiring multi-
ply conditional gates. Indeed, the entire technique involves
only a series of laser pulses, each illuminating the whole
chain, and also controlled-phase gates between a pair of ions.

This simplified approach is made possible by restricting the
dynamics to the subspace of states in which exactly two of
the ions are in their excited state; hence the register dimen-
sion increases quadratically with the number of ions. This
type of scaling is superclassical since the number of database
elements scales faster than the required physical resources.

II. OVERVIEW OF GROVER’S ALGORITHM

Grover’s algorithm for quantum search allows a marked
�sought� element �s� to be located within an unstructured
database of dimension N in a number of search steps that
scales as O��N�. It provides a quadratic speed up with re-
spect to classical search, which scales as O�N�.

The reflection operators. The key element in Grover’s
search is the Grover operator

Ĝ = M̂a���M̂s��� , �1�

where the operator M̂���� is a generalized Householder re-
flection �HR� with respect to a plane normal to the vector ���
supplemented with a phase shift � �13�,

M̂���� = Î + �ei� − 1������� . �2�

The first of these reflections M̂s��� is known as an oracle
query, since it can be written solely in terms of the oracle

function fs�x�: M̂s����x�=eifs�x���x�. Here the oracle function
fs�x� takes integer arguments �x=1,2 , . . . ,N� and acts differ-
ently on the sought state �s� to all others,

fs�x� = �sx = 	1 �x = s� ,

0 �x � s� .

 �3�

The other component of the Grover operator M̂a��� is the
inversion-about-average operator, which treats all database
elements equally and reflects the state of the system about
the symmetric superposition,*Deceased.
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�a� =
1

�N�
x=1

N

�x� . �4�

The Grover iteration. The Grover algorithm requires the
database to be prepared initially in state �4�,

��i� = �a� , �5�

and then apply iteratively the Grover operator Ĝ to this state
ng times, where �3�

ng = � �

4 sin−1 N−1/2
 �
N�1��

4
�N
 , �6�

where �n� stands for the integer part of n. In result, a signifi-
cant amplification of the marked state amplitude occurs,
whose value approaches unity for large N,

��s�Ĝng�a�� � 1. �7�

Phase matching. In principle, the angles of the two reflec-

tions M̂s and M̂a could be different. However, it was realized
quite early on �14,15� that the maximum amplitude amplifi-
cation of state �s� arises when the two reflections are phase
matched, as in Eq. �1�.

Grover’s phase. The minimum possible number of itera-
tions for Grover’s search is ng, Eq. �6�, and it is obtained
when �=�, as in the original Grover’s proposal �3�. How-
ever, with this choice of phase the outcome of the algorithm
is probabilistic: the marked state is identified with probabil-
ity �fidelity� F�1−1 /N. If a deterministic search outcome
is important, it is always possible to choose an alternative
phase �d, for which the probability of recovering the marked
state is unity �15�,

�d = 2 sin−1��N sin
�

4nd + 6

 , �8�

where nd is the corresponding number of iterations. Equation
�8� has real solutions for all integer nd satisfying nd�ng and
also, Eq. �8� has a real solution corresponding to nd=ng �ex-
cept for certain values of N�. We point out that the issue of
deterministic search is only relevant for small databases be-
cause the uncertainty in the original Grover search decreases
as 1 /N; for any database of practical significance the origi-
nal Grover search is almost deterministic.

In the context of the present paper, it is useful to rewrite
Eq. �8� as

n� =
�

4 �sin−1� sin��/2�
�N 
�−1

−
3

2
�

N�1 ��N
4 sin��/2�

. �9�

This equation provides the number of Grover iterations
needed for an arbitrary value of �. For �=� we obtain Grov-
er’s number ng, Eq. �6�. For any other value of � the number
of steps increases, n�	ng; for small � this number can be
very large �n�→
 for �→0�. The important conclusion
from Eq. �9� is that there is some leeway in the choice of �,
as long as its value is large enough. For instance, any value
of � in the range

�d � � � � �10�

ensures that the number of iterations is ng �or ng+1 in ex-
ceptional cases�. We shall use below this leeway in the value
of �.

III. TRAPPED-ION SYSTEM

The purpose of this paper is to demonstrate how the two

Householder reflections M̂a��� and M̂s��� needed to con-

struct Ĝ may be performed very simply for databases of
nonclassical dimension using a chain of trapped ions.

We consider a linear chain of N identical trapped ions,
labeled by an index k=1, . . . ,N, each with two relevant in-
ternal states �0k� and �1k� and corresponding energies satisfy-
ing E1−E0=�
0. The ions interact collectively with a laser
pulse �or a pair of pulses depending on the qubit implemen-
tation� shining along the trap axis, with angular frequency
tuned near to the first motional red sideband of the center-
of-mass mode, i.e., 
L=
0−�−�, where � is the trapping
frequency, and � is the detuning from the red-sideband reso-
nance �for simplicity and without loss of generality � is as-
sumed positive, ��0�, as shown in Fig. 1. We assume that
the ions are initially cooled into their ground state of motion
�16� and that the trapping frequencies are suitably chosen so
that radial motion can be neglected. If the laser field has
equal intensity at the position of each ion �for example, if it
is directed along the trap axis� then the interaction Hamil-
tonian in the Lamb-Dicke limit and the rotating-wave ap-
proximation is given by �17–19�

Ĥ�t� =
����t�

2�N
�
k=1

N

��k
+âei��t+�k� + �k

−â†e−i��t+�k�� . �11�

Here â† and â are, respectively, the creation and annihila-
tion operators of center-of-mass phonons, while �k

+= �1k��0k�
and �k

−= �0k��1k� are the internal spin-flip operators. �

=��k2 cos2 �k /2M� is the single-ion Lamb-Dicke parameter,

δ

2δ

g

ni = 2, np = 0

ni = 1, np = 1

ni = 0, np = 2

|1100〉 |1010〉 |1001〉 |0110〉 |0101〉 |0011〉

|1000〉 |0100〉 |0010〉 |0001〉

|0000〉

2g

FIG. 1. �Color online� Linkage pattern of the relevant ionic
states �for N=4 ions�, dressed with a certain number of vibrational
quanta np �phonons�, coupled by a laser field, which is tuned near to
�with a detuning �� the red-sideband resonance of the center-of-
mass vibrational mode. The total number of electronic and vibronic
excitations is preserved and it is set to 2. The upper manifold of
states, with two ionic excitations �qubits in state �1�� and 0 phonons
form the database elements used for Grover’s search. The Rabi
frequencies for the lower transitions are all equal to g�t��2, whereas
those for the upper transitions are g�t� �the difference stems from
the different phonon numbers�.
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with k being the laser wave number, �k the angle between the
trap axis and the direction of the laser beam, and M the ion
mass. The function ��t� is the �real-valued� time-dependent
Rabi frequency of the laser pulse, and the phase factor �k
depends on the equilibrium position of the kth ion. We shall
denote the number of internal excitations shared by the ions
with ni and the number of center-of-mass phonons with np.
The Hamiltonian �11� is valid when the following conditions
hold:

� � � , �12a�

��t� � � , �12b�

��np + 1 � 1. �12c�

Conditions �12a� and �12b� ensure that nonresonant transi-
tions to vibrational modes other than the center-of-mass
mode have a negligible effect, while condition �12c� is
known as the Lamb-Dicke limit. After performing the time-
dependent phase transformation

F̂�t� = exp� i

2�
k=1

N

��t + �k��z
�k�
 , �13�

where �z
�k�= �1k��1k�− �0k��0k� is the Pauli spin matrix for the

kth ion, we express the Hamiltonian �11� as

ĤI�t� = �g�t��â†Ĵ− + âĴ+� + ��Ĵz, �14�

where ĤI= F̂†ĤF̂− i�F̂†�tF̂. Here g�t�=���t� /2�N is the
coupling between the internal and motional degrees of free-
dom. The collective operators

Ĵ+ = �
k=1

N

�k
+, Ĵ− = �

k=1

N

�k
−, Ĵz =

1

2�
k=1

N

�k
�z�, �15�

describe the combined ionic pseudospin of the N ions
�20,21�. Since the Tavis-Cummings Hamiltonian �14� com-

mutes with the excitation number operator N̂= â†â

+�k=1
N �1k��1k�, i.e., �ĤI , N̂�=0, the total number of excitations

ni+np is conserved. Below, we will assume that the ion chain
is initialized in its motional ground state �np=0� and with
exactly two ionic excitations �ni=2�. The detuning and Rabi
frequency of the laser pulse are chosen to satisfy

� � � � 1/T, � � g�t� , �16�

where T is the pulse duration. Due to the condition ��1 /T,
all transitions to states outside of the �ni=2,np=0� manifold
are suppressed; hence, coherent changes in the motional state
of the ions play no role. �Incoherent addition of unwanted
motional quanta can be avoided by continuous sympathetic
cooling of an auxiliary ion reserved for this purpose �22�.�

The operators Ĵ� and Ĵz satisfy the familiar angular-
momentum commutation relations and the dynamics is most
conveniently analyzed in a basis consisting of the set of

eigenstates of both Ĵz and Ĵ2, where

Ĵ2 = Ĵz
2 + 1

2 �Ĵ+Ĵ− + Ĵ−Ĵ+� �17�

is the total ionic pseudospin. This change of basis, which is
an example of the multilevel Morris-Shore �MS� factoriza-
tion �23�, is illustrated in Fig. 2. To emphasize the angular-
momentum structure of the factorized basis states, we choose
to label them as �j ,mj�, where j and mj, respectively, label

the eigenvalues of Ĵ2 and Ĵz,

Ĵ2�j,mj� = j�j + 1��j,mj� , �18a�

Ĵz�j,mj� = mj�j,mj� . �18b�

In the angular-momentum basis, the original system from
Fig. 1 decomposes into a chain of three states, N−1 chains of
two states, and a set of N�N−3� /2 uncoupled single states, as
illustrated in Fig. 2. Each chain possesses a definite angular
momentum j and each state in a chain has a definite value of
mj, as shown in Fig. 2.

The Rabi frequency in each transition is obtained as a
product of the relevant matrix elements of the motional and
angular-momentum operators,

�np�â†�np − 1� = �np, �19a�

�j,mj − 1�Ĵ−�j,mj� = ��j + mj��j − mj + 1� , �19b�

where �np� is the Fock state with np phonons �np=0,1 ,2�. As
indicated in Fig. 2, there are three distinct couplings,

��t� = g�t��2N , �20a�

��t� = g�t��2�N − 1� , �20b�

��t� = g�t��N − 2. �20c�

In the present context, it is only necessary to identify the
states in the longest chain, corresponding to j=N /2. We note
that the lowest state in this chain is already known to be
�00¯0�, due to our chosen ordering of the states according to

λ µ µ

δ

2δ

N−1 two-state systems
(j = N/2−1)

N(N−3)/2 spectator states
(j = N/2−2)

a three-state
system (j = N/2)

κ

mj = −N/2+2
ni = 2, np = 0

mj = −N/2+1
ni = 1, np = 1

mj = −N/2
ni = 0, np = 2

2
NW

FIG. 2. �Color online� In the basis of the eigenstates of the

collective operators Ĵz and Ĵ2, the coupling scheme represented by
the Hamiltonian �14� factorizes into a series of independent chain-
wise linkages. Each horizontal manifold corresponds to a given
number ni of the ions being in their excited state. The symmetric
Dicke state �W2

N�, in which the system is initialized, is indicated; the
identity of the other states is unimportant. �, �, and � indicate the
Rabi frequencies for the respective transitions. For simplicity, all
energies in the Hamiltonian �14� are shifted by �N /2−2���.
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ni. Because this state is symmetric under ions reordering, and
the Hamiltonian �14� is also symmetric under interchange of
the ions, it is clear that all states in the longest chain also
share this property—the longest chain consists of the sym-
metric Dicke states �Wni

N� of N ions sharing ni internal exci-
tations �20,21,24�. The highest state in this chain is therefore
an even superposition of all distinct configurations of N ions
sharing two excitations: the Dicke state

�W2
N� =

�110 ¯ 00� + �101 ¯ 00� + ¯ + �000 ¯ 11�
�C2

N
,

�21�

with C2
N=N�N−1� /2. This is exactly the initial state required

for Grover’s algorithm, �a���W2
N�. Conveniently, this state

experiences a different coupling strength ��t� than all other
factorized basis states. It is this fact which allows for a very
simple implementation of the inversion-about-average opera-
tor.

Having introduced the necessary formalism we are now

ready to show how to generate the two reflections M̂a and M̂s
that lie at the heart of Grover’s algorithm.

IV. IMPLEMENTATION OF QUANTUM SEARCH

A. Description

The quantum register comprises all collective ionic states
in which exactly two ion qubits are in state �1�, whereas the
remaining N−2 ions are in state �0�. Our proposed imple-
mentation of quantum search is sketched in Fig. 3 and con-
sists of four simple operations, all of which are well within
current experimental capabilities.

Step 1. The chain of ions is initialized into the symmetric
Dicke state �W2

N�. Recently, a range of methods have been
proposed for creating such states in a chain of trapped ions
�24–28�, the simplest of which use adiabatic passage and
require only one �24� or two �25� pulses addressing the entire
chain.

Step 2. The oracle query is a controlled-phase gate be-
tween two of the ions.

Step 3. The inversion-about-average operator is a single
off-resonant pulse, with a suitable detuning and Rabi fre-
quency, addressing the entire chain.

Step 4. Readout is achieved by performing a fluorescence
measurement on the whole chain, which should identify
which two ions are in state �1�.

Steps 2 and 3 form the key ingredient of Grover’s algo-
rithm and should be repeated ng �or n�� times in order to
amplify the marked-state amplitude. They are described in
detail in the following two sections.

B. Oracle-query operator

The marked element �s� is a state in which a particular
pair of ions are in their state �1�, and therefore the oracle

operator M̂s is simply a control-phase gate between these two
ions. In fact, our motivation for restricting the database to the
states containing just two excitations is that this operation is
performed with high accuracy in current experiments
�29–31�. For example, Benhelm et al. have recently reported
a sequentially applied two-ion control-phase gate with
�99% fidelity per gate �29� and it has been suggested that
this could be extended to �99.99% fidelity �32�.

When higher numbers of excitations are involved the syn-
thesis of each oracle query becomes more challenging. While
any multiqubit operation can efficiently be decomposed us-
ing a network or single- and two-qubit gates �1,33�, the task
of actually realizing such a circuit exceeds the limits of cur-
rent experimental control even for small numbers of excita-
tions. For example, when the system contains three excita-
tions, the oracle operator can be synthesized using one
TOFFOLI gate and two HADAMARD gates. Very recently, it was
reported that a TOFFOLI gate between three trapped ions has
been realized with a fidelity of 71% �34�. This is a very
important development, being the first experimental demon-
stration of a conditional three-qubit gate using trapped ions.
However, the reported fidelity may still be on the low side
for application to quantum search if many Grover iterations
are required. Therefore, we restrict our proposal to two ex-
citations, although it can be extended to an arbitrary number
of excitations.

C. Inversion-about-average operator

Because even for a moderate number of ions N the overall
database dimension N=N�N−1� /2 contains a relatively
large number of elements, the inversion-about-average op-

erator M̂a��� appears to be a complicated operation, since it
amounts to a controlled manipulation of all N amplitudes
that describe the state. Fortunately, although this operation
looks daunting from a formal perspective, it is possible to

oracle (c-phase gate)

reflection about the mean

initialization in the Dicke state 2
NW

detection

ng

times

(a)

(b)

(c)

FIG. 3. �Color online� Physical implementation of the quantum
search algorithm. �a� The system is initialized in the Dicke state

�W2
N�. Stages �b� and �c�, respectively, synthesize the reflections M̂s

and M̂a which together constitute one Grover iteration. Note that

the inversion about average operator M̂a is here implemented in a
single step, which is a significant improvement on earlier proposals.
�d� The readout stage is performed using a fluorescence measure-
ment simultaneously on the entire chain.
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synthesize M̂a��� in a single step, by exploiting the symme-
try possessed by the Hamiltonian �14�. As already noted
above, a single laser pulse, which couples equally to all of
the ions, has a different effect on the even-superposition state
�a� to all other states in the MS basis, i.e., �a� is the only state
in the MS basis that experiences a coupling strength of ��t�
and is involved in a three-state chain. The other coupled MS
states of the ni=2 manifold experience all the same coupling
��t� in their respective two-state MS system �Fig. 2�.

We assume that the detuning is sufficiently large ��T
�1�, so that the transition probabilities in all MS systems
vanish and the MS states in the ni=2 manifold acquire only
phase shifts: � for �a� and �� for the other coupled states ��k�
�k=1,2 , . . . ,N−1�. The propagator within the original ni=2
manifold then reads as �35�

Û = Î + �ei� − 1��a��a� + �ei�� − 1��
k=1

N−1

��k���k�

= M̂a����
k=1

N−1

M̂�k
���� , �22�

where we have used the orthogonality of the MS states. The

first factor M̂a��� in Eq. �22� is exactly the reflection about
the mean needed for the Grover’s algorithm. In order to

make the propagator Û identical to the desired reflection

M̂a��� it is necessary that the phase �� is equal to an even

integer of �, because M̂�k
�2l��= Î, that is

mod��,2�� = � , �23a�

mod���,2�� = 0. �23b�

We therefore turn our attention to the choice of a laser field
that produces such phases.

1. Very large detuning: Adiabatic elimination

In the limit of very large detuning ���g0 ,1 /T� one can
eliminate adiabatically the ni�2 manifold and obtain simple
expressions for the phases,

� � 2�N − 1�g0
2F2/� + O�g0

4/�3� , �24a�

�� � �N − 2�g0
2F2/� + O�g0

4/�3� , �24b�

with F2=�ti
tf f�t��2dt�, where g�t�=g0f�t�. Conditions �23� re-

quire 2�N−1�g0
2F2 /�=2l1�+� and �N−2�g0

2F2 /�=2l2�,
with l1 and l2 integers. Therefore,

�

2�
= 2l2 − l1 +

2l2

N − 2
. �25�

A proper choice of l2 can produce the desired value of � with
an uncertainty ���O�1 /N�,

��

2�
�

2

N − 2
. �26�

For ��� �Grover’s phase� we have l2= ��N−2� /4� and
hence g0

2 /��� /2. Hence the uncertainty in the phases will

be O�g0
4 /�3��O�1 /��. Because the Grover algorithm is very

sensitive to phase matching �14,15�, a very large detuning
may be required to make the algorithm work, �T�102, a
condition that, after taking various details into account, is
further extended towards �T�103. Such a condition may be
in conflict with the condition for single-mode interaction,
given the variety of modes in the many-ion chain.

These considerations suggest a simple route to the choice
of interaction parameters in situations when a very large de-
tuning can be tolerated. We first select an appropriate integer
number l2 that produces the desired phase � according to Eq.
�25� �e.g., l2= ��N−2� /4� if ����. Then from the condition
�N−2�g0

2F2 /�=2l2� we find the value of the ratio g0
2 /�.

0

1

12 ions
66 states

0

1

25 ions
300 states

Po
pu

la
ti

on
of

M
ar

ke
d

St
at

e

0

1

50 ions
1225 states

Time

FIG. 4. �Color online� Simulation of the Grover search algo-
rithm with N ions and two excitations �register dimension N
=N�N−1� /2�, for N=12 �upper frame�, N=25 �middle frame�, and
N=50 �lower frame�. The system of ions is assumed to be initial-
ized in the respective symmetric Dicke state �W2

N�. The laser pulses
have a Gaussian shape, g�t�=g0e−�t − tn�2/T2

, applied at times tn

=8nT. The thin vertical lines display the timing of the oracle call at
times to=4�2n+1�T and are separated by 8T; the HR pulses are
applied exactly in the middle between two vertical lines. The HR
parameters for the reflection about the mean are �T=10 in all cases
and peak Rabi frequencies g0�5.37T−1 �top�, g0�6.79T−1

�middle�, and g0�8.98T−1 �bottom�. The oracle phase is �
�−0.94� �top�, ��−0.98� �middle�, and ��� �bottom�; it is
chosen to match the phase of the HR. The marked-state population
�the fidelity� reaches the value of nearly 99.9% for ng=6, 13, and 26
steps, respectively, in exact agreement with Grover’s value. The
numerical simulation includes all off-resonant transitions to states
with ni�2.
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From here, for any fixed large value of �, we find the peak
Rabi frequency g0.

2. Large detuning: Adiabatic solution

A controlled phase shift can be induced also in the regime
��1 /T regardless of g0, i.e., including for g0��, when an
adiabatic elimination cannot be carried out. The physical ra-
tionale is the effect of complete population return, which
takes place in the adiabatic limit ��T�1� �36� when the level
energies do not cross. The phase shift in each MS two-state
system is then

�� �
1

2
�

ti

tf

��4�N − 2�g�t��2 + �2 − ��dt�. �27�

Obviously, in the limit ��g0 we obtain Eq. �24b�; therefore,
Eq. �27� is more general. The phase shift � in the three-state
MS chain can be calculated as an integral over the respective
eigenenergy �not listed here for simplicity�. Although certain
approximations to these expressions can be derived it is an
easy task to evaluate these integrals numerically and choose
parameter values that provide the required values of � and
��; we have used this latter approach in the numerical simu-
lations below.

D. Numerical testing

In order to test the above predictions, we have solved the
Schrödinger equation numerically, for a Gaussian pulse
shape, g�t�=g0e−t2/T2

, and a constant detuning �. Sample re-
sults are shown in Fig. 4 for N=12, 25, and 50 ions, which
imply databases of N=N�N−1� /2=66, 300, and 1225 ele-
ments. The fidelity plotted on the vertical axis is the time-
dependent population of the marked state ��111203¯0N� in
the example given�. The system of N ions is assumed to be
prepared initially in the even Dicke superposition �W2

N� of the
N collective states, each of which contains exactly two ion
qubits in state �1� and the other qubits in state �0�. Each
Grover iteration consists of a phase shift of the marked state

�oracle call�, which amounts to a control-phase gate upon the
ions in state �1�, followed by a single off-resonant pulse of
suitable amplitude and detuning, which addresses uniformly,
with the same intensity, the entire ion chain �the inversion-
about-average operator�. The number of steps, for which the
algorithm singles out the marked item with almost a certainty
�99.9%�, is ng=6, 13, and 26, respectively, as predicted by
Eq. �6�.

V. CONCLUSIONS

The proposed implementation of quantum search with a
chain of trapped ions should allow a proof-of-principle dem-
onstration of quantum search with hundreds of database ele-
ments with the existing ion trap technology. The proposed
implementation does not require complicated multiply con-
ditional gates. The principle that underlies this simplification
is to restrict the dynamics to those basis states for which
exactly two ions are in their excited states and to take advan-
tage of the symmetry that this subspace exhibits. With this
arrangement, the oracle query operator is a control-phase
gate between a particular pair of ions, while the inversion-
about-average operator is synthesized using a single off-
resonant laser pulse that addresses all of the ions simulta-
neously and uniformly. Our simulations show that the
technique should perform very well for a moderately sized
quantum register. Motional heating need not have a large
effect, since the proposed method can operate alongside con-
tinuous sympathetic cooling of an auxiliary ion. Finally, this
technique has the potential to be extended to ion trap arrays
�37�; work in this direction is under way.
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