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We investigate the violation of local realism in Bell tests involving homodyne measurements performed on
multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove
that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of
modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of
modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential
increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting
benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the
increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with
homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to
experimental imperfections. We provide an explicit example of a three-mode state �a superposition of coherent
states� which results in a significantly high violation of the Mermin-Klyshko inequality �around 10%� with
homodyne measurements.
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I. INTRODUCTION

The incompatibility between quantum mechanics and lo-
cal realistic models is inarguably one of its most counterin-
tuitive aspects, marking a fundamental departure from the
classical picture of physical systems �1�. First recognized by
Einstein, Podolsky, and Rosen �2�, the nonlocality of the
quantum theory was put into a testable form via the cel-
ebrated Bell inequalities �3�. Since the first experimental vio-
lation of a Bell inequality �4�, a great variety of tests have
been performed. In all of them, a local realistic model is
shown to be incompatible with the actual experimental ob-
servations. Nonetheless, a fully conclusive evidence for re-
jecting local realism has not been achieved yet, for all the
experiments performed so far suffer from loopholes, forcing
us to rely on supplementary assumptions in order to reject
local realism. Specifically, a conclusive experiment should
close two main loopholes: the locality loophole �namely, the
measured correlations must be collected with spacelike sepa-
rated events� and the detection-efficiency loophole �namely,
the proportion between detected and undetected events has to
be high enough for the data to be fully representative of the
whole ensemble without the need to assume a “fair sam-
pling”�.

There is a large variety of quantum systems for which a
test of local realism may be envisaged. However, the quest
for a loophole-free Bell test has recently focused the research
towards experiments involving propagating light modes
measured with homodyne detectors �5–8�. The advantage of
such a “continuous-variable” approach is twofold. First, light
modes can be easily sent to spacelike separated detectors
suffering only a tolerable degree of decoherence. Second, the
current technology of homodyne detectors achieves a degree
of detection efficiency high enough to potentially close the
detection-efficiency loophole. On the other hand, such an
approach also involves drawbacks whose resolution is still
challenging. The main issue comes from the fact that the

results of homodyne measurements can be described by
means of the Wigner function. Thus, in order to avoid a local
hidden variable description of the measured correlations, one
should necessarily perform the test with a state endowed
with a nonpositive Wigner function �otherwise, the Wigner
function is a genuine probability distribution, which provides
an explicit local realistic model of the data�. Even if single-
mode states of traveling light have already been generated
with a nonpositive Wigner function �9,10�, such �non-
Gaussian� states are hard to master in the laboratory. Among
the above-mentioned proposals of Bell tests with homodyne
detection, those nearer to an experimental realization only
give a small violation of Bell inequalities �7,8�, whereas
higher violations involve states whose actual generation
seems hardly practicable �6�. In this context, the search for
Bell tests involving feasible resources and giving, at the
same time, violations that are high enough to be robust
against experimental noise is very desirable. This is the
thrust of the present paper.

Bell tests relying on homodyne detection typically in-
volve the following scenario. Two parties perform spacelike
separated homodyne measurements by randomly choosing
each between two settings, thus measuring two quadratures
of the incoming electromagnetic fields. The violation of the
Bell Clauser-Horne-Shimony-Holt �CHSH� inequality �11� is
then tested. Since this inequality is devised for two-outcome
measurements, the collected data, which are distributed �ide-
ally� in a continuous way, have to be discretized; such a
procedure is referred to as binning process. In this work, we
will generalize this scenario to more than two parties, con-
sidering the Mermin-Klyshko �MK� type of Bell inequalities,
which involves m parties, two measurement settings, and two
outcomes �12�. Our main motivation is that higher violations
of local realism are expected as the number of parties in-
creases �13�, which may help in the search for feasible pro-
posals of loophole-free Bell tests able to tolerate the experi-
mental noise.
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The earlier investigations of Bell tests in infinite-
dimensional spaces with multipartite settings have consid-
ered several scenarios. In Ref. �14�, a test based on the mea-
surement of the light field parity was envisaged. It was found
that the violation does not increase exponentially, as one
would have expected, but this may be due to the fact that no
optimization over the possible measurement settings was
performed �15�. In Ref. �16� instead, a maximal violation of
Mermin-Klyshko inequality was found for continuous vari-
able states, considering the measurement of a different class
of operators which can be seen as the continuous-variable
analog of the spin operators. However, both these approaches
deal with non-Gaussian measurements described by a non-
positive Wigner function, which are far from the reach of
current detection technology. Recently, another approach has
been introduced that does not rely on the use of inequalities
with discrete outcomes, thus avoiding the need of a binning
procedure �17�. There, quadrature measurements via homo-
dyne detection are considered, and the measurement out-
comes are used to directly test a novel Bell inequality for
continuous variables. Interestingly, the authors find that the
violation of the local realistic bound is exponential in the
number of parties. However, a possible experimental imple-
mentation is still very challenging as it would require at least
ten spacelike separated homodyne measurements. It is then
unclear whether such a novel approach can give advantages,
from a practical perspective, over nonlocality tests involving
binning strategies.

In this paper, we will stick with the use of discrete-
variable Bell inequalities in the tests of nonlocality for
continuous-variable states, thus using some binning proce-
dure. We will address the following question: Is it possible to
have an exponential increase of the violation of local realism
in a test involving quadrature measurements of m modes and
considering the Mermin-Klyshko inequalities? We will an-
swer this question with the affirmative, providing specific
examples of states exhibiting such a behavior. These states
belong to the class of photon-number correlated states, and
generalize to an arbitrary number of modes the approach of
Ref. �5�. Remarkably, we will show that it is even possible to
reach the maximal violation of the Mermin-Klyshko in-
equalities for m modes by properly choosing the binning
procedure and the quantum state, thereby extending the re-
sults obtained in Ref. �6� for two modes.

The theoretical interest of our results resides in the fact
that we are not considering a direct mapping from
continuous- to discrete-variable states. Thus, the possibility
to obtain a maximal violation of Mermin-Klyshko inequality
for any number of parties is a priori nontrivial. Furthermore,
we may have anticipated that the binning procedure causes
an irreparable loss of information, preventing the possibility
to reach a maximum violation. From an experimental per-
spective, our results imply that various strategies allow for
an increase of the violation of locality in homodyne-based
Bell tests. This, in turn, gives specific insights in the search
of multipartite states appropriate for an actual experiment.

The paper is organized as follows. In Sec. II, we analyze
a Bell test involving multimode states with perfect correla-
tions in the number of photons in all modes. We analytically
show that the violation of local realism can grow exponen-

tially with the number of modes involved. This is true de-
spite the fact that a simple sign binning strategy is used.
Nonetheless, we see that the resulting violation does not
reach the maximum value achievable within quantum me-
chanics. However, we show in Sec. III that a different bin-
ning strategy, properly tailored for some specific states, al-
lows attaining the maximal violation of locality achievable
within quantum mechanics. Then, in Sec. IV, we address the
robustness of these tests of nonlocality. We see that, at least
for the analyzed noise model, the tolerable noise increases
with the number of modes, making the violation better test-
able in practice. In Sec. V, we exploit all these results from a
practical oriented perspective. In particular, we give an ex-
plicit example of a class of three-mode states which, on the
one hand, exhibit a gain in the violation by considering more
than two modes and, on the other hand, may be implemented
with near future technology. Finally, we close the paper in
Sec. VI with some concluding remarks.

II. CORRELATED PHOTON NUMBER STATES

We show in this section that in order to obtain an expo-
nential violation of local realism with quadrature measure-
ments, it is possible to rely on a simple binning strategy and
the standard Mermin-Klyshko Bell inequalities. In achieving
this goal we generalize to m parties the work of Ref. �5�,
where the bipartite scenario was analyzed.

Before proceeding, let us recall the general form of the
Mermin-Klyshko Bell inequalities. Consider two dichotomic
observables Ot and Ot� for each party t. The Mermin-Klyshko
inequalities are based on the recursive definition of the Bell
operator

Bt �
Bt−1

2
� �Ot + Ot�� +

Bt−1�

2
� �Ot − Ot�� , �1�

where B1=2O1, B1�=2O1�, and Bt� denotes the same expres-
sion as Bt but with all Ot’s and Ot�’s exchanged �13�. The
Mermin-Klyshko inequality for m parties then reads

Bm � ��Bm�� � 2. �2�

In the case of two parties �m=2�, this expression reduces to
the well-known CHSH inequality, for which

B2 = O1 � O2 + O1 � O2� + O1� � O2 − O1� � O2�. �3�

Let us now consider a generic photon-number correlated
state of m bosonic modes

��� = 	
r=0

�

cr�r�1�r�2 ¯ �r�m, �4�

with 	r�cr�2=1. The two observables Ot and Ot� to be mea-
sured are chosen as the two quadratures of the electromag-
netic field X��t� and X��t�� �corresponding to angles � and
���. These can be measured by applying an homodyne detec-
tion on each mode t. In the following, we use the notation Xt
for the quadrature X��t�, and xt for the outcome of its mea-
surement �and similarly for primed quantities�.
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The joint probability to obtain the outcomes x1 , . . . ,xm
when measuring the quadratures X1 , . . . ,Xm is given by

P�x1, . . . ,xm� = �1�x1� ¯ m�xm����2

= 	
r,s=0

�

cr c
s
* ei��r−s�

��2r+sr!s!�m/2

t=1

m

e−xt
2
Hr�xt�Hs�xt� ,

�5�

where �=�1+ ¯ +�m, Ht�x� is the Hermite polynomial of
degree t, and �xt� are the eigenvectors of the quadrature op-
erator Xt.

Consider the following simple binning strategy, known as
sign binning: when the result of a quadrature measurement
falls in the domain R� the value �1 is associated to it. Now,
let us start by calculating the probability P+1,. . .,+1 that a “+1”
result is observed in all the measuring sites

P+1,. . .,+1 = �
0

�

dx1 ¯ �
0

�

dxmP�x1, . . . ,xm�

= 	
r,s=0

�

cr c
s
* ei��r−s�

��2r+sr!s!�m/2

	 

t=1

m �
0

�

dxte
−xt

2
Hr�xt�Hs�xt� . �6�

The integrals above can be evaluated by recalling the follow-
ing properties of Hermite polynomials for r�s:

�
0

�

dx e−x2
Hr�x�Hs�x� =

�2r+s

r − s
�F�r,s� − F�s,r�� , �7�

where we defined F�r ,s� as

F�r,s�−1 = 
�1

2
−

1

2
r
�−

1

2
s , �8�

with 
 being the gamma function. For r=s, one has instead

�
0

�

dxe−x2
Hr

2�x� = 2r−1r!�� . �9�

Defining the functions

G��,m� = 2	
r�s

Re�cr c
s
*�gr,s��,m� ,

gr,s��,m� = ��2r+s

r!s!
m/2�F�r,s� − F�s,r�

r − s
�m

cos���r − s�� ,

�10�

one obtains that

P+1,. . .,+1 =
1

2m + G��,m� . �11�

The other probabilities can be obtained in a similar way. Let
us define the multi-index d= �d1 , . . . ,dm�, with dt= �1 de-
noting the measurement outcome obtained for mode t after
binning. Then, the joint probability for a generic collection d
of measurement outcomes will be indicated by Pd. It can be
obtained similarly as P+1,. . .,+1 by recalling that an Hermite
polynomial of even �odd� degree is an even �odd� function,
namely,

Pd =
1

2m + ��d�G��,m� , �12�

where ��d�=
t=1
m dt. Now, we are in the position to calculate

the generic correlation function between the measurement
results E�� ,m� �note that it only depends on the sum of the
angles ��. By definition, we have

E��,m� = 	
d

��d�Pd, �13�

where the sum goes over all possible collections d of mea-
surement outcomes. Since the number of possible collections
for which ��d�=1 is equal to that for which ��d�=−1, one
finally has, by substituting Eq. �12� into Eq. �13�, that

E��,m� = 2mG��,m� . �14�

Let us show that we can reach an exponential violation
with a simple analytically manageable example. For the
simple case of three parties �m=3�, the Mermin-Klyshko in-
equality then reads B3���B3���2, with

B3 = O1 � O2 � O3� + O1 � O2� � O3 + O1� � O2 � O3

− O1� � O2� � O3� �15�

Considering a tripartite GHZ state

�GHZ3� =
1
�2

��000� + �111�� , �16�

we have c0=c1=2−1/2 and cr2=0, so that G�� ,3�
=g1,0�� ,3�= �2��−3/2cos��� and Eq. �14� becomes

E��,3� = 23G��,3� = �2/��3/2 cos��� . �17�

The GHZ-like angles ��1=0, �2=� /6, �3=2� /6, and �i�
=�i+� /2�, give the maximum violation of the inequality,
namely,

B3 = �3E��,3� − E�0,3�� = 4� 2

�
3/2

� 2.032. �18�

Now, consider the multipartite generalization of the GHZ
state

�GHZm� =
1
�2

��0 ¯ 0� + �1 ¯ 1�� , �19�

Eq. �14� becomes
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E��,m� = �2/��m/2 cos � . �20�

The dependence on the angle � of the above correlations is
the same as the one appearing in a standard spinlike test for
a multipartite GHZ state, namely, E�� ,m�=cos���. In that
case, it is known that the choice of GHZ-like angles �k
= �−1�m+1��k−1� / �2m� and �k�=�k+� /2, gives the highest
value of the Bell factor, namely, 2�m+1�/2 �see, e.g., Ref. �13��.
Therefore, using the same angles, the corresponding Bell fac-
tor reads

Bm = �2�4/��m/2, �21�

giving rise to an exponential violation of local realism.
Apart from this simple analytical example, one can use a

numerical approach to show the exponential violation of lo-
cal realism as formula �14� is easily amenable to perform
numerical calculations for a fixed number of parties m. In
order to find the state ��� �coefficients cr’s� that maximally
violates the Mermin-Klyshko inequality, one has to evaluate
the corresponding Bell factor Bm for a given configuration of
measuring angles. The Bell factors are expressed in general
by a linear combination of correlation functions given each
by Eq. �14�, with the prescription given in Eq. �1�.

Let us search the state which maximizes the violation of
the Mermin-Klyshko inequality for the particular GHZ-like
choice of angles. For three modes �m=3�, defining the �infi-
nite dimensional� real symmetric matrix B3 as

�B3�r,s = 23
„3gr,s��,3� − gr,s�0,3�… , �22�

with the diagonal elements being set to zero, we note that the
Bell factor can be reexpressed as B3=C†B3C, where the el-
ements of the vector C are given by the coefficients of the
input state, i.e., �C�r=cr. Consequently, the maximal viola-
tion of the Mermin-Klyshko inequality is simply given by
the maximal eigenvalue of the matrix B3, while the optimal
input state is determined by its corresponding eigenvector. In
order to perform a numerical analysis, one has to truncate the
Hilbert space dimension of ��� to some arbitrary d. For ex-
ample, for d=2 the optimal choice turns out to be the GHZ
state �16�, giving a violation of B3=2.032. By increasing the
dimension d, the asymptotic violation is given by B3
�2.205. In Fig. 1, we show the coefficients cr for the opti-

mal state ��� in the case d=20, for which the Bell factor is
B3�2.204.

The same procedure can be applied for any number of
parties. In the case of two parties �m=2�, one recovers the
results given by Munro in Ref. �5� provided that the con-
straint cr�0 is taken into account, namely, B2�2.076. In-
terestingly, a higher violation can be achieved if we consider
negative coefficients for ���. As an example, we report in
Fig. 2 the coefficients cr for the optimal state in the case d
=30, for which the Bell factor raises up to B2�2.100 �recall
that the Bell factor can be written in this case as B2
=3E�� ,2�−E�3� ,2�, where we have chosen �=� /4, as in
Ref. �5��.

III. MAXIMAL VIOLATION

Let us now see if we can find a class of states and a
binning strategy that allows for a maximal violation of the
Mermin-Klyshko inequality for any number of parties m and
using quadrature measurements. We recall that the maximal
quantum violation of these inequalities is given by Bm

max

=2�m+1�/2 �13�. Inspired by the results of Ref. �6�, we intro-
duce the state

��� =
1
�2

��f��m + ei��g��m� , �23�

where f is a real and even function of some quadrature x,
while g is real and odd �thus, f and g are orthogonal�. Both
functions are also normalized to unity. Note that because f�x�
is real and even, it has a real and even Fourier transform

f̃�p�, while g�x� has an imaginary Fourier transform ih̃�p�,
with h̃�p� real and odd.

Each party t chooses to measure one of two conjugated
quadrature via homodyne detection, either X�0�=X or
X�� /2�= P, and obtains a continuous variable xt or pt de-
pending on the choice of measurement setting. Suppose the k
first parties measure the X quadrature, while the remaining
m−k measure the conjugate quadrature P. The joint prob-
ability that they obtain the results x1 , . . . ,xk , pk+1 , . . . , pm is
given by

5 10 15 20
r0

0.2

0.4

0.6

cr

FIG. 1. Coefficients cr for the optimal state ��� in the case of
m=3, d=20 �with GHZ-like measurement angles�. The Bell factor
is B3�2.204.

10 20 30
r

�0.2

0

0.2

0.4

0.6

cr

FIG. 2. Coefficients cr for the optimal state ��� in the case of
m=2, d=30. The Bell factor is B2�2.1.
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P�x1, . . . ,xk,pk+1, . . . ,pm� = ��x1� ¯ �xk��pk+1� ¯ �pm����2

=
1

2
� f2�x1� ¯ f2�xk� f̃ 2�pk+1� ¯ f̃ 2�pm� + g2�x1� ¯ g2�xk�h̃2�pk+1� ¯ h̃2�pm�

+ 2 cos�� + �m − k�
�

2
 f�x1�g�x1� ¯ f�xk�g�xk� f̃�pk+1�h̃�pk+1� ¯ f̃�pm�h̃�pm�� . �24�

To exploit the parity properties of f and g, we introduce the
root binning defined in Ref. �6�. This binning depends on the
roots of the known functions f and g. If party t measures the
X quadrature, the result will be interpreted as a “+1” if the
measured value xt lies in the interval where f�xt� and g�xt�
have the same sign and “−1” if their signs are opposite, i.e.,
we consider the following domains:

Dx
+ = �x � R�f�x�g�x�  0� ,

Dx
− = �x � R�f�x�g�x� � 0� . �25�

We can similarly define the domains Dp
+ and Dp

− associated to
the measurement of the quadrature P. For the choice of mea-
surement settings defined above, we can thus calculate 2m

probability Pd corresponding to the observation of a given
collection d of binary results. For example, the probability
P+1,. . .,+1 that each party observes a “+1” result reads

P+1,. . .,+1 = �
Dx

+
dx1 ¯ �

Dx
+

dxk�
Dp

+
dpk+1 ¯ �

Dp
+

dpm

	 P�x1, . . . ,xk,pk+1, . . . ,pm� . �26�

We are now in the position to calculate the correlation func-

tion E�X1 , . . . ,Xk , Pk+1 , . . . , Pm�. Note that since f and g � f̃

and h̃� are even and odd, respectively, f2 and g2 � f̃ 2 and h̃2�
are even functions. Hence the first two terms of the right-
hand side of Eq. �24� are even functions also, and their con-
tribution to the correlation function will vanish. We thus ob-
tain the remarkably simple expression

E�X1, . . . ,Xk,Pk+1, . . . ,Pm� = VkWm−kcos�� + �m − k�
�

2
� ,

�27�

where

V = �
−�

�

dx�f�x�g�x�� ,

W = �
−�

�

dp� f̃�p�h̃�p�� . �28�

Interestingly, the correlation function �27� only depends on
the number of sites where X and P are measured. All corre-
lation functions corresponding to k measurements of the X
quadrature, and m−k measurements of the P quadrature are

therefore equal. We will denote them E�k ,m−k� to empha-
size this property.

Let us illustrate the power of this compact notation with
an example. For m=3, the Bell factor reads

B3 = �E�X1,X2,P3� + E�P1,X2,X3� + E�X1,P2,X3�

− E�P1,P2,P3��

= �3E�2,1� − E�0,3��

=�3V2W cos�� +
�

2
 − W3 cos�� + 3

�

2
� . �29�

We see that the maximal violation, i.e., B3
max=4, can be

reached with a state ��� such that sin���= �1 and V=W
=1. Although generating such a state is not practicable, one
can define a family of physical states that approximates it
arbitrarily well. The corresponding f and g functions are
trains of Gaussians and V ,W→1 as the number of peaks
goes to infinity. We refer the reader to Ref. �6� for their exact
analytical expression.

Let us now generalize this result for an arbitrary m. First
note that the Bell factor �2� can be written as

Bm =
1

2
��XmBm−1� + �PmBm−1� + �XmBm−1� � − �PmBm−1� ��

�30�

with B1=2X1 and B1�=2P1. In order to benefit from our com-
pact notation, we explicitly expand the expectation values of
Bm−1 and Bm−1� in terms of correlation functions

�Bm−1� = 	
k=0

m−1

�kE�k,m − 1 − k� ,

�Bm−1� � = 	
k=0

m−1

�kE�m − 1 − k,k� , �31�

where the �k’s are some known coefficients. When m−1=3,
for example, we have �1=3, �3=−1, and �0=�2=0. As the
correlation function only depends on the number of X and P
measurements, the average values of the four operators of
Eq. �30� can be easily calculated from �Bm−1� and �Bm−1� �.
Suppose Bm−1 has a term proportional to the
X1¯XkPk+1¯Pm−1 operator, which leads to the correlation
function E�k ,m−1−k�. The operator XmBm−1 will thus have a
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term proportional to XmX1¯XkPk+1¯Pm−1 leading to the
correlation function E�k+1,m−1−k�, i.e., at the level of cor-
relation functions we only need to replace k by k+1 as the X
quadrature is measured at one additional site. A similar argu-
ment for the expectation values of PmBm−1, XmBm−1� , and
PmBm−1� leads to

Bm =
1

2
�	

k=0

m−1

�k�E�k + 1,m − 1 − k� + E�k,m − k� + E�m − k,k�

− E�m − k − 1,k + 1��� . �32�

To maximize this expression, we note that for two and three
parties the maximum violation is reached for a state with V
=W=1. We thus make the reasonable hypothesis that it re-
mains true for an arbitrary m. Recall that we know how to
choose f and g such as to reach these values. When V=W
=1, we have

E�k,m − k� = cos�� + �m − k�
�

2
� �33�

and Eq. �31� becomes

�Bm−1� = 	
k=0

m−1

�k cos�� + �m − 1 − k�
�

2
� ,

�Bm−1� � = 	
k=0

m−1

�k cos�� + k
�

2
� . �34�

Introducing Eq. �33� into Eq. �32� and using some well
known trigonometric formulas, the Bell factor simplifies to

Bm = �cos�� + m
�

4
 + sin�� + m

�

4
�

	�	
k=0

m−1

�k cos��m − 2k�
�

4
�� . �35�

Maximizing the violation of local realism boils down to find-
ing the optimal phase �m such that the first factor of the
right-hand side is maximum. This term achieves its maxi-
mum of �2 for a value of the phase

�m = �1 − m�
�

4
. �36�

We also note that

�m − 2k�
�

4
= �m−1 + �m − 1 − k�

�

2
�37�

hence the maximum value of the Bell factor can be finally
written as

Bm
max = �2�	

k=0

m−1

�k cos��m−1 + �m − 1 − k�
�

2
�� �38�

=�2Bm−1
max , �39�

where we have identified the summation of Eq. �38� with Eq.
�34� at the optimal angle �m−1. Introducing now the maxi-
mum value obtained in Ref. �6� for the two party case,
B2

max=2�2, we obtain by recursion

Bm
max = 2�m+1�/2 �40�

which is the known maximal bound imposed by quantum
mechanics. Remarkably, the state ��� defined in Eq. �23�
combined with homodyne detection and a binning strategy
called root binning allows for a maximal violation of the MK
inequality. This result shows that even if the binning process
discretizing the result of the homodyne detection discards
some information, it does not prevent to maximally violate
tests of local realism based on discrete variables.

IV. EFFECT OF NOISE

In Secs. II and III, we proved that the search of loophole-
free Bell tests might benefit from an increased number of
parties involved in the experiment. The signature of this im-
provement lies in the exponential increase of the Bell factor
with the number of parties m. However, what makes a Bell
test challenging in practice is not the magnitude of the vio-
lation, but rather the inevitable noise associated with any real
experiment. In many cases, these imperfections are sufficient
to hide the nonlocal correlations that one tries to observe.
When the number of parties involved in a Bell test increases,
so does the fragility of the state used in the experiment. The
risk is thus to rescale the violation in such a way that no
benefit of a larger m is witnessed in practice. One can there-
fore correctly argue that an increased violation of local real-
ism is only significative if accompanied by a comparable
improvement of the robustness to noise of the test. After all,
Bell tests have to be verified in a lab, not on paper.

In a discrete variable setting, the question of the tolerance
to noise of a Bell test is often investigated introducing the
noise fraction �18�. The noise fraction quantifies the maxi-
mum amount of depolarizing noise one can add to an en-
tangled state and still detect nonlocal correlations. The depo-
larizing noise is characterized by the state 1 /d, where d is the
dimension of the Hilbert space. However, in the continuous
variable regime, the noise model underlying the noise frac-
tion is irrelevant. Even if we deal with a finite number of
photons, such as with the truncated photon number corre-
lated states of Sec. II, the Hilbert space spanned by the
eigenstates of the quadrature operators that are measured re-
mains infinite dimensional. Hence, the appropriate basis is
the infinite photon number bases and operators proportional
to the identity 1 have no physical meaning. To adopt an ob-
jective measure of the magnitude of the violation of local
realism, we must therefore introduce a relevant noise model.
In this section, we will consider a probabilistic erasure: with
probability p, the mode of a random party is erased; other-
wise it is untouched. This noise acts independently on each
mode and transforms an initial state ��� into
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� = �1 − p�m������ + p�1 − p�m−1

	�	
t=1

m

Trt�������� � �0�t�0�� �41�

+ ¯ + pm�0�1�0� � ¯ � �0�m�0� . �42�

Such a probabilistic erasure is known to appear in, e.g., at-
mospheric transmissions, and has recently been studied in
Refs. �19,20�.

Let us first consider the photon number correlated states
of Sec. II, and concentrate on the second term of Eq. �41�.
Each element of the sum corresponds to the erasure of one of
the subsystems. So, suppose for example that the state of
subsystem m has been erased and replaced by vacuum while
distributing ���. The corresponding state shared between the
m parties reads

�1,m = Trm�������� � �0�m�0�

= 	
r=0

�

�cr�2�r�1�r� � ¯ � �r�m−1�r� � �0�m�0� . �43�

This state is diagonal in the photon number bases, hence the
results of all possible measurements are equiprobable, i.e.,
∀�1 , . . . ,�m, P�x��1� , . . . ,x��m��=cst, and all correlation co-
efficients vanish. This was to be expected from photon cor-
related states as their entanglement is truly m-partite; tracing
out one subsystem makes the state become separable. Thus,
this property also holds for the other noisy terms of Eq. �41�,
so that only the erasure-free term ������ will contribute to
the Bell factor. We obtain

B� = �1 − p�mBm. �44�

To illustrate this result, consider the m-partite GHZ state,
�19�. The noisy Bell factor reads B�= �1− p�m�2� 4

� �m/2, hence
the maximum probability of erasure pmax such that nonlocal
correlations can be detected is

pmax = 1 −
��

2
21/2m. �45�

This value increases as m increases, and tends to 1−�� /2
following a 1 /m law as m goes to infinity. We thus observe
the desired increased robustness to noise as m becomes large.

Finally, consider now the states of Sec. III. First note that
�f �g�=0, hence in the ��f� , �g�� bases, these states look simi-
lar to GHZ states. We thus expect their robustness to noise to
behave similar to the photon correlated number states. In-
deed, going through the calculation, one finds that for every
noisy term of Eq. �41�, and for every choice of measurement
setting the probability is an even function of the results, e.g.,
if party m loses its mode, the probability P�x1 , . . . ,xm� to
obtain x1 , . . . ,xm �given that X1 , . . . ,Xm is measured� is an
even function. As a result, none of the noisy terms contribute
to the correlation coefficients, and the noisy Bell factor is
again given by Eq. �44� as expected. As a consequence, with
respect to probabilistic erasure, more parties means more ro-
bustness.

Finally, other sources of noise could, of course, be con-
sidered, depending on the actual implementation of a Bell
experiment. However, a full analysis of those goes beyond
the scope of the present paper. Let us only stress that also the
nonunity efficiency of homodyne detection will eventually
appear as some additional noise on the data. Thus, an analy-
sis along the lines above can be performed. More specifi-
cally, a nonideal homodyne detector can be modeled by an
ideal one in front of which a partial transmitting mirror is
placed. This means, in turn, that there are no “no-click”
events. This is a crucial point in view of a possible loophole-
free Bell test, because no post-selection of the data is needed,
which is, in general, unacceptable in this scenario.

V. A CANDIDATE THREE-MODE STATE

Let us now see how the results of Sec. III can be exploited
in order to prepare multipartite states such that, on the one
hand, they exhibit a significantly high violation of local re-
alism and, on the other hand, they may be generated with
near future technology. In particular, we will focus on a class
of three-party states whose generation involves four optical
“Schrodinger-cat” states, i.e., four single mode superposi-
tions of coherent states �9�.

Before proceeding let us make a remark. The main goal,
as said, is now to exploit the gain expected in the amount of
violation of locality when the number of involved parties is
increased. To this aim, a natural candidate may have been the
generalization of the photon-subtracted state discussed in
Refs. �7,8�. Unfortunately, in the case of three parties �and,
actually, in the case of any odd number of parties� the gen-
eralization of the strategy adopted in Refs. �7,8� is not effec-
tive. This is due to symmetry reasons and the use of the sign
binning. Specifically, on the one hand, the joint probability
distribution P�x��1� , . . . ,x��m�� of any number of quadra-
tures is an even function under the exchange of the argu-
ments, on the other hand, the sign binning introduces an odd
function �for odd number of parties� in the integration that
has to be performed in order to obtain any correlation func-
tion. As a consequence, all the correlators are zero giving
trivially no violation.

Let us now see how the increase in the number of parties
involved in a Bell test can be exploited using a different
approach, based on the results given in Sec. III. In Ref. �6�,
the authors propose to use a superposition of Gaussians to
implement the functions f and g of Eq. �23�. In particular, in
the case of only two Gaussians they considered the family of
states defined by

f�x� = �x��c+���� + �− ���� , �46a�

g�x� = �x��c−���� − �− ���� , �46b�

where c�
2 =1 / �2�1�e−2���2��. One can then calculate the cor-

responding V and W coefficients using Eq. �28�, which for
large amplitudes ���→� gives V=1 and W�0.64. As no-
ticed in Ref. �6�, in the case of two parties no violation is
possible, i.e., B2�1.90. However, as can be seen in Eq. �29�,
one can achieve a violation of B3�2.23 already for three
parties. The corresponding state reads
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��3� =
1
�2

�c−
3���� − �− ����3 + c+

3���� + �− ����3� , �47�

where we have put �=0.
Since the maximum violation is achieved for large ampli-

tudes, we can consider the following simpler state:

��3�� = c����,�,�� + ��,− �,− �� + �− �,�,− ��

+ �− �,− �,��� , �48�

which coincides with ��3� for �� � →� �where we defined
c�2=1 / �4�1+3e−4���2��. In order to obtain the Bell factor B3
corresponding to such a state, we calculated the probabilities
of the binned outcomes using Eq. �46� to define the roots, in
combination with Eqs. �24� and �26�. Specifically, we con-
sidered the domains Dx

� and Dp
� inherited by the state ��3�:

Dx
+ = �x � R�x  0� , �49a�

Dx
− = �x � R�x � 0� , �49b�

Dp
+ = �p � R�− cos�p��sin�p��  0� , �49c�

Dp
− = �p � R�− cos�p��sin�p�� � 0� . �49d�

The Bell coefficient B3 calculated with such a procedure
is shown in Fig. 3. One can see that for amplitudes as small
as ����1.1, the state ��3�� already gives values above the
local bound. We note that in this regime of small amplitudes,
��3��� ��3� and the domains defined in Eqs. �49� might be
nonoptimal. As � is increased, a violation around 10% of the
MK inequality is rapidly achieved.

Now let us describe how the state ��3�� may be condition-
ally generated by using linear optics and superpositions of
coherent states �SCS� of this form:

�SCS� = c+���� + �− ��� . �50�

Consider the scheme depicted in Fig. 4.

Two copies of the state �SCS� in modes a0 and a1 are
mixed in a balanced beam splitter. The same action is per-
formed on modes a2 and a3. Then modes a1� and a2�, as well
as a0� and a3� are, respectively, mixed by means of two other
beam splitters. As a last step mode a0� is measured via a
homodyne detector. It is straightforward to show that, when
the measurement outcome −� is obtained, then the condi-
tional state of the remaining modes coincides approximately
with ��3��.

The main issue in implementing the scheme above con-
cerns the generation of the four states �SCS�, whose prepara-
tion is experimentally demanding. However, their generation
in traveling light modes has been recently reported by sev-
eral groups �9�. Thus, one may envisage that, in the future,
the implementation of the whole scheme of Fig. 4 will be
possible.

VI. CONCLUSIONS

In this paper, we have investigated the violation of local
realism in Bell tests based on homodyne measurements per-
formed on multipartite continuous-variable states. We have
proven that the Mermin-Klyshko inequality supplemented
with sign binning can be violated by an amount which grows
exponentially with the number of parties. Furthermore, we
have shown that it is possible to attain the maximal violation
allowed by quantum mechanics by tuning the state and the
binning strategy appropriately. The benefit of this multipar-
tite approach was then shown to be effective in practice by
analyzing the increased robustness to noise of the Bell tests
with the number of modes.

It is worthwhile noting that our results are not based on a
direct mapping from continuous to discrete variables. Such a
procedure would in fact force a particular measurement to be
used in the locality test, as the analysis of Ref. �16� shows.
We instead consider homodyne measurement because of its
high detection efficiency. In this case, the possibility to ob-
tain a maximal violation of the Mermin-Klyshko inequality
is nontrivial, since �i� homodyne measurement represents a
small subset of all possible measurements and �ii� the bin-
ning procedure may cause an irreversible loss of information.
As it turns out, however, such a loss is not detrimental if
suitable binning procedures are used, properly adapted to the
states under investigation.

The experimental significance of our findings lies in that
one can effectively benefit from the increased violation of
locality in the considered multipartite continuous-variable
scenario. In general, this allows for a greater freedom in the
search for feasible multipartite states that can be used to test
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FIG. 3. Bell factor B3 for the state ��3�� as a function of the
amplitude � �see Eq. �48��.

FIG. 4. Schematic of a possible way to conditionally generate
the state ��3�� in Eq. �48�: ��SCS�� superposition of coherent states
�see Eq. �50��; �BS� balanced beam splitter; �D� homodyne detector.
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nonlocality in an actual experiment suffering from noise. As
an illustration, inspired by the analysis of the states that
maximally violate the local bound, we have proposed an ap-
proximation of the latter state which may be experimentally
realized in a reasonable future. This state involves three par-
ties and gives a violation of around 10% of the local bound.
As a perspective of this work, it is expected that other states
of light with similarly high violation and suitably adapted to
experimental constraints might be found, inspired by our re-
sults.
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