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We consider, within the algebraic formalism, the time dependence of fidelity for qubits encoded in an open
physical system. We relate the decay of fidelity to the evolution of correlation functions and, in the particular
case of a Markovian dynamics, to the spectral gap of the generator of the semigroup. The results are applicable
to the analysis of models of quantum memories.
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I. INTRODUCTION

Since the advent of quantum-information theory it was
clear that the particular quantum features relevant for
quantum-information processing like superpositions of easily
distinguishable states and entanglement of well-separated
subsystems are extremely fragile with respect to an interac-
tion with the environment �1,2�. More recent developments
show that the only possible solution to this problem is to
encode quantum bits �qubits� as fictitious subsystems of real
physical systems described by observables that are robust or,
in other words, metastable with respect to an external noise
�3�. Mathematically, this implies that the algebra A of ob-
servables of the total system which consists of the relevant
part of the Universe has a tensor product structure A=Q
� B, where Q is a finite-dimensional matrix algebra describ-
ing a single or several encoded qubits. The time evolution is
defined on the level of the total system and in the following
we consider two cases:

�a� The algebra A is a model of the largest relevant iso-
lated system, its dynamics is reversible and described in the
Heisenberg picture by a family of automorphisms, i.e., uni-
tary maps.

�b� The algebra A corresponds to a well-defined and well-
controlled, spatially confined quantum system, often consist-
ing of N�1 physical qubits, which interacts weakly with the
environment. Then the environment can be eliminated and
one obtains an irreversible reduced dynamics on A given by
a family of completely positive �CP� unity preserving maps,
typically in Markovian approximation.

In quantum-information theory the natural description in-
volves states of the fictitious encoded qubit system alone
given by a time-dependent reduced density matrix ��t��Q.
It is assumed that at time t0=0 we are able to prepare the
encoded qubits in an arbitrary pure state ��0�= ������. Its
deterioration due to external influences is characterized by
the time-dependent fidelity

F��;t� = ��,��t���, t � 0. �1�

The problem with equation �1� is that there is in general no
physically motivated description of ��t� in terms of a map
acting on the initial state ��0�. We shall see that a consistent
description in operational terms involves time-dependent
correlation functions of elements of A. Such objects are

natural in quantum statistical mechanics and the formulation
of the problem in a more general algebraic language allows
us to admit field theoretical or/and infinite volume models of
physical systems. Moreover, an algebraic formulation is a
natural framework to study irreversible dynamics given in
terms of CP maps.

One should mention here the large number of papers de-
voted to fidelity decay in Loschmidt echo experiments re-
viewed in �4�. Most of those results are devoted to quantum
systems with time dependent, often chaotic, unitary dynam-
ics or to open systems with initial product states while here
we consider general state preparation procedures. For sure
both approaches could be combined to improve our under-
standing of irreversible processes in controlled quantum
systems.

II. ALGEBRAIC FORMULATION

As we shall be concerned with local perturbations with
respect to a given reference state, such as a thermal state, we
use the setting of von Neumann algebras �5�. Let A denote
the von Neumann algebra of the �bounded, complex� observ-
ables of the total system which is assumed to be a tensor
product

A = Q � B . �2�

Here Q is the finite-dimensional subalgebra of the encoded
qubit observables, assumed to be isomorphic to a full d�d
matrix algebra, and B is the syndrome system. The single
step effective Heisenberg dynamics of the total system is a
normal, completely positive, identity preserving map � on A
with a cyclic and faithful, normal, invariant state �. This
state represents a stable reference state typically thermal
equilibrium. The general theory �5� assures the existence of
the so-called modular automorphism group �MAG� on A de-
noted by 	= �	t :−
� t�
	. The defining properties of the
MAG are expressed by extending the time parameter t to a
complex domain.

The reader who is not familiar with this abstract approach
can always restrict to the special case where A is the algebra
of bounded operators B�H� on a certain Hilbert space H and
� is a density matrix. The abstract notation ��a� for the
mean value of the observable a in the state � corresponds to
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the usual formula Tr��a�. In this case faithfulness means that
� is strictly positive, it can therefore always be seen as a
canonical Gibbs state corresponding to a certain Hamiltonian
H at inverse temperature 1, i.e., �=e−H /Tr e−H. The corre-
sponding Heisenberg picture dynamics a→	t�a�ªeitHae−itH

is a MAG in this standard setting. One can easily check that
such a MAG is uniquely defined by the state up to an irrel-
evant time unit.

III. FIDELITY AND CORRELATIONS

The restriction of � to Q, denoted by �Q, is determined
by a d�d density matrix which is strictly positive as �Q is
faithful. It is our aim to describe the evolution of fidelity
between an initially pure qubit state and its evolved state.
Any given density matrix � on Q can be obtained as a re-
striction to Q of a local perturbation of the reference state �.
Indeed, any a�A such that ��a†a�=1 defines a perturbed
state �� on A,

���b� ª ��a†ba� . �3�

We claim that we can always find an a such that

����Q = � or, equivalently, that

��a†qa� = ��q� for q � Q . �4�

In fact, such an a can even be found in Q, e.g., a
=�1/2�Q

−1/2. We assume from now on that a is chosen in such
a way that ��a† ·a�Q is the pure qubit state ������. The ex-
pression �1� of the fidelity now reads as

F��;�� = �„a†��P��a… = �„	−i�a�a†��P��… . �5�

Here P� denotes the orthogonal projector on � tensorized
with the identity on B and 	 is the MAG of �. Equation �5�
implicitly assumes that a is an analytic element for the
MAG.

It is useful to introduce the scalar product

�x,y�� ª ��x†y� �6�

on A and the Hilbert space H� obtained by completing A
with respect to the norm defined by �6�


x
� ª �x,x��
1/2. �7�

Next, we introduce operators

x ª a	i�a†� − 1 and y ª P� − ��P�� . �8�

It is easy to check that both x and y are centered, i.e., or-
thogonal to 1 with respect to the scalar product �6�,

��x� = ��y� = 0. �9�

The fidelity �5� can now be expressed in terms of the corre-
lation between the observable x† and the evolved observable
y as

F��;�� = �„x†��y�… + ��P�� . �10�

In the case �a� with � being a thermal equilibrium state the
dynamics � coincides with its MAG and therefore the ex-
pression �10� with substitution of �8� is a sum of thermal

correlation functions or, for field theoretical models, of ther-
mal Green functions �6�.

The form �3� we used to generate an arbitrary state � on
Q, in particular a pure state ������, does not correspond to a
realistic physical preparation procedure. A more precise de-
scription would involve the application of quantum opera-
tions. Namely, the preparation of the initial state in Q is done
through interactions with certain quantum devices. Eliminat-
ing the degrees of freedom of these preparation devices we
obtain a quantum operation which is, in Heisenberg picture,
an identity preserving CP map on A of the form

��b� = �
j

aj
†baj with �

j

aj
†aj = 1 . �11�

Then, the initial state � on A is transformed to a perturbed
state �� given by

���b� = �
j

��aj
†baj� with �

j

���aj
† · aj��Q = � . �12�

Again, for any initial � on Q we can find an operation �
with Kraus operators aj �Q, e.g., using a CP map of the
form

��q� = Tr��q�1 = �
m,n

amn
† qamn, �13�

where

amn = ��m�m��n� � 1, � = �
m

�m�m��m� . �14�

A similar approach to that used in the case �3� can then be
followed. The centered observable x is now given by

x ª �
j

aj	i�aj
†� − 1 . �15�

Remarks. �i� The choice of Kraus operators in �11� de-
pends on the physical implementation of the preparation pro-
cedure. Therefore, in general, the aj do not need to be ele-
ments of Q and even if they are the observable x is not in Q
except for the case where � is a product state with respect to
the tensor structure �2�.

�ii� The simple choice �3� of the initial perturbed state can
be seen in terms of a more realistic preparation procedure
�11� by considering a weight p�1. As pa†a�1 there exists
an operation � with a1=�pa which produces an ensemble of
initial perturbed states �� j�¯�=��aj

†aj� /��aj
†aj�	. Filtering

out the state �1 from this ensemble provides a physical
preparation of the state �3�. This should be compared with
distillation procedures, see, e.g., �7�.

�iii� The operational prescription of the initial state prepa-
ration �11� and �12� does in general not lead to a reduced
dynamics or subdynamics. Such a reduced dynamics can be
always formulated �in Schrödinger picture� in terms of an
assignment map �→�*���=�� which assigns to a given
initial state � of the qubits the initial state �� of the total
system �8�. The standard reduction procedure can then be
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applied to yield a dynamical map �*���=TrB��*�*����
with the standard partial trace over the environment B. Here
�* is the Schrödinger picture version of the CP dynamics for
the total system. Note that the particular choice �13� of the
preparing operation produces a subdynamics with a product
state assignment map ��→� � ��B.

IV. ESTIMATING DECAYS

The case �b� single step dynamics mentioned in the Intro-
duction is given by a CP unity preserving map with invariant
state �. In order to estimate the decay of fidelity we apply
Schwarz’s inequality to the first term on the rhs of �10�,

��„x†��y�…� = ��x,��y���� � 
x
�
��y�
�. �16�

Therefore, the relevant part is 
��y�
.
Using 2-positivity of � and invariance of � we obtain

��x,��y����2 � 
x
�
2 
��y�
�

2 = 
x
�
2 �„���y��†��y�…

� 
x
�
2 �„���y†y��… = 
x
�

2 ��y†y� = 
x
�
2 
y
�

2 .

�17�

This means that

x � A � ��x� �18�

is a well-defined nonexpansive map on H�. Decomposing
H� into a direct sum of C1 and its orthogonal complement, �
is of the following form:

� = 1 ��, ¯ ��

0 �̃
� . �19�

Here �̃ is a map on 1� and � is a vector in 1�. Next, we
express that � is nonexpansive,

���

�
��

�

2

= �� + ��,���

�̃�
��

�

2

= �� + ��,����2 + 
�̃�
�
2 .

�20�

This should be not larger than

��

�
��

�

2

= ���2 + 
�
�
2 �21�

for any choice of ��C and ��1�. It follows that �=0 and

that �̃ is contractive. The properties of �̃ determine the fi-
delity decay to its lowest value ��P��. This will be illus-
trated by the example of Markovian dynamics.

V. IRREVERSIBLE MARKOVIAN DYNAMICS

In fact, in a semigroup description of reduced dynamics,
one assumes that the dynamics is described by a weakly
continuous semigroup ��t : t�0	 of CP identity preserving

maps. In this case the map in �19� becomes time dependent.
Applying the argument of above for each t separately we find
that

�t = 1 0

0 �̃t
� , �22�

where ��̃t : t�0	 is a weakly continuous semigroup of non-

expansive maps on 1�. We now impose that �̃ is a contrac-
tion, i.e., that there exists a constant ��0 such that


�̃t�x�
� = 
�t�x�
� � e−�t
x
�, t � 0, x � 1�. �23�

This is always the case for a system with finite-dimensional
Hilbert space when all initial states relax asymptotically to a
single stationary one. Combining �10�, �16�, and �23� we
obtain our final estimate for the time-dependent fidelity

F��;t� ª F��;�t� � e−�t
x
�
y
� + ��P�� �24�

with x and y as in �8� or �15�.
Example. An important class of examples satisfying con-

dition �23� is obtained by a weak coupling of a quantum
system with discrete spectrum Hamiltonian H to the “large”
heat bath. The reduced dynamics in the Davies’s weak cou-
pling limit �see �9�� becomes Markovian and its generator in
the Heisenberg picture possesses a very specific form

d

dt
�t = iH�t + Ldis�t, HA = �H,A� , �25�

where the dissipative part Ldis of the generator is self-adjoint
with respect to the scalar product �6� and commutes with H.
Moreover, the stationary state � is a thermal equilibrium
state. Those properties are called quantum detailed balance
�10�. If the semigroup is relaxing, i.e., any initial state tends
�in the Schrödinger picture� to the equilibrium state, the
Heisenberg semigroup �t �25� is contracting with the con-
stant � given by the spectral gap of −Ldis which is equal to
the lowest eigenvalue of −Ldis restricted to 1�.

This particularly simple class of models applies, e.g., to
the study of thermal stability of quantum memories in
�11,12�. In this cases, the restriction of � to Q is just the
tracial state that implies that 	i�q�=q for all q�Q. Then,
for both simplest choices of initial state preparation given by

�3� with a = P�
�d, or �13� with � = ������

the straightforward computation of the general estimate �24�
using �5�–�17� yields

F��;t� �
1

d
+ e−�t�1 −

1

d
� . �26�

VI. CONCLUSIONS

We provided a bridge between the notion of fidelity which
characterizes the quality of quantum information stored in a
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noisy environment and the notion of temporal, thermal cor-
relation functions frequently used in statistical mechanics to
characterize ergodic properties of large quantum systems.
This technique should be helpful in searching for good can-
didates for quantum memories among the different models of
interacting many-body systems. This problem is quite impor-
tant as properly scalable quantum memories are a necessary
ingredient for any attempt at large scale quantum-
information processing.
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