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We use NMR quantum simulators to study antiferromagnetic Ising spin chains undergoing quantum phase
transitions. Taking advantage of the sensitivity of the systems near criticality, we detect the critical points of the
transitions using a direct measurement of the Loschmidt echo. We test our simulators for spin chains of even
and odd numbers of spins, and compare the experimental results to theoretical predictions.
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I. INTRODUCTION

Quantum phase transitions �QPTs� describe sudden
changes of the ground state of a many-body quantum system
as a nonthermal control parameter moves through some criti-
cal value �1� �at zero temperature�. QPTs are relevant not
only for understanding of quantum many-body systems, but
also for other problems such as quantum entanglement �2�
and quantum computing, e.g., adiabatic quantum computing
�3� and quantum estimation �4�. Interesting phenomena re-
lated to QPTs have recently been experimentally observed in
various systems, such as heavy fermions and Bose-Einstein
condensates �5�.

There has been a recent flurry of activity following the
observation �6� that the proximity to a quantum critical point
enhances the sensitivity of a system to external perturbations,
as measured by quantum-information-theoretical quantities
such as the Loschmidt echo �6� or the ground-state fidelity
�7�. Exploiting such sensitivity, one can detect quantum criti-
cality by coupling an additional spin as a probe to the system
undergoing a QPT. This was suggested in �8� and demon-
strated in �9�, where the local coupling to the probe qubit
was used as the perturbation.

Here, we implement an alternative method to detect the
critical point of a QPT by measuring an arbitrary qubit of the
quantum critical system while applying a global perturba-
tion. The critical parameters of a general QPT, i.e., including
critical points and exponents, can in principle be detected
using our method. Our approach does not require an addi-
tional probe spin, which makes the experimental implemen-
tation easier. In contrast to our method, in the previous ap-
proach �9� the efficiency of detection depended on the nature
of the phases on both sides of the critical points, and could
be affected, or even rendered insensitive, by the locality of
the probe. Furthermore, because our method uses a global
perturbation, it increases the echo signal, making it, in prin-

ciple, better suited for scalability with the size of the system.
The paper is organized as follows: In Sec. II we introduce

the model and discuss how we use it to simulate a second-
order QPT. In Sec. III we review the behavior of the
Loschmidt echo in a critical system using a perturbative
treatment. In particular, we discuss the echo decay rate and
its scaling near the critical point. In Sec. IV we describe the
experimental implementation for even and odd spin chains
using nuclear magnetic resonance, and compare our results
to theoretical expectations. We offer concluding remarks in
Sec. V.

II. ISING CHAIN WITH A TILTED FIELD

To demonstrate the detection of quantum criticality, we
simulate the QPTs using a one-dimensional antiferromag-
netic Ising model with the Hamiltonian

H = �
i=1

N−1

�z
i�z

i+1 + Bz�
i=1

N

�z
i + Bx�

i=1

N

�x
i , �1�

where Bz and Bx denote longitudinal and transverse magnetic
fields, respectively, �z

i and �x
i are Pauli matrices acting on

spin i of the chain, and the coupling strength has been set to
unity. This type of model has been extensively studied in the
literature in the contexts of statistical physics �10�, quantum
computing �11�, quantum chaos �12�, and QPTs �13–22�.

Notice that the general case of Eq. �1� with Bz�0 and
Bx�0 cannot be solved exactly using Jordan-Wigner trans-
formation methods because the longitudinal field maps into
high-order coupling of the resulting fermions. This can also
be seen by noting that the Hamiltonian �1� can be mapped
into a classical two-dimensional �2D� Ising model �23�, with
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Bz the longitudinal field and Bx an effective temperature,
which means that our quantum simulation can also be seen
as a simulation of this archetypal model of classical phase
transitions. The map between a quantum d-dimensional spin
system into a d+1 classical Ising system �23� lets us obtain
the phase diagram of Hamiltonian �1� in the thermodynamic
limit, which corresponds to that of the 2D classical antifer-
romagnetic Ising model �24�, and is shown qualitatively in
Fig. 1. The critical line is second order except for Bx=0,
where it is a first-order transition. As we will use only a few
qubits, we are concerned here only with finite systems. Fur-
thermore, the Loschmidt echo decay rate typically increases
with system size �8�, which implies that in the thermody-
namic limit the echo would decay infinitely fast �unless the
perturbation is simultaneously reduced to zero, where a sin-
gular decay rate would be obtained �8��. In the finite-size
systems under consideration, the gap across a second-order
transition never closes, but rather reaches a minimum near
the critical point �this minimum goes to zero in the thermo-
dynamic limit�. Furthermore, for finite systems we need to
consider odd-even effects, which in our model system will
introduce “quasi”-phases that come from boundary effects
and merge in the thermodynamic limit.

Let us consider first the ground states for Bx=0, which
will be relevant for our experiments. We keep in mind that in
this particular case the system undergoes crossovers as a
function of Bz, since only the energies, not the eigenstates,
depend on Bz. When N is an odd integer, the ground state of
the system is

��o�Bz�� =�
�00 . . 0

N
� �Bz � − 2�

� 01 . . . 01
�N−1�/2 pairs of 01

0� �− 2 � Bz � 0�

� 10 . . . 10
�N−1�/2 pairs of 10

1� �0 � Bz � 2�

�11 . . . 1
N

� �Bz � 2� ,
	 �2�

where �0� and �1� are the eigenstates of �z. We denote the
four phases of the ground state as ��k

o� with k=1, . . . ,4. The
energy of the ground state is

Eg
o�Bz� =�

N
Bz +
N − 1

N
� �Bz � − 2�

N
Bz

N
−

N − 1

N
� �− 2 � Bz � 0�

N
−
Bz

N
−

N − 1

N
� �0 � Bz � 2�

N
− Bz +
N − 1

N
� �Bz � 2� .

	 �3�

We denote the energy corresponding to the four phases ��k
o�

as Eg,k
o , respectively. Bz=Bc= �2 and 0 are the crossover

points, where the system has a degenerate ground state.
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FIG. 1. Phase diagram of the antiferromagnetic Ising chain with transverse and longitudinal fields, Bx and Bz, respectively, in the
thermodynamic limit of infinite chain size �22,24�. The coupling strength is chosen as the unit for Bx and Bz �see Eq. �1� in the text�. In the
shadowed region inside the circle the ground state is �doubly degenerate� antiferromagnetic �AF�, and in the clear region outside it the
ground state is paramagnetic �PM�. The transition line between both phases is a second-order critical line, while the points at Bx=0 are
first-order transitions. The phase diagram corresponds to that of a two-dimensional classic Ising model with field equal to Bz and effective
temperature proportional to Bx. The dashed line shows qualitatively the region we explore experimentally, where the critical points in the
thermodynamical limit are close to Bz= �2. For the finite systems used in our experiments, we need to consider boundary effects, which
show up like extra subphases inside the AF phase. For odd N, a new critical point appears at Bz=0, while for even N two extra critical points
appear at Bz= �1.
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�N+1� /2 degenerate states exist at Bc= �2, making them the
multiphase points of the system �15,25�.

When N is an even integer larger than 2, the ground state
of the system is

��e�Bz�� =�
�00 . . 0

N
� �Bz � − 2�

1
�2

�� 01 . . . 01
�N−2�/2 pairs of 01

00� + �00 10 . . . 10
�N−2�/2 pairs of 10

�� �− 2 � Bz � − 1�

1
�2

�� 01 . . . 01
N/2 pairs of 01

� + � 10 . . . 10
N/2 pairs of 10

�� �− 1 � Bz � 1�

1
�2

��11 01 . . . 01
�N−2�/2 pairs of 01

� + � 10 . . . 10
�N−2�/2 pairs of 10

11�� �1 � Bz � 2�

�11 . . . 1
N

� �Bz � 2� ,

	 �4�

and the energy of the ground state is

Eg
e�Bz� =�

N
Bz +
N − 1

N
� �Bz � − 2�

N
2Bz

N
−

N − 3

N
� �− 2 � Bz � − 1�

N
− 1 +
1

N
� �− 1 � Bz � 1�

N
−
2Bz

N
−

N − 3

N
� �1 � Bz � 2�

N
− Bz +
N − 1

N
� �Bz � 2� .

	 �5�

The crossover points are Bc= �2 and Bc= �1. Points Bc
= �2 are also multiphase points, each with N /2 degenerate
states. The five phases are denoted as ��k

e� with k=1, . . . ,5
and the corresponding energy is represented as Eg,k

e .
From Eqs. �3� and �5�, one finds that if N→�, Eg,2

o

→Eg,3
o , Eg,2

e →Eg,3
e , and Eg,4

e →Eg,3
e . Hence, in the thermody-

namic limit only the multiphase points Bc= �2 are the cross-
over points, and ��2

o�, ��3
o�, ��2

e�, ��3
e�, and ��4

e� are qua-
siphases that merge into a single antiferromagnetic phase
�see Fig. 1�. The finite-size energy phase diagrams are shown
in Figs. 2�a� and 2�b�.

In general, second-order QPTs are characterized by a clos-
ing of the gap between the ground and first excited energy
levels at the critical points �in the thermodynamic limit�. Us-
ing our small quantum information processors, we will simu-
late the evolution of the quantum system described by
Hamiltonian �1� in a regime where its spectrum is similar to
the general case of a finite-size second-order QPT �that is,
with a small but finite gap�. We achieve this by using a small
transverse field Bx to lift the degeneracy at points Bc, which
makes the spectra resemble a continuous QPT �26�. Thus, we
explore the transitions crossed by the dashed line in Fig. 1. In
the analysis of our results we must take into consideration
finite-size effects such as the size of the gap at the critical
points, and the additional quasiphases introduced by flipping

a finite number of spins at the ends of the chain, which
makes a distinction between experiments with odd and even
chains.

III. LOSCHMIDT ECHO AND QUANTUM PHASE
TRANSITIONS

A. Detection of critical parameters

Let us consider a system with Hamiltonian H0, controlled
by an external parameter 	 �in our experiments, 	 is the
longitudinal field Bz�. We assume H0 to have gapped phases
around a critical point 	c, and without loss of generality we
write a perturbed system Hamiltonian H1=H0+
V, where V
is an arbitrary Hermitian operator �to be defined later� and 

is the strength of the perturbation. Taking the ground state
�0�	�� of H0 as the initial state, the time dependent
Loschmidt echo �27� takes the form

L�t� 
 ���t��2 = ��0�	��eiH1te−iH0t�0�	���2. �6�

Notice that the evolution under H0 gives a physically irrel-
evant phase, which we keep for convenience of notation. The
correspondence of the quantum critical points, a QPT, and
the minima of the Loschmidt echo for long times has been
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shown for many systems �6,28�. However, the dynamical be-
havior for short times depends on the symmetries of the
phases around the critical point and those of the perturbation
operator. For instance, a monotonic increase of the decay rate
with a singularity in its first derivative has been observed for
some systems with local perturbations �28�. On the other
hand, in the experimental results shown in the next section
we observe that, for a fixed short time, the Loschmidt echo
approaches a minima in the vicinities of the critical points. In
this section we are concerned with providing a theoretical
framework to these experimental observations. For this, we
will analyze the Loschmidt echo for short times using a per-
turbative approach �similar to the one of Ref. �28��, and par-
ticularize to the universality of the system we simulate in the
experiments.

For small perturbations 
 we expand the echo amplitude

��t� � ���t��
=0 + � ���t�
�


�

=0


 + � �2��t�
�
2 �


=0


2

2
. �7�

The first term is

���t��
=0 = �0�	��eiH0te−iH0t�0�	�� = 1. �8�

For the second and third terms, we need to compute deriva-
tives of the perturbed evolution operator. We can do this by
expanding into infinite series and resumming after comput-
ing the expectation value of the operators in the ground state.
After some algebra �see the Appendix�, we find

� ���t�
�


�

=0

= �− it�V00, �9�

� �2��t�
�
2 �


=0
= 2�

�=0

N−1

�V0��2 �
e−i�E�−E0�t − 1 + it�E� − E0�

�E� − E0�2 ,

�10�

where � indexes the N eigenstates of H0 with energy E�, E0
is the ground-state energy, and V0�= ���	��V�0�	��. The
second-order term of Eq. �10� resembles the so-called fidelity
susceptibility �29� and the quantum geometric tensor �30�
that have been shown to display singular behavior and scal-
ing near a critical point. Indeed, if we take the Fourier trans-
form of �L�t��2, we obtain the fidelity susceptibility �29� for
low frequencies. Higher frequency components appear that
are related to the extra terms in the local density of states that
generalizes the ground-state fidelity �6�.

Our final perturbative expression for the Loschmidt echo
is then

L�t� � 1 − 2
2�
�=1

N−1

�V0��2
1 − cos�E� − E0�t

�E� − E0�2 . �11�

B. Landau-Zener QPT toy model

When the main contribution to the sum in Eq. �11� is
given by the first excited state, we can approximate

L�t� � 1 − 2
�V01�2


2 
2�1 − cos 
t� , �12�

where 
=E1−E0 is the gap that has a minimum at the criti-
cal point, and we have assumed that there are no degenera-
cies. For degenerate systems like our experimental one, we
just have to replace �V01�2 by a sum over the degenerate
subspace of the transition elements squared. In a typical
second-order QPT, 
��	−	c�−z�, where � is the correlation
length critical exponent and z is the dynamical critical expo-
nent. As described in Sec. II, for a finite system the gap does
not close but reaches a minimum 
min that goes to zero with
the size of the system N. Thus, nonanalyticities occur only in
the thermodynamic limit N→�.

Equation �12� suggests that whenever the ground and first
excited states are the most relevant for a particular system
dynamics, we can study the qualitative features of a QPT
with a two-level toy system under both transversal and lon-
gitudinal fields,

HLZ = 
min�x + s�	��	�z��z, �13�

where s�	� is the sign function. Furthermore, this toy
model—which represents Eq. �12� exactly up to
O�
2�—resembles the approximations we use to model a
QPT with our NMR quantum simulator �see Fig. 2 for a
comparison between exact results and this approximation�.

From the spectra of our numerical simulations �see Fig.
2�, we see that our experiments are best described by z�=1.
In this case, Eq. �13� is the well-known Landau-Zener model
�31� that has been used successfully to predict the scaling
laws for the creation of topological defects when a system is
quenched at finite speed through a critical point �32�. For this
Landau-Zener model,


 = 2�	2 + 
min
2 , �14�

�V01�2 =

min

2


min
2 + 	2 , �15�

which means it has a “critical point” at 	=0. Expanding Eq.
�12� for short times, and replacing with Eq. �15�,

L�t� � exp
−

2
min

2 t2


min
2 + 	2� . �16�

Since the decay rate of L�t� �proportional to �V01�2� has its
maximum at 	=	c=0, then we conclude that the decay of
the echo is strongest at the critical point—or, conversely, that
for a fixed time t the echo has a minimum at the critical
point.

In order to discuss possible universal scaling properties of
the Loschmidt echo, our generalization in Eq. �13� from a
Landau-Zener model attempts to incorporate a gap that
closes with an arbitrary power z��1. In this general case the
short-time decay is still given by Eq. �16�, with a decay rate

2�V01�2. By choosing V=�z independent of 	 and 
, and
taking 
min=1 /N for demonstrative purposes, we find that
near the critical point,
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�V01�2N → � �
1

N2�	 − 	c�2z� . �17�

This suggests that the decay rate of the Loschmidt echo
might show scaling with universal exponents. Such scaling
has been proven for the ground-state fidelity and the quan-
tum geometric tensor �30�. In principle, our experimental
technique could be used to test universality and scaling prop-
erties of the system. However, our experiments are currently
limited to the case z�=1 and relatively small sizes that pre-
vent us from exploring these properties.

IV. NMR IMPLEMENTATION

A. Overview of the experiment

Our goal is to measure the Loschmidt echo in the antifer-
romagnetic spin chain described by Hamiltonian �1� as a pa-
rameter �Bz� is varied, and from this infer the critical points
of the system. Step by step, the experiment can be summa-
rized as follows: Starting from the thermal equilibrium state,
we prepared a pseudopure state �gate sequences for this are
shown in Figs. 3 and 7�. For each value Bz we transform the
pseudopure state from the computational basis to the ground

state of the Hamiltonian �1� �that depends on Bz� using a
unitary U0. We evolved the system forward in time with the
Hamiltonian �1� at field Bz, and then backwards with a per-
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FIG. 2. Phase diagrams without transverse field ��a� and �b�� and Loschmidt echo �dimensionless� with small transverse field ��c� and �d��
for the Ising chains with odd and even spins, shown in the left and right columns, respectively. The dark and light curves in �a� and �b�
represent the two lowest energy levels, by setting the coupling strength and � to unity. The phases and energy levels are listed in Eqs. �2�–�5�.
The crossover points are Bc= �2,0 in the odd spin system, and Bc= �2, �1 in the even spin system. The minima of the Loschmidt echo
in �c� and �d� indicated the critical points. Without loss of generality, we choose N=7 and 8 to illustrate the odd and even cases, where 

=0.1, �=�, and Bx=0.1, for calculating L. In �c� and �d� the light thick curves show the numerical results from Eq. �6�, while the dark thin
curves show the approximate analytical results from Eq. �12�.

FIG. 3. Gate sequence to prepare the effective pure state �000�
by spatial averaging from the thermal equilibrium state of TCE,
where cos �=2�C /�H. Here �H and �C denote the gyromagnetic
ratios of proton and carbon, respectively. The single-qubit gates are
implemented through radio frequency pulses denoted by the rect-
angles. The rotation angles and directions are shown inside and
above the rectangles. The bold vertical lines denote the gradient
pulses along the z-axis. The two filled circles connected by a line

denote the J-coupling evolution e−i��z
l
�z

k
between qubits l and k,

where � is shown next to the line.
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turbed field Bz+
. After transforming the state back to the
computational basis using U0

†, we encode L as the diagonal
element that is indicated by the initial computational basis in
the density matrix. Exploiting another operation D to elimi-
nate the nondiagonal elements of the density matrix, we can
obtain the locations of the minima of L using a selective
readout pulse and observing the intensity of a spectrum of a
single qubit. We perform the experiment in chains of three
and four spins. The results are shown in Figs. 6 and 10,
respectively.

We simplify the implementation of the experiment with a
number of approximations summarized here and described in
detail in the following sections. At each value of Bz we pre-
pare a very good approximation of the ground state, with
fidelity higher than 98% �we elaborate on this point in the
Conclusions�. The approximated ground state is obtained
with perturbation theory around the crossover point of the
zero transverse field and does not require knowledge of the
criticality of the system with the nonzero transverse field. We
split the range of the field Bz in intervals �three and four for
the odd and even spin chains, respectively� and use a differ-
ent pulse sequence for each interval. The forward-backward
evolution is compressed into a single step using a first-order
Trotter expansion with 98% accuracy. The quantum networks
for the odd and even chain experiments are shown in Figs. 4
and 8.

B. Efficient detection of critical points using the Loschmidt
echo

In order to measure the Loschmidt echo we first prepare
the ground state ���Bz ,Bx�� of H�Bz ,Bx�, which remains very
close to Eqs. �2� and �4�, except in the vicinity of the critical
points. Then, we evolve it forward under H for a period of
time t, and next evolve it backwards under H+
V for t,
where 
V is the fixed perturbation introduced for detection
with �
��1. Here, Bz will be our control parameter �	 in the
previous section�, and we choose the perturbation as V
=−�i=1

N �z
i . This choice of a global perturbation simplifies our

experiments, although more general choices such as local
perturbations lead to the same results but with a reduced
signal �28�. In order to detect the critical point of the transi-
tion we fix the evolution time t=� and the transversal field
Bx, and measure L as a function of Bz �6,8�. As shown in the
previous section, the critical points will be marked by the
minima of

L 
 �L�Bz��t=� = ����Bz,Bx��Up
†U���Bz,Bx���2, �18�

where U=e−i�H and Up=e−i��H+
V� are the unperturbed and
perturbed evolution operators, respectively. We show some
representative echoes in small chains in Figs. 2�c� and 2�d�.

Measuring an overlap such as Eq. �18� in general might
require full state tomography techniques. Because of its par-
ticular form, we can also couple the system to a probe qubit
in such a way that L is encoded in the off-diagonal terms of
the reduced density matrix of the probe �8,9�. Here, we
present a method to measure L directly in the system. We call
U0 the unitary operation that prepares ��g�Bz ,Bx�� from an
arbitrary computation basis state �s�. This is not necessarily

an efficient operation for all systems—indeed, finding the
ground state of arbitrary Hamiltonians might be an NP-hard
problem, where NP stands for nondeterministic polynomial-
time �33�. However, theoretical results suggest that any ini-
tial state with a large overlap with the ground state is suffi-
cient to detect criticality �34�. For instance, in our
experiments we do not prepare the true ground state of the
system, but actually a state that approximates it very well.
We will discuss this and other alternatives to the preparation
of the ground state in the last section.

Through rewriting Eq. �18� as

L = ��s�U0
†Up

†UU0�s��2, �19�

we find that L can be obtained by projecting

��� = U0
†Up

†UU0�s� �20�

onto state �s�, i.e., L is equal to the element �s��s� of the
density matrix �= ������. Without loss of generality, we
chose �s�= �00. . .0�, the state with all qubits in computational
basis state �0�. After the final evolution U0

†, we eliminate the
nondiagonal elements by gradient pulses or dephasing pro-
cesses �35,36�. Then, through a readout pulse, e.g., � /2, ap-

FIG. 4. Quantum networks for measuring critical points in in-
tervals Bz� �−3,−1�, �−1,1�, and �1, 3� in the three-qubit system,
shown in �a�–�c�, respectively. R=ei��y, where � is given by Eq.
�22�, and R0=1 �unit operator�, ei��y/4 or ei��y/2 for Bz=−0.5, 0, or
0.5, respectively. U0 and U0

† are indicated by the dashed rectangles,

and Up
†U�e−i�
��z

1+�z
2+�z

3�. � and the black dot connected by a line
denote a controlled-NOT gate, and N denotes a NOT gate. D denotes
the operation to eliminate the nondiagonal elements of the density
matrix. The last operation in each figure denotes the measurement,
which can be applied to an arbitrary qubit of the system.
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plied to an arbitrary qubit, we obtain the signals marked by
the states of other qubits.

We are only concerned with the signal marked by the state
in which all other qubits are in state �0�. Because in NMR we
observe differences in populations, the amplitude of this sig-
nal A is proportional to �L−�nn��L, with n�1. The loca-
tions of the minima of A are the same as those of L, with
their values each decreased by an additional �nn. This allows
us to detect the critical points through A by measuring only
one qubit of the system.

C. Odd N case

We first demonstrate the detection of critical points of a
QPT in an odd spin system with N=3. We prepared an initial
state that approximates the ground state of the Hamiltonian
for each value of Bz. Using our notation for the ground states
of H for Bx=0 ���k

o�= �000�, �010�, �101�, and �111�, for k
=1. . .4, respectively�, the ground state near Bc= �2 can be
approximated as

���Bz,Bx�� = ��m
o �cos � − ��n

o�sin � , �21�

with

tan � = ��2 − �Bz�� + ��2 − �Bz��2 + Bx
2�/Bx, �22�

where m=1, n=2 or m=4, n=3, corresponding to Bc=−2 or
2, respectively. In the vicinity of Bc=0, the gap between the
lowest energy levels is so small that the ground state can be
well approximated by ��2

o�, ���2
o�− ��3

o�� /�2, or ��3
o�, corre-

sponding to Bz�0, Bz=0, or Bz�0, respectively.
For the experimental implementation, we used 13C la-

beled trichloroethylene �TCE�, dissolved in d-chloroform as
the sample �37�. Data were taken with a Bruker DRX
700 MHz spectrometer. We denote the 1H nuclear spin as
qubit 2 �H2�, the 13C directly connected to 1H is denoted as
qubit 1 �C1�, and the other 13C as qubit 3 �C3�. The differ-
ence of frequency between C1 and C3 is about 1249.2 Hz,
and the coupling constants are J13=103.1 Hz, J12
=200.9 Hz, and J23=9.16 Hz. The spin-selective excitation
for C1 or C3 is realized by a GRAPE pulse, where GRAPE
stands for gradient ascent pulse engineering �38�. The

J-coupling evolution e−i��z
l
�z

k
between qubits l and k is imple-

mented by a standard refocusing pulse sequence �39�. The
effective pure state �000� is prepared by spatial averaging
�40� from the thermal equilibrium state �eq=�H�z

2+�C��z
1

+�z
3�, by approximating the system as a weakly coupling

system, where �H and �C denote the gyromagnetic ratios of
proton and carbon, respectively. The gate sequence for the
pseudo-pure state preparation is shown as Fig. 3.

In order to measure the echo we split the Bz axis in inter-
vals near Bc=−2, 0, and 2. In particular, we use different
quantum networks for Bz� �−3,−1�, �−1,1�, and �1,3�,
shown in Figs. 4�a�–4�c�, respectively. The operations for
preparing U0 and U0

† are indicated by the dashed rectangles
and D denotes the operation to eliminate the nondiagonal
elements of the density matrix. Figure 5 shows the corre-
sponding gate sequences. The evolution time is chosen as �
=�, and 
=0.2 or 0.125. The echo evolution Up

†U can be

approximated by Up
†U�e−i�
��z

1+�z
2+�z

3� with fidelity larger

than 98%. We optimize the gate sequence CNOT21−e−i�
�z
1

−CNOT21 as e−i�
�z
1
�z

2
, and CNOT23−e−i�
�z

3
−CNOT23 as e−i�
�z

2
�z

3

�where CNOT stands for controlled-NOT� �41� to obtain Fig.
5�b� from Fig. 4�b�. The amplitudes of signals are obtained
by measuring on H2, with experimental results shown in Fig.
6. Experimental data are marked by “�” and “�” for 

=0.2 and 
=0.125, respectively. The corresponding theoret-
ical results are indicated by the light and dark curves. The
critical points are correctly indicated by the minima of the
amplitudes.

D. Even N case

We illustrate the detection of QPT critical points in an
even spin chain with N=4. Here we use the notation for the
ground states for Bx=0, ��k

e�= �0000�, ��0100�+ �0010�� /�2,
��0101�+ �1010�� /�2, ��1101�+ �1011�� /�2, and �1111�, for k
=1. . .5, respectively. Depending on the value of Bz we pre-
pare an approximation to the ground state

��Bz,Bx� = ��m
e �cos � − ��n

e�sin � . �23�

For Bz near Bc= �2,

FIG. 5. Gate sequences �a�–�c� to implement Figs. 4�a�–4�c�,
respectively. A 16-step average over a random delay, denoted by d,
between 0 and 10 ms, dephases the residual zero-quantum coher-
ence. The last � /2 pulse is the readout pulse, which can be applied
to an arbitrary qubit of the system.
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tan � = ��2 − �Bz�� + ��2 − �Bz��2 + 2Bx
2�/��2Bx� , �24�

with m=1, n=2, or m=5, n=4, corresponding to Bc=−2 or
2, respectively. For Bz near Bc= �1 we use

tan � = ��1 − �Bz�� + ��1 − �Bz��2 + Bx
2�/Bx, �25�

with m=2, n=3 or m=4, n=3, corresponding to Bc=−1 or 1,
respectively.

For implementation, we choose the four carbons in cro-
tonic acid �42� dissolved in d6-acetone as the four qubits by
decoupling the protons. Data were taken with a Bruker DRX
700 MHz spectrometer. The chemical shifts for the four car-
bons �1–4 are −2965.75, −25 501.9, −21 583.9, and
−29 431.5 Hz. The J couplings are J12=41.6, J23=69.7, J34
=72.0, J13=1.5, J14=7.0, and J24=1.2 Hz.

We prepare the pseudopure state by spatial averaging
through improving the scheme found in �43�. Our technique
can be illustrated by transforming the thermal equilibrium
state of a four-qubit system �i=1

4 �z
i to


�
i=1

3

�z
i��1/2 + �z

4� + �z
4/8, �26�

where 1 denotes the unit operator and �i=1
3 �z

i can be trans-
formed to an effective pure state in the three-qubit system.
This method generalizes to an N-qubit system in a recursive
manner. After some simplifications �44�, the complete gate
sequence to generate �0000� is shown in Fig. 7, where the
state specific swap gate requires two J couplings with evo-
lution time 1 / �2Jlk� �45�. In the ideal case the strength of the
single peak obtained through a � /2 readout pulse selective
for one spin is equal to that of the same peak in a spectrum of
the thermal state, where eight peaks with equal strength ap-
pear.

The ground states are prepared from Eqs. �23�–�25�. As
before, we split the Bz axis in intervals around the critical
points of zero transverse field. The networks to measure the
echo for Bz� �−3,−1.44�, and �−1.44,0� are shown in Figs.
8�a� and 8�b�. From these one can obtain the networks for the

intervals Bz� �1.44,3� and �0,1.44� simply by adding NOT

gates to all qubits at the end of the corresponding networks
for implementing U0. Through compiling the pulse sequence
�11�, we obtain the gate sequences shown as Fig. 9, where

Up
†U�e−i�
��z

1+�z
2+�z

3+�z
4� with fidelity larger than 98% and the

two SWAP gates are canceled because they commute with

e−i�
��z
2+�z

3�. Experimental results are shown in Fig. 10, with
�=� /2. The measured amplitudes are marked by � and �
for 
=0.5 and 0.4, respectively. The solid curves show the
corresponding theoretical results. Again, the critical points
are correctly indicated by the minima of the amplitudes, so
the experiment results are in good agreement with theoretical
expectations. The observed errors could be explained by im-

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de
A

(a
.u

.)

Longitudinal magnetic field B
z

|ψ
1
o〉 |ψ

2
o〉 |ψ

3
o〉 |ψ

4
o〉

FIG. 6. Experimental results in the three-qubit QPT system,
where �=�. The four phases ��k

o� with k=1, . . . ,4 are represented
as ��k

o�= �000�, �010�, �101�, and �111�, respectively. The experimen-
tally measured amplitudes of the signals are marked by � and � for

=0.2 and 0.125, respectively. The minima of the amplitudes indi-
cate the critical points. The theoretical results are shown as the light
and dark curves. The experimental results show a good agreement
with theory.

FIG. 7. Gate sequence to prepare the effective pure state �0000�
by spatial averaging from the thermal equilibrium state of the four
carbons in crotonic acid, where cos �=1 /8 and cos �=1 /4. The
filled rectangles in pairs connected by a line denote a state specific
swap gate between qubits l and k, i.e., it transforms �z

l to �z
k, or �z

k

to �z
l .

FIG. 8. Quantum network for measuring critical points in inter-
vals Bz� �−3,−1.44� and �−1.44,0� in a four-qubit system, shown
in �a� and �b�, respectively. H denotes the Hadamard transform gate,

and Up
†U�e−i�
��z

1+�z
2+�z

3+�z
4�. R2=ei�2�y and R1=ei�1�y, where �2

and �1 are chosen as Eqs. �24� and �25�. The rectangle and the dot
connected by a line denote a controlled operation that is shown
inside the rectangle. The filled rectangles in pairs connected by a
line denote a SWAP gate. The networks for intervals Bz� �1.44,3�
and �0, 1.44� can be obtained by adding NOT gates to all qubits at
the end of the networks for implementing U0 in �a� and �b�,
respectively.
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perfections in the implementation of the radio frequency
pulses, inhomogeneities of magnetic fields, and decoherence.

V. DISCUSSION AND CONCLUSIONS

We performed experimentally quantum simulations of the
second-order quantum phase transitions in finite systems. In
particular, we showed the QPTs and found the critical points
of three- and four-spin Ising chains, representative of odd
and even spin chains, respectively. The critical points are
indicated by the minima of the Loschmidt echo. We showed
that this echo can be realized by inducing the perturbation
with an external field, and the positions of its minima �re-

lated to the critical points� can be obtained by measuring
only an arbitrary qubit of the system. In the weakly and fully
resolved coupling systems, the resonance lines can be as-
signed, and the line marked by the other qubits in �0� can be
identified. However, in large size systems where the require-
ment of fully resolved coupled is not practical, or in the
strongly coupled systems, e.g., liquid crystal or solid NMR
systems, where the assignment of resonance lines are not
possible, one cannot identify the marked line. For these
cases, our method can be generalized by measuring the glo-
bal polarizations of the whole system by a collective � /2
pulse �or N pulses selective for each qubit�, replacing the
readout pulse applied to one qubit. In the vicinities of the
critical points, the loss of the polarization due to the deco-
herence process �e.g., gradient pulse or dephasing process�
approaches the maxima. Hence the critical points will be
indicated by the minima of the amplitude of the total signals
of all qubits. Furthermore, this has the advantage that a glo-
bal measurement is scalable with the size of the system.

Our method improves the previous one that required a
probe qubit for both the perturbation and the measurement
�9�. We believe this advantage gives our method better scal-
ability with the size of the system. In particular, the pertur-
bations created by the probe qubit method are limited by the
probe-system coupling strength, and furthermore, can be-
come weaker than the noise in large systems when they do
not couple the probe to a macroscopic number of normal
modes in the system. Separating the perturbation and mea-
surement also gives finer control over the whole experiment.

On the issue of scalability, a very important point in the
algorithm is the preparation of the initial state. From a theory
point of view, most of the studies of the Loschmidt echo
have used ground states as initial states only because of sim-
plicity. However, preparing the ground state of an arbitrary
Hamiltonian is an NP-hard problem �33�. Furthermore, it
would be redundant, since it is most likely that knowing the
exact ground states is equivalent to knowing everything
about the system—including the information about criticality
that one wants to obtain from the echo experiments. None-
theless, there is evidence that the initial state need not be the
exact ground state, but any state with a sizable overlap with
the ground state. For instance, analytical studies show that
thermal states at temperatures at or below the energy scales
of the system can be used effectively to detect the quantum
phase transition �34�, where the number of the spins can be
up to 200. However, in some systems �like our liquid NMR
experiments� preparing a thermal state is not particularly
easier than other—perhaps more useful—states. For in-
stance, in our experiments we prepared a good approxima-
tion to the ground state that we obtained from a simple per-
turbation theory around the crossover point of zero
transverse field. This method suggests that other approxima-
tions, such as mean field or numerical classical algorithms,
could work well to detect criticality.

While the problem of finding strict minimum require-
ments for the initial state of the algorithm is clearly in need
of more research, we feel that it is reasonable to argue that
initialization of the algorithm is scalable: it only requires
finding among many possibilities one that can be prepared
efficiently in a quantum computer. It would be interesting to

FIG. 9. Quantum gate sequences �a� and �b� to implement Figs.
8�a� and 8�b� respectively. Through replacing 
 by −
 in �a� and �b�
one can obtain the gate sequences for the intervals Bz� �1.44,3�
and �0, 1.44�, respectively.
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FIG. 10. Experimental results in the four-qubit QPT system,
where �=� /2. The five phases ��k

e� with k=1, . . . ,5 are represented
as ��k

e�= �0000�, ��0100�+ �0010�� /�2, ��0101�+ �1010�� /�2, ��1101�
+ �1011�� /�2, and �1111�, respectively. The experimentally mea-
sured amplitudes are marked by � and � for 
=0.5 and 0.4, re-
spectively. The minima of the amplitudes indicate the critical
points. The theoretical results are shown as the light and dark
curves, in good agreement with the experimental results.
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study the effect of more efficiently prepared ground states
�33� or to investigate if state-independent indicators—such
as the operator fidelity susceptibility proposed in Ref. �46�—
could get rid of the initial state issue altogether. Finally, we
would like to mention that other possible extensions of our
experimental methods are using the Loschmidt echo to mea-
sure QPTs in gapless systems �46,47�, and also for measuring
thermal phase transitions �29,48�.
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APPENDIX: PERTURBATIVE EXPANSION OF THE
LOSCHMIDT ECHO

We start from the expansion of Eq. �7�,

��t� � ���t��
=0 + � ���t�
�


�

=0


 + � �2��t�
�
2 �


=0


2

2
, �A1�

where

��t� = �0�	��eiH0te−i�H0+
V�t�0�	�� , �A2�

with �0�	�� the ground state of H0, and we keep the harmless
eiH0t operator because it will simplify the results. The first
term of the expansion can be simply evaluated as in Eq. �8�,

���t��
=0 = �0�	��eiH0te−iH0t�0�	�� = 1. �A3�

For the first- and second-order terms we must compute de-
rivatives of the evolution operator. We can do this by ex-

panding the exponential into an infinite series sum,

� ���t�
�


�

=0

= �0�	��eiH0t� �e−i�H0+
V�t

�

�


=0
�0�	��

= �0�	��eiH0t �

�

�
n=0

� � 1

n!
�− i�H0 + 
V�t�n�


=0
�0�	��

= �0�	��eiH0t�
n=1

�
�− it�n

n! �
k=0

n−1

��H0 + 
V�kV

��H0 + 
V�n−1−k�
=0�0�	��

= �0�	��eiH0t�
n=1

�
�− it�n

n! �
k=0

n−1

H0
kVH0

n−1−k�0�	�� .

�A4�

Computing now the expectation value,

� ���t�
�


�

=0

= eiE0t�
n=1

�
�− it�n

n! �
k=0

n−1

E0
kVE0

n−1−k

= eiE0t�
n=1

�
�− it�n

n!
E0

n−1n�g�	��V�g�	��

= �− it�V00e
iE0t�

m=0

�
�− itE0�m

m!

= �− it�V00, �A5�

where E0 is the ground-state energy and V00= �0�	��V�0�	��.
For the second-order term we continue derivting Eq. �A4�

before the evaluation at 
=0,

� �2��t�
�
2 �


=0
= �0�	��eiH0t� �2e−i�H0+
V�t

�
2 �

=0

�0�	�� = �0�	��eiH0t �

�

�
n=1

�
�− it�n

n! �
k=0

n−1

��H0 + 
V�kV�H0 + 
V�n−1−k�
=0�0�	��

= �0�	��eiH0t�
n=2

�
�− it�n

n! �
�
k=1

n−1

�
m=0

k−1

�H0 + 
V�mV�H0 + 
V�k−1−mV�H0 + 
V�n−1−k�
+ 
�

k=0

n−2

�H0 + 
V�kV �
m=0

n−2−k

�H0 + 
V�mV�H0 + 
V�n−2−k−m��

=0

�0�	��

= �0�	��eiH0t�
n=2

�
�− it�n

n! �
�
k=1

n−1

�
m=0

k−1

H0
mVH0

k−1−mVH0
n−1−k� + 
�

k=0

n−2

H0
kV �

m=0

n−2−k

H0
mVH0

n−2−k−m���0�	�� . �A6�

By taking the expectation value on the ground state we now obtain

� �2��t�
�
2 �


=0
= eiE0t�

n=2

�
�− it�n

n! �
�
k=1

n−1

�
m=0

k−1

E0
n−1−k+m�0�	��VH0

k−1−mV�0�	��� + 
�
k=0

n−2

�
m=0

n−2−k

E0
n−2−m�0�	��VH0

mV�0�	���� , �A7�

replacing now k�=k−1 and m�=m+k in the first and second sums inside the brackets,
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� �2��t�
�
2 �


=0
= eiE0t�

n=2

�
�− it�n

n!
E0

n−2�
�
k=0

n−2

�
m=0

k

E0
−k+m�0�	��VH0

k−mV�0�	��� + 
�
k=0

n−2

�
m=k

n−2

E0
−m+k�0�	��VH0

m−kV�0�	����
= eiE0t�

n=2

�
�− it�n

n!
E0

n−2��n − 1��0�	��V2�0�	�� + �
k=0

n−2

�
m=0

n−2

E0
−�k−m��0�	��VH0

�k−m�V�0�	��� . �A8�

We can simplify the term inside the brackets by counting the number of times the terms with �k−m�=0, �k−m�=1

, and so on are repeated. The final expression is then

� �2��t�
�
2 �


=0
= eiE0t�

n=2

�
�− it�n

n!
E0

n−2�2�
k=0

n−2

E0
−k�n − 1 − k��0�	�

��VH0
kV�0�	��� . �A9�

We can make further progress by inserting identities
��=0

N−1������, with ��� the basis of eigenstates of H0 �we as-
sume a finite Hilbert space �=0, . . . ,N−1�,

� �2��t�
�
2 �


=0
= eiE0t2�

n=2

�
�− it�n

n!
E0

n−2��
k=0

n−2

E0
−k�n − 1 − k�

��
�=0

N−1

�V0��2E�
k� , �A10�

where V0�= ���V�0�	��. We can do the sum over k first,

� �2��t�
�
2 �


=0

= eiE0t2�
n=2

�
�− it�n

n!
E0

n�
�=0

N−1

�V0��2
n − 1 + 
E�

E0
�n

− n
E�

E0
�

�E� − E0�2

�A11�

�notice that the term with �=0 is finite�, followed by the sum
over n,

� �2��t�
�
2 �


=0
= 2�

�=0

N−1

�V0��2
e−i�E�−E0�t − 1 + it�E� − E0�

�E� − E0�2

= − �V00�2t2

− 2�
�=1

N−1

�V0��2
1 − e−i�E�−E0�t − it�E� − E0�

�E� − E0�2 .

�A12�

Now we need to put the results of Eqs. �A3�, �A5�, and �A12�
into Eq. �A1�.

��t� � 1 − itV00
 − 
�V00�2t2

+ 2�
�=1

N−1

�V0��2
1 − e−i�E�−E0�t − it�E� − E0�

�E� − E0�2 �
2

2
.

�A13�

Noting that V00 is real and keeping the term with lower order
in 
, we obtain the expression for the Loschmidt echo as
follows:

L�t� = ���t��2 � 1 − 2
2�
�=1

N−1

�V0��2
1 − cos�E� − E0�t

�E� − E0�2 .

�A14�
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