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We investigate with exact numerical calculation coherent control of a two-level quantum system’s decay by
subjecting the two-level system to many periodic ideal 2� phase modulation pulses. For three spectrum
intensities �Gaussian, Lorentzian, and exponential�, we find both suppression and acceleration of the decay of
the two-level system, depending on difference between the spectrum peak position and the eigen frequency of
the two-level system. Most interestingly, the decay of the two-level system freezes after many control pulses if
the pulse delay is short. The decay freezing value is half of the decay in the first pulse delay.

DOI: 10.1103/PhysRevA.79.012310 PACS number�s�: 03.67.Pp, 03.65.Yz, 02.60.Cb

I. INTRODUCTION

It is of fundamental interests to study the quantum control
of spontaneous emission which inspired the development of
the quantum electrodynamics during the last century �1–3�.
The unwanted spontaneous emission often sets the ultimate
limit of precise quantum measurement and many proposals
have been made to suppress it �4–7�. One way widely ap-
plied to control the spontaneous emission of a small quantum
system, such as a neutral atom, is to place it either into or
nearby a microcavity such that only a single mode or several
modes of the cavity are resonant to the eigenfrequency of the
quantum system �8�. In this way the structure of the vacuum
is modified and the spontaneous emission could be con-
trolled by the properties of the cavity. Another way to control
the spontaneous emission is dynamical control of the quan-
tum system such that the coupling between the quantum sys-
tem and the vacuum is effectively modified. For example,
dynamical decoupling of the quantum system from the
vacuum via either phase modulation or amplitude modula-
tion could in principle extend the coherent time of the system
�9,10�. Analogous to the quantum Zeno effect �ZE� which
says frequent measurements of a quantum system would pre-
vent the decay of an unstable quantum system �9–11�, the
extension of the coherent time through coherent modulations
of the quantum system are often called ZE as well. Under
some unfavorable conditions, it is also possible that frequent
modulations lead to acceleration of the spontaneous emis-
sion, the so-called quantum anti-Zeno effect �AZE� �12–15�.

In practice people employ both ways separately or com-
bination of them to realize the optimal control of a quantum
system. Agarwal et al. work �7,13� is among many of such
works. In their paper, a two-level model system with both
structured vacuum and free space vacuum are investigated.
They found significant suppression of spontaneous emission
rate for structured vacua but either suppression or accelera-
tion may appear in a free space vacuum, depending on the
frequency of the control pulses which is 2� phase modula-
tion pulses. They demonstrated for a free space vacuum that
ZE shows up for �0�=1 while AZE appears for �0�=�
where �0 is the eigenfrequency of the two-level system and �
is the delay time between control pulses. At the end they
argued that AZE is possible for ���0

−1 �7�.

A puzzle arises if one accepts the AZE condition because
neither ZE or AZE appear if one leaves the quantum system
alone in which case obviously ���0

−1. In this paper we re-
visit this problem by adopting the exact solution of a two-
level quantum system which does not require the weak cou-
pling and short time approximations compared to Ref. �7�.
By investigating several typical structured vacuum, we show
the conditions for quantum ZE and AZE and the boundary
between them.

Another puzzle is the ZE effect of a large number of
pulses. According to the ZE, at a fixed evolution time t, the
survival probability of the initially excited state approaches 1
with infinite number of pulses N→� �the pulse delay
�= t /N approaches 0�. It is unclear what the road map looks
like as N increases. Two ways might be possible. One way is
that the rate of decay depends solely on the pulse delay �
�independent on N� and approaches zero if �→0 �16�. An-
other way is that the decay rate depends only on the number
of pulses N �independent on �� and the decay rate becomes
zero after initial several pulses. For the latter one, we expect
to see decay freezing at large number of pulses. We will find
which way is the correct one in this paper.

The paper is organized as follows. Section II reviews
briefly Rabi oscillation of a two-level system under a pertur-
bation and Sec. III develops an exact formula of Rabi oscil-
lation under periodic pulses. In Sec. IV after establishing a
quasilevel picture of the pulsed two-level system with con-
stant spectrum intensity, we investigate the quantum Zeno
and antiZeno effect for three spectrum intensities, including
the Gaussian, Lorentzian, and exponential one. The boundary
between quantum Zeno and anti-Zeno effect is given. We
discuss the decay freezing as pulse delay � getting small
in Sec. V. Finally, conclusion and discussion are given in
Sec. VI.

II. RABI OSCILLATIONS OF A TWO-LEVEL SYSTEM

Let us consider a simple model of a two-level quantum
system with constant coupling to its environment modes.
Such a model serves as the base of further discussions for
more complicated systems with mode-dependent coupling.
The Hamiltonian of the system with detuning �=�−�0 �we
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set �=1 for convenience� and coupling strength 	 is de-
scribed by �2,17�

H =
�

2
��e��e� − �g��g�� + 	��e��g� + �g��e�� , �1�

where �0=Ee−Eg is the difference between eigenfrequencies
of the excited state �e� and the ground state �g�, with, respec-
tively, eigenenergy Ee and Eg, and � is the frequency of the
external mode coupled to the two-level system �18�. Utiliz-
ing Pauli matrices, the Hamiltonian can be rewritten as

H = ��
z + 	
x �2�

with 
z= �e��e�− �g��g�, 
x= �e��g�+ �g��e�, and ��=� /2.
The evolution operator of the coupled two-level system is

U = d1�e��e� + d1
*�g��g� + d2��e��g� + �g��e�� , �3�

where d1=cos �t− i��� /��sin �t and d2=−i�	 /��sin �t
with �2=��2+	2. The transition probability at time t from
�e� to �g� is

peg�t� =
	2

�2 sin2��t� �4�

providing the initial state is ��0�= �e�. The system revives at
times such that �t=k� with k being an integer.

III. CONTROLLED RABI OSCILLATIONS
OF A TWO-LEVEL SYSTEM

By applying an ideal 2� pulse �or parity kick, see Fig. 1�,
which is very strong in amplitude and short in time but gives
a � phase shift solely to the excited state �e� utilizing an
auxiliary state �a� �7�, the state of the system changes accord-
ing to

x�e� + y�g� ——→
2� pulse

− x�e� + y�g� , �5�

where �x�2+ �y�2=1. We denote such a pulse as Z pulse here-
after

Z�x�e� + y�g�� = − x�e� + y�g� . �6�

In fact, Z=−
z= �g��g�− �e��e�.
The evolution operator for the 2� pulse and the free evo-

lution � is

U�1� = ZU = � d1 d2

− d2 − d1
* 	 . �7�

For N such operations, the evolution operator at time t=N�
becomes

U�N� = � d1 d2

− d2 − d1
* 	N

. �8�

Let d1=d1r+ id1i and d2= id2i. After some straightforward
simplifications with the use of Pauli matrices, one easily ob-
tains

U�N� = iN�cos N − i
� sin N� , �9�

where sin =
1−d1i
2 and 
�= �1 /sin ��d1r
z−d2i
y�. Note

that  depends on � instead of t=N�.
The transition probability from the initial state �e� to the

ground state �g� is

peg� �t = N�� = ��g�U�N��e��2 = peg���
sin2 N

sin2 
. �10�

The above result is exact for any coupling strength and pulse
delay �. For weak coupling 	��, ���� and ����+� /2
+2k� with k an integer, then

peg� �
	2

��2 tan2 ��� sin2 N��� �11�

for even N, which is exactly Eq. �9� in the Agarwal et al.
paper �7�.

IV. QUANTUM ZENO AND ANTI-ZENO EFFECTS

The above results are applicable only to single mode bath
environment which couples to the central two-level system.
In general the bath has multimodes and the coupling may
depend on the mode, e.g., the dipolar coupling between an
atom and an electric and magnetic field. For a many-mode
bath, the transition probability of the two-level system sub-
jected to control pulses is in general given by

peg� = �
n

	2

�n
2 sin2 �n�

sin2 Nn

sin2 n
�12�

with n the bath mode index �19�. Note that �n and n be-
come mode dependent in the many-mode bath case and 	 is
constant here but will be considered as mode dependent in
Sec. IV D. Assuming the bath spectrum is dense, we turn the
summation over mode index n into the integration over mode
frequency �,

peg� = d�����
	2

�2 sin2 ��
sin2 N

sin2 
, �13�

where ���� is the density of states of the bath. For N=1 we
get the free decay results �no control pulse�. Before consid-
ering the real physical systems which usually have mode-
dependent coupling, we study several toy models with con-
stant coupling strength 	=	0 for all bath modes to gain some
ideas about the effect of control pulses.

A. Uniform spectrum intensity

Taking ����=�0�1 /�c if �� �0,�c� and ����=0 other-
wise with �c denoting the cutoff frequency of the bath, Fig.
2 shows typical free decay and controlled decay of the ex-

FIG. 1. Diagram of a coupled two-level system subjected to
ideal 2� pulses.
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cited state. Except at very short times, Fig. 2 shows that the
transition probability linearly depends on the total evolution
time. Utilizing the linear dependence, one defines decay rate
�Einstein constant� at long time t as

A �
�peg�t�

�t
= 2��0	0

2 �14�

for free decay �7� and

A� �
1

�

�peg�

�N
=

2��0	0
2

�2 �
k

1

	0
2 + ��k − �0�2/4

�15�

for controlled decay, where �k is the kth resonant mode fre-
quency �15�. For weak coupling 	0�� /�, the kth resonant
mode lies approximately at �k��0+ �2k+1�� /� where
sin �1 and sin 2N /sin �������2� /�����−�k� for
large N. Note that the two nearest-neighbor peaks around �0
with k=0 and k=−1 contribute equally about 40% among all
the peaks �7,15�.

If we assume the bath has only positive frequency and
concentrate on the two dominant peaks, we find

A�

A
� � 0, �c� � � ,

1/2, �0� � � � �c� ,

1, otherwise
� �16�

and peg� / peg also shows steplike behavior as depicted in Fig.
3. Moreover, Fig. 3 exhibits only quantum Zeno effect, i.e.,
suppression of the decay by the control pulses. The decay are
completely suppressed, A�=0, once the control pulse fre-
quency is larger than the cutoff frequency.

B. Gaussian spectrum intensity

A Gaussian spectrum intensity has a form as

���� =
1


2��
e−�� − �m�2/2�2

, � � 0, �17�

where � and �m denote the width and the position of the
maximal intensity, respectively.

1. �0=�m

In this case we expect only quantum Zeno effect to ap-
pear, A��A, because it is easy to check that

A�

A
=

4

�2�
k

1

�2k + 1�2

���k�
���0�

� 1, �18�

where we have used the large N and weak coupling assump-
tions. By considering the two dominant peaks, we further
obtain that

A�

A
�

8

�2e−�2/2�2�2
�19�

for small � such that ����. Equation �19� shows that the
decay rate decreases rapidly with the control pulse frequency
in a Gaussian form. For exceedingly small � which satisfies
����, A� is essentially zero, which means the transition is
inhibited and the survival probability of the initial state satu-
rates. The red dashed line in Fig. 4 demonstrates the quantum
Zeno effect and the prohibition of the transition.

2. ��0−�m�œ�

For ��0−�m���, the results are similar to �0=�m and
exhibit only quantum Zeno effect. To observe substantially
enhancement of the transition, i.e., the quantum anti-Zeno
effect �12�, ��0−�m��� is required. More specifically, by
taking the biggest peak around �0, one obtains the necessary
condition for quantum anti-Zeno effect as

��0 − �m� �
4 ln
�

2
� � 1.3� . �20�

The blue solid line in Fig. 4 shows the quantum Zeno and
anti-Zeno effects for ��0−�m�=2. Both quantum Zeno �large
N region� and anti-Zeno �small N region� effects are ob-
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FIG. 2. Control pulse effect with fixed pulse delays. The param-
eters are �0=1, 	0=0.001, �c=100, and �=10,4 ,3 ,2 ,1 from top to
bottom for solid lines. The dashed line denotes the free decay. Time
is in units of 1 /�0 hereafter.
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FIG. 3. �Color online� Control pulse effect vs number of pulses
N �main panel� and relative positions of resonant modes to �0 and
�c �upper three panels A, B, and C corresponds to three regions in
the main panel, respectively�. The parameters are N�=100, �0=1,
	0=0.001, and �c=100. Two big steps show two major peaks out of
the lower and upper cutoff frequency, respectively. These small
steps show minor peaks going out of the cutoff frequencies. Circles
are for the frequency-dependent coupling case.
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served. At fixed time t=N�, large � �small N� gives anti-Zeno
effect while small � �large N� gives Zeno effect. The bound-
ary between quantum Zeno and anti-Zeno effect is about
2��m−�0���� if ��m−�0���. Strongest anti-Zeno effect is
obtained at ��0−�m��=� where one of the two main reso-
nant modes lies near �m.

C. Lorentzian and exponential spectrum intensity

The spectrum intensity for Lorentzian and exponential
are, respectively,

���� =
�/�

�� − �m�2 + �2 , � � 0, �21�

���� =
1

2�
e−��−�m�/�, � � 0. �22�

Similar to Gaussian spectral intensity, only the quantum
Zeno effect is observed if �0=�m for the Lorentzian and
exponential shape �Fig. 5�. The transition probability is es-
sentially inhibited once ���c where �c�1 /�c. Once
��0−�m���, we find both quantum Zeno and anti-Zeno ef-
fects and the boundary between Zeno and anti-Zeno regime
is determined approximately by 2��m−�0����. The peak
position of the quantum anti-Zeno effect lies about at
��0−�m����. As shown in Fig. 5, the reduced transition
probability in the exponential case has a narrower peak width
than that in the Lorentzian case. Two small secondary peaks
are noticeable in the anti-Zeno region of the exponential
spectrum case. These peaks are due to the second and third
quasilevel resonant to �m. They satisfy the condition, respec-
tively, ��0−�m���3� ,5�.

D. Frequency-dependent coupling

The widely adopted dipolar coupling in spontaneous
emission of a two-level atom or molecule has a frequency

dependence as 	���=	0

� where 	0 is taken as a constant,

which depends on the dipole matrix elements �2�. We will
consider the same coupling spectrum intensity as before, i.e.,

���� =
1

�

1

2��

e−�� − �m�2/2�2
, � � 0, �23�

���� =
1

�

�/�
�� − �m�2 + �2 , � � 0, �24�

���� =
1

�

1

2�
e−��−�m�/�, � � 0 �25�

for Gaussian, Lorentzian, and exponential density of state,
respectively. As shown in Figs. 4 and 5, the frequency-
dependent coupling has little effect on the performance of
the control pulses.

V. DECAY FREEZING

By inspecting Eq. �13�, the controlled transition probabil-
ity freezes if N�1 and the freezing value is

lim
N→�

peg� =
1

2
 d�����

	2

�2 sin2 ��
1

sin2 
, �26�

where we have replaced the rapidly oscillating integrand
sin2�N� with its average 1 /2. The left-hand column of Fig.
6 from numerical calculation indeed shows that the transi-
tions freeze at long times for three different cases at small �.
The smaller the � is, the smaller the freezing value is. Freez-
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FIG. 4. �Color online� Reduced transition probability at fixed
time �t=N�=100� vs number of pulses N for Gaussian spectrum
intensity for �0=�m �red dashed line� and �0=�m−2 �blue solid
line�. Circles and crosses are for the corresponding frequency-
dependent coupling case. The vertical dot-dashed line shows the
boundary between quantum Zeno and anti-Zeno effects for
�0=�m−2. Other parameters are 	0=0.001, �c=100, �m=�c /2,
�=1.
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FIG. 5. �Color online� Same as Fig. 4 except that the spectrum
intensity is Lorentzian �top� and exponential �bottom�.
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ing of the transition probability is equivalent to freezing of
the survival probability of the excited state, f =1− peg� .

Moreover, for small enough pulse delay �, we have
sin2 �1 thus

lim
N→�

peg� �
1

2
 d�����

	2

�2 sin2 �� =
1

2
peg��� . �27�

The above relation indicates that the freezing value of the
transition probability at long times is one-half of the free
transition value at t=� which is the pulse delay. Clearly, the
road map to the quantum ZE is that the decay rate becomes
zero after initial pulses �decay freezing� and the freezing
value of the survival probability f approaches 1 as � de-
creases.

Define differential freezing value ����= peg� �N�=1000�
− 1

2 peg���, which describes the difference of the transition
probability after many pulses and one-half of the decay in

the first pulse delay. The right-hand column of Fig. 6 shows
that � decreases with increasing of 1 /� �decreasing of ��,
confirming the analytical results of Eq. �27�.

In fact, decay freezing exists not only in the model system
we consider in the paper, but also exists in many other pulse-
controlled systems, such as gated semiconductor quantum
dot �20–24�, spin-boson model �25,26�, and nuclear spins
�27�. The basic idea behind the decay freezing is that the
control pulses creates an effective preferred direction along
which the decay is frozen. In terms of Pauli matrix �cf. Eq.
�2��, the preferred direction created by control pulses in the
model we consider is z.

VI. CONCLUSION AND DISCUSSION

By investigating three models of coupling spectrum inten-
sity �Gaussian, Lorentzian, and exponential�, we demonstrate
that a two-level system subjected to many ideal 2� pulses
exhibits both quantum Zeno and anti-Zeno effect, depending
on the relative position of �0 to the peak position �m of the
spectrum and the pulse delay �. Instead of decreasing the
decay rate, the pulsed two-level system shows decay freezing
after many pulses at small � and the freezing value of the
survival probability of the initial excited state approaches 1
�no decay� with decreasing �.

In this paper, all the spectrums have single peak and we
observe only single quantum Zeno and/or anti-Zeno region.
Under some special circumstances where a multiple peaks
spectrum exists, one would expect multiple quantum Zeno
and anti-Zeno regions. We have also assumed that the spec-
trum of the structured vacuum is time independent where the
back action exerted on the vacuum by the two-level system
has been neglected. A full quantum version of the coupling
between the two-level system and the vacuum could possibly
change the picture of the controlled decay at long times but
the short time behavior would be intact in the weak coupling
regime, because the back action is weak and needs a long
time to manifest its effect on the two-level system dynamics.

We consider only periodic pulse sequence �� is fixed� in
this paper. In principle, other pulse sequences with varying �
may also give similar quantum Zeno and anti-Zeno effect.
They may even have additional advantages �23,28�. In addi-
tion, the strength and the duration of the 2� pulses are finite
in practice. One could minimize the finite pulse effect by
employing the phase alternation techniques �29� or the Eule-
rian protocols �30�.
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